summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorRudolf Marek <r.marek@assembler.cz>2009-02-14 15:42:42 +0000
committerRudolf Marek <r.marek@assembler.cz>2009-02-14 15:42:42 +0000
commit537bd5f637456a810f9144529a3d01fc5006e38f (patch)
tree4697c68c65a468b930e5cee395c6e4eb061224b1
parentf997b5554acd2c3ddcc9080b78a834853e59c783 (diff)
downloadcoreboot-537bd5f637456a810f9144529a3d01fc5006e38f.tar.xz
Bellongs to r3946
Following patch adds dynamically generated P-States infrastructure as well as M2V-MX SE as example how to do that. It is based on AMD code and mine code for ACPI generation. Signed-off-by: Rudolf Marek <r.marek@assembler.cz> Acked-by: Peter Stuge <peter@stuge.se> git-svn-id: svn://svn.coreboot.org/coreboot/trunk@3947 2b7e53f0-3cfb-0310-b3e9-8179ed1497e1
-rw-r--r--src/cpu/amd/model_fxx/powernow_acpi.c386
1 files changed, 386 insertions, 0 deletions
diff --git a/src/cpu/amd/model_fxx/powernow_acpi.c b/src/cpu/amd/model_fxx/powernow_acpi.c
new file mode 100644
index 0000000000..1e789e3729
--- /dev/null
+++ b/src/cpu/amd/model_fxx/powernow_acpi.c
@@ -0,0 +1,386 @@
+/*
+ * This file is part of the coreboot project.
+ *
+ * Copyright (C) 2008 Advanced Micro Devices, Inc.
+ * Copyright (C) 2009 Rudolf Marek <r.marek@assembler.cz>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License v2 as published by
+ * the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
+ */
+
+#include <console/console.h>
+#include <stdint.h>
+#include <cpu/x86/msr.h>
+#include <arch/acpigen.h>
+#include <cpu/amd/model_fxx_powernow.h>
+#include <device/pci.h>
+#include <device/pci_ids.h>
+#include <cpu/x86/msr.h>
+#include <cpu/amd/mtrr.h>
+#include <cpu/amd/amdk8_sysconf.h>
+#include <arch/cpu.h>
+
+static int write_pstates_for_core(u8 pstate_num, u16 *pstate_feq, u8 *pstate_vid,
+ u8 *pstate_fid, u32 *pstate_power, int coreID,
+ u32 pcontrol_blk, u8 plen, u8 onlyBSP) {
+ int lenp, lenpr, i;
+
+ if ((onlyBSP) && (coreID != 0)) {
+ plen = 0;
+ pcontrol_blk = 0;
+ }
+
+ lenpr = acpigen_write_processor(coreID, pcontrol_blk, plen);
+ lenpr += acpigen_write_empty_PCT();
+ lenpr += acpigen_write_name("_PSS");
+
+ /* add later to total sum */
+ lenp = acpigen_write_package(pstate_num);
+
+ for (i = 0;i < pstate_num;i++) {
+ u32 control, status;
+
+ control =
+ (0x3 << 30) | /* IRT */
+ (0x2 << 28) | /* RVO */
+ (0x1 << 27) | /* ExtType */
+ (0x2 << 20) | /* PLL_LOCK_TIME */
+ (0x0 << 18) | /* MVS */
+ (0x5 << 11) | /* VST */
+ (pstate_vid[i] << 6) |
+ pstate_fid[i];
+ status =
+ (pstate_vid[i] << 6) |
+ pstate_fid[i];
+
+ lenp += acpigen_write_PSS_package(pstate_feq[i],
+ pstate_power[i],
+ 0x64,
+ 0x7,
+ control,
+ status);
+ }
+ /* update the package size */
+ acpigen_patch_len(lenp - 1);
+
+ lenpr += lenp;
+ lenpr += acpigen_write_PPC(pstate_num);
+ /* patch the whole Processor token length */
+ acpigen_patch_len(lenpr - 2);
+ return lenpr;
+}
+/*
+* Details about this algorithm , refert to BDKG 10.5.1
+* Two parts are included, the another is the DSDT reconstruction process
+*/
+
+static int pstates_algorithm(u32 pcontrol_blk, u8 plen, u8 onlyBSP)
+{
+ int len;
+ u8 processor_brand[49];
+ u32 *v;
+ struct cpuid_result cpuid1;
+
+ struct power_limit_encoding {
+ u8 socket_type;
+ u8 cmp_cap;
+ u8 pwr_lmt;
+ u32 power_limit;
+ };
+ u8 Max_fid, Max_vid, Start_fid, Start_vid, Min_fid, Min_vid;
+ u16 Max_feq;
+ u8 Pstate_fid[10];
+ u16 Pstate_feq[10];
+ u8 Pstate_vid[10];
+ u32 Pstate_power[10];
+ u32 Pstate_volt[10];
+ u8 PstateStep, PstateStep_coef;
+ u8 IntPstateSup;
+ u8 Pstate_num;
+ u16 Cur_feq;
+ u8 Cur_fid;
+ u8 cmp_cap, pwr_lmt;
+ u32 power_limit = 0;
+ u8 index;
+ msr_t msr;
+ u32 fid_multiplier;
+ static struct power_limit_encoding TDP[20] = {
+ {0x11, 0x0, 0x8, 62},
+ {0x11, 0x1, 0x8, 89},
+ {0x11, 0x1, 0xa, 103},
+ {0x11, 0x1, 0xc, 125},
+ {0x11, 0x0, 0x2, 15},
+ {0x11, 0x0, 0x4, 35},
+ {0x11, 0x1, 0x2, 35},
+ {0x11, 0x0, 0x5, 45},
+ {0x11, 0x1, 0x7, 76},
+ {0x11, 0x1, 0x6, 65},
+ {0x11, 0x1, 0x8, 89},
+ {0x11, 0x0, 0x1, 8},
+ {0x11, 0x1, 0x1, 22},
+ {0x12, 0x0, 0x6, 25},
+ {0x12, 0x0, 0x1, 8},
+ {0x12, 0x0, 0x2, 9},
+ {0x12, 0x0, 0x4, 15},
+ {0x12, 0x0, 0xc, 35},
+ {0x12, 0x1, 0xc, 35},
+ {0x12, 0x1, 0x4, 20}
+ };
+
+ /* Get the Processor Brand String using cpuid(0x8000000x) command x=2,3,4 */
+ cpuid1 = cpuid(0x80000002);
+ v = (u32 *) processor_brand;
+ v[0] = cpuid1.eax;
+ v[1] = cpuid1.ebx;
+ v[2] = cpuid1.ecx;
+ v[3] = cpuid1.edx;
+ cpuid1 = cpuid(0x80000003);
+ v[4] = cpuid1.eax;
+ v[5] = cpuid1.ebx;
+ v[6] = cpuid1.ecx;
+ v[7] = cpuid1.edx;
+ cpuid1 = cpuid(0x80000004);
+ v[8] = cpuid1.eax;
+ v[9] = cpuid1.ebx;
+ v[10] = cpuid1.ecx;
+ v[11] = cpuid1.edx;
+ processor_brand[48] = 0;
+ printk_info("processor_brand=%s\n", processor_brand);
+
+ /*
+ * Based on the CPU socket type,cmp_cap and pwr_lmt , get the power limit.
+ * socket_type : 0x10 SocketF; 0x11 AM2/ASB1 ; 0x12 S1G1
+ * cmp_cap : 0x0 SingleCore ; 0x1 DualCore
+ */
+ printk_info("Pstates Algorithm ...\n");
+ cmp_cap =
+ (pci_read_config16(dev_find_slot(0, PCI_DEVFN(0x18, 3)), 0xE8) &
+ 0x3000) >> 12;
+ cpuid1 = cpuid(0x80000001);
+ pwr_lmt = ((cpuid1.ebx & 0x1C0) >> 5) | ((cpuid1.ebx & 0x4000) >> 14);
+ for (index = 0; index <= sizeof(TDP) / sizeof(TDP[0]); index++)
+ if (TDP[index].socket_type == CPU_SOCKET_TYPE &&
+ TDP[index].cmp_cap == cmp_cap &&
+ TDP[index].pwr_lmt == pwr_lmt) {
+ power_limit = TDP[index].power_limit;
+ }
+
+ Pstate_num = 0;
+
+ /* See if the CPUID(0x80000007) returned EDX[2:1]==11b */
+ cpuid1 = cpuid(0x80000007);
+ if ((cpuid1.edx & 0x6) != 0x6) {
+ printk_info("No valid set of P-states\n");
+ goto write_pstates;
+ }
+
+ msr = rdmsr(0xc0010042);
+ Max_fid = (msr.lo & 0x3F0000) >> 16;
+ Start_fid = (msr.lo & 0x3F00) >> 8;
+ Max_vid = (msr.hi & 0x3F0000) >> 16;
+ Start_vid = (msr.hi & 0x3F00) >> 8;
+ PstateStep = (msr.hi & 0x1000000) >> 24;
+ IntPstateSup = (msr.hi & 0x20000000) >> 29;
+
+ /*
+ * The P1...P[Min+1] VID need PstateStep to calculate
+ * P[N] = P[N-1]VID + 2^PstateStep
+ * PstateStep_coef = 2^PstateStep
+ */
+ if (PstateStep == 0)
+ PstateStep_coef = 1;
+ else
+ PstateStep_coef = 2;
+
+ if (IntPstateSup == 0) {
+ printk_info("No intermediate P-states are supported\n");
+ goto write_pstates;
+ }
+
+ /* Get the multipier of the fid frequency */
+ /*
+ * Fid multiplier is always 100 revF and revG.
+ */
+ fid_multiplier = 100;
+
+ /*
+ * Formula1: CPUFreq = FID * fid_multiplier + 800
+ * Formula2: CPUVolt = 1550 - VID * 25 (mv)
+ * Formula3: Power = (PwrLmt * P[N]Frequency*(P[N]Voltage^2))/(P[0]Frequency * P[0]Voltage^2))
+ */
+
+ /* Construct P0(P[Max]) state */
+ Max_feq = Max_fid * fid_multiplier + 800;
+ if (Max_fid == 0x2A && Max_vid != 0x0) {
+ Min_fid = 0x2;
+ Pstate_fid[0] = Start_fid + 0xA; /* Start Frequency + 1GHz */
+ Pstate_feq[0] = Pstate_fid[0] * fid_multiplier + 800;
+ Min_vid = Start_vid;
+ Pstate_vid[0] = Max_vid + 0x2; /* Maximum Voltage - 50mV */
+ Pstate_volt[0] = 1550 - Pstate_vid[0] * 25;
+ Pstate_power[0] = power_limit * 1000; /* mw */
+ Pstate_num++;
+ } else {
+ Min_fid = Start_fid;
+ Pstate_fid[0] = Max_fid;
+ Pstate_feq[0] = Max_feq;
+ Min_vid = Start_vid;
+ Pstate_vid[0] = Max_vid + 0x2;
+ Pstate_volt[0] = 1550 - Pstate_vid[0] * 25;
+ Pstate_power[0] = power_limit * 1000; /* mw */
+ Pstate_num++;
+ }
+
+ Cur_feq = Max_feq;
+ Cur_fid = Max_fid;
+ /* Construct P1 state */
+ if (((Max_fid & 0x1) != 0) && ((Max_fid - 0x1) >= (Min_fid + 0x8))) { /* odd value */
+ Pstate_fid[1] = Max_fid - 0x1;
+ Pstate_feq[1] = Pstate_fid[1] * fid_multiplier + 800;
+ Cur_fid = Pstate_fid[1];
+ Cur_feq = Pstate_feq[1];
+ if (((Pstate_vid[0] & 0x1) != 0) && ((Pstate_vid[0] - 0x1) < Min_vid)) { /* odd value */
+ Pstate_vid[1] = Pstate_vid[0] + 0x1;
+ Pstate_volt[1] = 1550 - Pstate_vid[1] * 25;
+ Pstate_power[1] =
+ (unsigned long long)Pstate_power[0] *
+ Pstate_feq[1] * Pstate_volt[1] * Pstate_volt[1] /
+ (Pstate_feq[0] * Pstate_volt[0] * Pstate_volt[0]);
+ }
+ if (((Pstate_vid[0] & 0x1) == 0) && ((Pstate_vid[0] - 0x1) < Min_vid)) { /* even value */
+ Pstate_vid[1] = Pstate_vid[0] + PstateStep_coef;
+ Pstate_volt[1] = 1550 - Pstate_vid[1] * 25;
+ Pstate_power[1] =
+ (unsigned long long)Pstate_power[0] *
+ Pstate_feq[1] * Pstate_volt[1] * Pstate_volt[1] /
+ (Pstate_feq[0] * Pstate_volt[0] * Pstate_volt[0]);
+ }
+ Pstate_num++;
+ }
+
+ if (((Max_fid & 0x1) == 0) && ((Max_fid - 0x2) >= (Min_fid + 0x8))) { /* even value */
+ Pstate_fid[1] = Max_fid - 0x2;
+ Pstate_feq[1] = Pstate_fid[1] * fid_multiplier + 800;
+ Cur_fid = Pstate_fid[1];
+ Cur_feq = Pstate_feq[1];
+ if (((Pstate_vid[0] & 0x1) != 0) && ((Pstate_vid[0] - 0x1) < Min_vid)) { /* odd value */
+ Pstate_vid[1] = Pstate_vid[0] + 0x1;
+ Pstate_volt[1] = 1550 - Pstate_vid[1] * 25;
+ Pstate_power[1] =
+ (unsigned long long)Pstate_power[0] *
+ Pstate_feq[1] * Pstate_volt[1] * Pstate_volt[1] /
+ (Pstate_feq[0] * Pstate_volt[0] * Pstate_volt[0]);
+ }
+ if (((Pstate_vid[0] & 0x1) == 0) && ((Pstate_vid[0] - 0x1) < Min_vid)) { /* even value */
+ Pstate_vid[1] = Pstate_vid[0] + PstateStep_coef;
+ Pstate_volt[1] = 1550 - Pstate_vid[1] * 25;
+ Pstate_power[1] =
+ (unsigned long long)Pstate_power[0] *
+ Pstate_feq[1] * Pstate_volt[1] * Pstate_volt[1] /
+ (Pstate_feq[0] * Pstate_volt[0] * Pstate_volt[0]);
+ }
+
+ Pstate_num++;
+ }
+
+ /* Construct P2...P[Min-1] state */
+ Cur_fid = Cur_fid - 0x2;
+ Cur_feq = Cur_fid * fid_multiplier + 800;
+ while (Cur_feq >= ((Min_fid * fid_multiplier) + 800) * 2) {
+ Pstate_fid[Pstate_num] = Cur_fid;
+ Pstate_feq[Pstate_num] =
+ Pstate_fid[Pstate_num] * fid_multiplier + 800;
+ Cur_fid = Cur_fid - 0x2;
+ Cur_feq = Cur_fid * fid_multiplier + 800;
+ if (Pstate_vid[Pstate_num - 1] >= Min_vid) {
+ Pstate_vid[Pstate_num] = Pstate_vid[Pstate_num - 1];
+ Pstate_volt[Pstate_num] = Pstate_volt[Pstate_num - 1];
+ Pstate_power[Pstate_num] = Pstate_power[Pstate_num - 1];
+ } else {
+ Pstate_vid[Pstate_num] =
+ Pstate_vid[Pstate_num - 1] + PstateStep_coef;
+ Pstate_volt[Pstate_num] =
+ 1550 - Pstate_vid[Pstate_num] * 25;
+ Pstate_power[Pstate_num] =
+ (unsigned long long)Pstate_power[0] *
+ Pstate_feq[Pstate_num] * Pstate_volt[Pstate_num] *
+ Pstate_volt[Pstate_num] / (Pstate_feq[0] *
+ Pstate_volt[0] *
+ Pstate_volt[0]);
+ }
+ Pstate_num++;
+ }
+
+ /* Constuct P[Min] State */
+ if (Max_fid == 0x2A && Max_vid != 0x0) {
+ Pstate_fid[Pstate_num] = 0x2;
+ Pstate_feq[Pstate_num] =
+ Pstate_fid[Pstate_num] * fid_multiplier + 800;
+ Pstate_vid[Pstate_num] = Min_vid;
+ Pstate_volt[Pstate_num] = 1550 - Pstate_vid[Pstate_num] * 25;
+ Pstate_power[Pstate_num] =
+ (unsigned long long)Pstate_power[0] *
+ Pstate_feq[Pstate_num] * Pstate_volt[Pstate_num] *
+ Pstate_volt[Pstate_num] / (Pstate_feq[0] * Pstate_volt[0] *
+ Pstate_volt[0]);
+ Pstate_num++;
+ } else {
+ Pstate_fid[Pstate_num] = Start_fid;
+ Pstate_feq[Pstate_num] =
+ Pstate_fid[Pstate_num] * fid_multiplier + 800;
+ Pstate_vid[Pstate_num] = Min_vid;
+ Pstate_volt[Pstate_num] = 1550 - Pstate_vid[Pstate_num] * 25;
+ Pstate_power[Pstate_num] =
+ (unsigned long long)Pstate_power[0] *
+ Pstate_feq[Pstate_num] * Pstate_volt[Pstate_num] *
+ Pstate_volt[Pstate_num] / (Pstate_feq[0] * Pstate_volt[0] *
+ Pstate_volt[0]);
+ Pstate_num++;
+ }
+
+ /* Print Pstate freq,vid,volt,power */
+
+ for (index = 0; index < Pstate_num; index++) {
+ printk_info("Pstate_freq[%d] = %dMHz\t", index,
+ Pstate_feq[index]);
+ printk_info("Pstate_vid[%d] = %d\t", index, Pstate_vid[index]);
+ printk_info("Pstate_volt[%d] = %dmv\t", index,
+ Pstate_volt[index]);
+ printk_info("Pstate_power[%d] = %dmw\n", index,
+ Pstate_power[index]);
+ }
+
+
+write_pstates:
+
+ len = 0;
+
+ for (index = 0; index < (cmp_cap + 1); index++) {
+ len += write_pstates_for_core(Pstate_num, Pstate_feq, Pstate_vid,
+ Pstate_fid, Pstate_power, index,
+ pcontrol_blk, plen, onlyBSP);
+ }
+
+ return len;
+}
+
+int amd_model_fxx_generate_powernow(u32 pcontrol_blk, u8 plen, u8 onlyBSP) {
+ int lens;
+ char pscope[] = "\\_PR_";
+
+ lens = acpigen_write_scope(pscope);
+ lens += pstates_algorithm(pcontrol_blk, plen, onlyBSP);
+ //minus opcode
+ acpigen_patch_len(lens - 1);
+ return lens;
+}