diff options
author | Patrick Georgi <patrick@georgi-clan.de> | 2015-07-17 23:35:54 +0200 |
---|---|---|
committer | Patrick Georgi <pgeorgi@google.com> | 2015-08-20 14:39:01 +0000 |
commit | af473ede1f8ff5fc63609b914570aad21827b2e7 (patch) | |
tree | c3eba483c7a981d289617559bbdc1288336de1eb /util/crossgcc/patches/gcc-5.2.0_riscv.patch | |
parent | f58746bd33f28bc7625e4fd6b166b6f977253c7d (diff) | |
download | coreboot-af473ede1f8ff5fc63609b914570aad21827b2e7.tar.xz |
crossgcc: Update gcc to 5.2.0
All compilers built, incl. x86_64-elf as multilib and riscv-elf.
Change-Id: Iafa61b1d2ffc9c737ab67a417c62417593b69372
Signed-off-by: Patrick Georgi <patrick@georgi-clan.de>
Reviewed-on: http://review.coreboot.org/10975
Tested-by: Raptor Engineering Automated Test Stand <noreply@raptorengineeringinc.com>
Tested-by: build bot (Jenkins)
Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
Diffstat (limited to 'util/crossgcc/patches/gcc-5.2.0_riscv.patch')
-rw-r--r-- | util/crossgcc/patches/gcc-5.2.0_riscv.patch | 11724 |
1 files changed, 11724 insertions, 0 deletions
diff --git a/util/crossgcc/patches/gcc-5.2.0_riscv.patch b/util/crossgcc/patches/gcc-5.2.0_riscv.patch new file mode 100644 index 0000000000..ebe355d683 --- /dev/null +++ b/util/crossgcc/patches/gcc-5.2.0_riscv.patch @@ -0,0 +1,11724 @@ +--- original-gcc/config.sub ++++ gcc-5.2.0/config.sub +@@ -340,6 +340,9 @@ case $basic_machine in + ms1) + basic_machine=mt-unknown + ;; ++ riscv) ++ basic_machine=riscv-ucb ++ ;; + + strongarm | thumb | xscale) + basic_machine=arm-unknown +--- original-gcc/gcc/config.gcc ++++ gcc-5.2.0/gcc/config.gcc +@@ -439,6 +439,10 @@ powerpc*-*-*) + esac + extra_options="${extra_options} g.opt fused-madd.opt rs6000/rs6000-tables.opt" + ;; ++riscv*) ++ cpu_type=riscv ++ need_64bit_hwint=yes ++ ;; + rs6000*-*-*) + extra_options="${extra_options} g.opt fused-madd.opt rs6000/rs6000-tables.opt" + ;; +@@ -1976,6 +1980,27 @@ microblaze*-*-elf) + cxx_target_objs="${cxx_target_objs} microblaze-c.o" + tmake_file="${tmake_file} microblaze/t-microblaze" + ;; ++riscv32*-*-linux*) # Linux RISC-V ++ tm_file="elfos.h gnu-user.h linux.h glibc-stdint.h riscv/default-32.h ${tm_file} riscv/linux.h riscv/linux64.h" ++ tmake_file="${tmake_file} riscv/t-linux64" ++ gnu_ld=yes ++ gas=yes ++ gcc_cv_initfini_array=yes ++ ;; ++riscv*-*-linux*) # Linux RISC-V ++ tm_file="elfos.h gnu-user.h linux.h glibc-stdint.h ${tm_file} riscv/linux.h riscv/linux64.h" ++ tmake_file="${tmake_file} riscv/t-linux64" ++ gnu_ld=yes ++ gas=yes ++ gcc_cv_initfini_array=yes ++ ;; ++riscv*-*-elf*) # Linux RISC-V ++ tm_file="elfos.h newlib-stdint.h ${tm_file} riscv/elf.h" ++ tmake_file="${tmake_file} riscv/t-elf" ++ gnu_ld=yes ++ gas=yes ++ gcc_cv_initfini_array=yes ++ ;; + mips*-*-netbsd*) # NetBSD/mips, either endian. + target_cpu_default="MASK_ABICALLS" + tm_file="elfos.h ${tm_file} mips/elf.h netbsd.h netbsd-elf.h mips/netbsd.h" +@@ -3851,6 +3876,31 @@ case "${target}" in + done + ;; + ++ riscv*-*-*) ++ supported_defaults="abi arch arch_32 arch_64 float tune tune_32 tune_64" ++ ++ case ${with_float} in ++ "" | soft | hard) ++ # OK ++ ;; ++ *) ++ echo "Unknown floating point type used in --with-float=$with_float" 1>&2 ++ exit 1 ++ ;; ++ esac ++ ++ case ${with_abi} in ++ "" | 32 | 64) ++ # OK ++ ;; ++ *) ++ echo "Unknown ABI used in --with-abi=$with_abi" 1>&2 ++ exit 1 ++ ;; ++ esac ++ ++ ;; ++ + mips*-*-*) + supported_defaults="abi arch arch_32 arch_64 float fpu nan fp_32 odd_spreg_32 tune tune_32 tune_64 divide llsc mips-plt synci" + +--- original-gcc/gcc/configure ++++ gcc-5.2.0/gcc/configure +@@ -23708,6 +23708,25 @@ x3: .space 4 + tls_first_minor=14 + tls_as_opt="-a32 --fatal-warnings" + ;; ++ riscv*-*-*) ++ conftest_s=' ++ .section .tdata,"awT",@progbits ++x: ++ .word 2 ++ .text ++ la.tls.gd a0,x ++ la.tls.ie a1,x ++ lui a0,%tls_ie_pcrel_hi(x) ++ lw a0,%pcrel_lo(x)(a0) ++ add a0,a0,tp ++ lw a0,0(a0) ++ lui a0,%tprel_hi(x) ++ add a0,a0,tp,%tprel_add(x) ++ lw a0,%tprel_lo(x)(a0)' ++ tls_first_major=2 ++ tls_first_minor=21 ++ tls_as_opt='-m32 --fatal-warnings' ++ ;; + s390-*-*) + conftest_s=' + .section ".tdata","awT",@progbits +--- original-gcc/gcc/configure.ac ++++ gcc-5.2.0/gcc/configure.ac +@@ -3263,6 +3263,25 @@ x3: .space 4 + tls_first_minor=14 + tls_as_opt="-a32 --fatal-warnings" + ;; ++ riscv*-*-*) ++ conftest_s=' ++ .section .tdata,"awT",@progbits ++x: ++ .word 2 ++ .text ++ la.tls.gd a0,x ++ la.tls.ie a1,x ++ lui a0,%tls_ie_pcrel_hi(x) ++ lw a0,%pcrel_lo(x)(a0) ++ add a0,a0,tp ++ lw a0,0(a0) ++ lui a0,%tprel_hi(x) ++ add a0,a0,tp,%tprel_add(x) ++ lw a0,%tprel_lo(x)(a0)' ++ tls_first_major=2 ++ tls_first_minor=21 ++ tls_as_opt='-m32 --fatal-warnings' ++ ;; + s390-*-*) + conftest_s=' + .section ".tdata","awT",@progbits +--- original-gcc/gcc/testsuite/gcc.c-torture/execute/20101011-1.c ++++ gcc-5.2.0/gcc/testsuite/gcc.c-torture/execute/20101011-1.c +@@ -6,6 +6,9 @@ + #elif defined (__powerpc__) || defined (__PPC__) || defined (__ppc__) || defined (__POWERPC__) || defined (__ppc) + /* On PPC division by zero does not trap. */ + # define DO_TEST 0 ++#elif defined (__riscv__) ++ /* On RISC-V division by zero does not trap. */ ++# define DO_TEST 0 + #elif defined (__SPU__) + /* On SPU division by zero does not trap. */ + # define DO_TEST 0 +--- original-gcc/gcc/testsuite/gcc.dg/20020312-2.c ++++ gcc-5.2.0/gcc/testsuite/gcc.dg/20020312-2.c +@@ -66,6 +66,8 @@ extern void abort (void); + # else + # define PIC_REG "30" + # endif ++#elif defined(__riscv__) ++/* No pic register. */ + #elif defined(__RX__) + /* No pic register. */ + #elif defined(__s390__) +--- original-gcc/gcc/testsuite/gcc.dg/20040813-1.c ++++ gcc-5.2.0/gcc/testsuite/gcc.dg/20040813-1.c +@@ -2,7 +2,7 @@ + /* Contributed by Devang Patel <dpatel@apple.com> */ + + /* { dg-do compile } */ +-/* { dg-skip-if "No stabs" { aarch64*-*-* mmix-*-* *-*-aix* alpha*-*-* hppa*64*-*-* ia64-*-* tile*-*-* nios2-*-* *-*-vxworks* nvptx-*-* } { "*" } { "" } } */ ++/* { dg-skip-if "No stabs" { aarch64*-*-* mmix-*-* *-*-aix* alpha*-*-* hppa*64*-*-* ia64-*-* riscv*-*-* tile*-*-* nios2-*-* *-*-vxworks* nvptx-*-* } { "*" } { "" } } */ + /* { dg-options "-gstabs" } */ + + int +--- original-gcc/gcc/testsuite/gcc.dg/stack-usage-1.c ++++ gcc-5.2.0/gcc/testsuite/gcc.dg/stack-usage-1.c +@@ -61,6 +61,8 @@ + # else + # define SIZE 240 + # endif ++#elif defined (__riscv__) ++# define SIZE 240 + #elif defined (__AVR__) + # define SIZE 254 + #elif defined (__s390x__) +--- original-gcc/libatomic/configure.tgt ++++ gcc-5.2.0/libatomic/configure.tgt +@@ -33,6 +33,7 @@ case "${target_cpu}" in + ARCH=alpha + ;; + rs6000 | powerpc*) ARCH=powerpc ;; ++ riscv*) ARCH=riscv ;; + sh*) ARCH=sh ;; + + arm*) +--- original-gcc/libgcc/config.host ++++ gcc-5.2.0/libgcc/config.host +@@ -167,6 +167,9 @@ powerpc*-*-*) + ;; + rs6000*-*-*) + ;; ++riscv*) ++ cpu_type=riscv ++ ;; + sparc64*-*-*) + cpu_type=sparc + ;; +@@ -1057,6 +1060,18 @@ powerpcle-*-eabi*) + tmake_file="${tmake_file} rs6000/t-ppccomm rs6000/t-crtstuff t-crtstuff-pic t-fdpbit" + extra_parts="$extra_parts crtbegin.o crtend.o crtbeginS.o crtendS.o crtbeginT.o ecrti.o ecrtn.o ncrti.o ncrtn.o" + ;; ++riscv32*-*-linux*) ++ tmake_file="${tmake_file} riscv/t-fpbit riscv/t-dpbit riscv/t-tpbit riscv/t-elf riscv/t-elf32" ++ extra_parts="$extra_parts crtbegin.o crtend.o crti.o crtn.o crtendS.o crtbeginT.o" ++ ;; ++riscv*-*-linux*) ++ tmake_file="${tmake_file} riscv/t-fpbit riscv/t-dpbit riscv/t-tpbit riscv/t-elf" ++ extra_parts="$extra_parts crtbegin.o crtend.o crti.o crtn.o crtendS.o crtbeginT.o" ++ ;; ++riscv*-*-*) ++ tmake_file="${tmake_file} riscv/t-fpbit riscv/t-dpbit riscv/t-elf" ++ extra_parts="$extra_parts crtbegin.o crtend.o crti.o crtn.o" ++ ;; + rs6000-ibm-aix4.[3456789]* | powerpc-ibm-aix4.[3456789]*) + md_unwind_header=rs6000/aix-unwind.h + tmake_file="t-fdpbit rs6000/t-ppc64-fp rs6000/t-slibgcc-aix rs6000/t-ibm-ldouble" +--- original-gcc/libsanitizer/asan/asan_linux.cc ++++ gcc-5.2.0/libsanitizer/asan/asan_linux.cc +@@ -213,6 +213,11 @@ void GetPcSpBp(void *context, uptr *pc, + *pc = ucontext->uc_mcontext.gregs[31]; + *bp = ucontext->uc_mcontext.gregs[30]; + *sp = ucontext->uc_mcontext.gregs[29]; ++# elif defined(__riscv__) ++ ucontext_t *ucontext = (ucontext_t*)context; ++ *pc = ucontext->uc_mcontext.gregs[REG_PC]; ++ *bp = ucontext->uc_mcontext.gregs[REG_S0]; ++ *sp = ucontext->uc_mcontext.gregs[REG_SP]; + #else + # error "Unsupported arch" + #endif +--- original-gcc/libsanitizer/sanitizer_common/sanitizer_platform_limits_linux.cc ++++ gcc-5.2.0/libsanitizer/sanitizer_common/sanitizer_platform_limits_linux.cc +@@ -61,7 +61,8 @@ namespace __sanitizer { + } // namespace __sanitizer + + #if !defined(__powerpc64__) && !defined(__x86_64__) && !defined(__aarch64__)\ +- && !defined(__mips__) && !defined(__sparc__) ++ && !defined(__mips__) && !defined(__sparc__)\ ++ && !defined(__riscv__) + COMPILER_CHECK(struct___old_kernel_stat_sz == sizeof(struct __old_kernel_stat)); + #endif + +--- original-gcc/libsanitizer/sanitizer_common/sanitizer_platform_limits_posix.h ++++ gcc-5.2.0/libsanitizer/sanitizer_common/sanitizer_platform_limits_posix.h +@@ -72,6 +72,10 @@ namespace __sanitizer { + const unsigned struct_kernel_stat_sz = 144; + #endif + const unsigned struct_kernel_stat64_sz = 104; ++#elif defined(__riscv__) ++ const unsigned struct___old_kernel_stat_sz = 0; ++ const unsigned struct_kernel_stat_sz = 128; ++ const unsigned struct_kernel_stat64_sz = 128; + #elif defined(__sparc__) && defined(__arch64__) + const unsigned struct___old_kernel_stat_sz = 0; + const unsigned struct_kernel_stat_sz = 104; +@@ -511,7 +515,7 @@ namespace __sanitizer { + typedef long __sanitizer___kernel_off_t; + #endif + +-#if defined(__powerpc__) || defined(__mips__) ++#if defined(__powerpc__) || defined(__mips__) || defined(__riscv__) + typedef unsigned int __sanitizer___kernel_old_uid_t; + typedef unsigned int __sanitizer___kernel_old_gid_t; + #else +diff -ru gcc-5.1.0.orig/libsanitizer/sanitizer_common/sanitizer_platform.h gcc-5.1.0/libsanitizer/sanitizer_common/sanitizer_platform.h +--- gcc-5.1.0.orig/libsanitizer/sanitizer_common/sanitizer_platform.h 2015-05-13 19:36:27.061421043 -0700 ++++ gcc-5.2.0/libsanitizer/sanitizer_common/sanitizer_platform.h 2015-05-13 19:44:19.274355577 -0700 +@@ -98,9 +98,9 @@ + + // The AArch64 linux port uses the canonical syscall set as mandated by + // the upstream linux community for all new ports. Other ports may still +-// use legacy syscalls. ++// use legacy syscalls. The RISC-V port also does this. + #ifndef SANITIZER_USES_CANONICAL_LINUX_SYSCALLS +-# if defined(__aarch64__) && SANITIZER_LINUX ++# if (defined(__aarch64__) || defined(__riscv__)) && SANITIZER_LINUX + # define SANITIZER_USES_CANONICAL_LINUX_SYSCALLS 1 + # else + # define SANITIZER_USES_CANONICAL_LINUX_SYSCALLS 0 +diff -ru gcc-5.1.0.orig/libsanitizer/sanitizer_common/sanitizer_platform_limits_posix.h gcc-5.1.0/libsanitizer/sanitizer_common/sanitizer_platform_limits_posix.h +--- gcc-5.1.0.orig/libsanitizer/sanitizer_common/sanitizer_platform_limits_posix.h 2015-05-13 19:36:27.061421043 -0700 ++++ gcc-5.2.0/libsanitizer/sanitizer_common/sanitizer_platform_limits_posix.h 2015-05-13 19:39:13.515487834 -0700 +@@ -73,7 +73,6 @@ + #endif + const unsigned struct_kernel_stat64_sz = 104; + #elif defined(__riscv__) +- const unsigned struct___old_kernel_stat_sz = 0; + const unsigned struct_kernel_stat_sz = 128; + const unsigned struct_kernel_stat64_sz = 128; + #elif defined(__sparc__) && defined(__arch64__) +@@ -104,7 +103,7 @@ + + #if SANITIZER_LINUX || SANITIZER_FREEBSD + +-#if defined(__powerpc64__) ++#if defined(__powerpc64__) || defined(__riscv__) + const unsigned struct___old_kernel_stat_sz = 0; + #elif !defined(__sparc__) + const unsigned struct___old_kernel_stat_sz = 32; +diff -urN empty/gcc/common/config/riscv/riscv-common.c gcc-5.2.0/gcc/common/config/riscv/riscv-common.c +--- empty/gcc/common/config/riscv/riscv-common.c 1970-01-01 01:00:00.000000000 +0100 ++++ gcc-5.2.0/gcc/common/config/riscv/riscv-common.c 2015-07-17 22:36:52.315705931 +0200 +@@ -0,0 +1,140 @@ ++/* Common hooks for RISC-V. ++ Copyright (C) 1989-2014 Free Software Foundation, Inc. ++ ++This file is part of GCC. ++ ++GCC is free software; you can redistribute it and/or modify ++it under the terms of the GNU General Public License as published by ++the Free Software Foundation; either version 3, or (at your option) ++any later version. ++ ++GCC is distributed in the hope that it will be useful, ++but WITHOUT ANY WARRANTY; without even the implied warranty of ++MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++GNU General Public License for more details. ++ ++You should have received a copy of the GNU General Public License ++along with GCC; see the file COPYING3. If not see ++<http://www.gnu.org/licenses/>. */ ++ ++#include "config.h" ++#include "system.h" ++#include "coretypes.h" ++#include "tm.h" ++#include "common/common-target.h" ++#include "common/common-target-def.h" ++#include "opts.h" ++#include "flags.h" ++#include "errors.h" ++ ++/* Parse a RISC-V ISA string into an option mask. */ ++ ++static void ++riscv_parse_arch_string (const char *isa, int *flags) ++{ ++ const char *p = isa; ++ ++ if (strncmp (p, "RV32", 4) == 0) ++ *flags |= MASK_32BIT, p += 4; ++ else if (strncmp (p, "RV64", 4) == 0) ++ *flags &= ~MASK_32BIT, p += 4; ++ ++ if (*p++ != 'I') ++ { ++ error ("-march=%s: ISA strings must begin with I, RV32I, or RV64I", isa); ++ return; ++ } ++ ++ *flags &= ~MASK_MULDIV; ++ if (*p == 'M') ++ *flags |= MASK_MULDIV, p++; ++ ++ *flags &= ~MASK_ATOMIC; ++ if (*p == 'A') ++ *flags |= MASK_ATOMIC, p++; ++ ++ *flags |= MASK_SOFT_FLOAT_ABI; ++ if (*p == 'F') ++ *flags &= ~MASK_SOFT_FLOAT_ABI, p++; ++ ++ if (*p == 'D') ++ { ++ p++; ++ if (!TARGET_HARD_FLOAT) ++ { ++ error ("-march=%s: the D extension requires the F extension", isa); ++ return; ++ } ++ } ++ else if (TARGET_HARD_FLOAT) ++ { ++ error ("-march=%s: single-precision-only is not yet supported", isa); ++ return; ++ } ++ ++ *flags &= ~MASK_RVC; ++ if (*p == 'C') ++ *flags |= MASK_RVC, p++; ++ ++ /* FIXME: For now we just stop parsing when faced with a ++ non-standard RISC-V ISA extension, partially becauses of a ++ problem with the naming scheme. */ ++ if (*p == 'X') ++ return; ++ ++ if (*p) ++ { ++ error ("-march=%s: unsupported ISA substring %s", isa, p); ++ return; ++ } ++} ++ ++static int ++riscv_flags_from_arch_string (const char *isa) ++{ ++ int flags = 0; ++ riscv_parse_arch_string (isa, &flags); ++ return flags; ++} ++ ++/* Implement TARGET_HANDLE_OPTION. */ ++ ++static bool ++riscv_handle_option (struct gcc_options *opts, ++ struct gcc_options *opts_set ATTRIBUTE_UNUSED, ++ const struct cl_decoded_option *decoded, ++ location_t loc ATTRIBUTE_UNUSED) ++{ ++ switch (decoded->opt_index) ++ { ++ case OPT_march_: ++ riscv_parse_arch_string (decoded->arg, &opts->x_target_flags); ++ return true; ++ ++ default: ++ return true; ++ } ++} ++ ++/* Implement TARGET_OPTION_OPTIMIZATION_TABLE. */ ++static const struct default_options riscv_option_optimization_table[] = ++ { ++ { OPT_LEVELS_1_PLUS, OPT_fsection_anchors, NULL, 1 }, ++ { OPT_LEVELS_1_PLUS, OPT_fomit_frame_pointer, NULL, 1 }, ++ { OPT_LEVELS_SIZE, OPT_msave_restore, NULL, 1 }, ++ { OPT_LEVELS_NONE, 0, NULL, 0 } ++ }; ++ ++#undef TARGET_OPTION_OPTIMIZATION_TABLE ++#define TARGET_OPTION_OPTIMIZATION_TABLE riscv_option_optimization_table ++ ++#undef TARGET_DEFAULT_TARGET_FLAGS ++#define TARGET_DEFAULT_TARGET_FLAGS \ ++ (TARGET_DEFAULT \ ++ | riscv_flags_from_arch_string (RISCV_ARCH_STRING_DEFAULT) \ ++ | (TARGET_64BIT_DEFAULT ? 0 : MASK_32BIT)) ++ ++#undef TARGET_HANDLE_OPTION ++#define TARGET_HANDLE_OPTION riscv_handle_option ++ ++struct gcc_targetm_common targetm_common = TARGETM_COMMON_INITIALIZER; +diff -urN empty/gcc/config/riscv/constraints.md gcc-5.2.0/gcc/config/riscv/constraints.md +--- empty/gcc/config/riscv/constraints.md 1970-01-01 01:00:00.000000000 +0100 ++++ gcc-5.2.0/gcc/config/riscv/constraints.md 2015-07-17 22:36:52.319705931 +0200 +@@ -0,0 +1,90 @@ ++;; Constraint definitions for RISC-V target. ++;; Copyright (C) 2011-2014 Free Software Foundation, Inc. ++;; Contributed by Andrew Waterman (waterman@cs.berkeley.edu) at UC Berkeley. ++;; Based on MIPS target for GNU compiler. ++;; ++;; This file is part of GCC. ++;; ++;; GCC is free software; you can redistribute it and/or modify ++;; it under the terms of the GNU General Public License as published by ++;; the Free Software Foundation; either version 3, or (at your option) ++;; any later version. ++;; ++;; GCC is distributed in the hope that it will be useful, ++;; but WITHOUT ANY WARRANTY; without even the implied warranty of ++;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++;; GNU General Public License for more details. ++;; ++;; You should have received a copy of the GNU General Public License ++;; along with GCC; see the file COPYING3. If not see ++;; <http://www.gnu.org/licenses/>. ++ ++;; Register constraints ++ ++(define_register_constraint "f" "TARGET_HARD_FLOAT ? FP_REGS : NO_REGS" ++ "A floating-point register (if available).") ++ ++(define_register_constraint "b" "ALL_REGS" ++ "@internal") ++ ++(define_register_constraint "j" "T_REGS" ++ "@internal") ++ ++;; Integer constraints ++ ++(define_constraint "Z" ++ "@internal" ++ (and (match_code "const_int") ++ (match_test "1"))) ++ ++(define_constraint "I" ++ "An I-type 12-bit signed immediate." ++ (and (match_code "const_int") ++ (match_test "SMALL_OPERAND (ival)"))) ++ ++(define_constraint "J" ++ "Integer zero." ++ (and (match_code "const_int") ++ (match_test "ival == 0"))) ++ ++;; Floating-point constraints ++ ++(define_constraint "G" ++ "Floating-point zero." ++ (and (match_code "const_double") ++ (match_test "op == CONST0_RTX (mode)"))) ++ ++;; General constraints ++ ++(define_constraint "Q" ++ "@internal" ++ (match_operand 0 "const_arith_operand")) ++ ++(define_memory_constraint "A" ++ "An address that is held in a general-purpose register." ++ (and (match_code "mem") ++ (match_test "GET_CODE(XEXP(op,0)) == REG"))) ++ ++(define_constraint "S" ++ "@internal ++ A constant call address." ++ (and (match_operand 0 "call_insn_operand") ++ (match_test "CONSTANT_P (op)"))) ++ ++(define_constraint "T" ++ "@internal ++ A constant @code{move_operand}." ++ (and (match_operand 0 "move_operand") ++ (match_test "CONSTANT_P (op)"))) ++ ++(define_memory_constraint "W" ++ "@internal ++ A memory address based on a member of @code{BASE_REG_CLASS}." ++ (and (match_code "mem") ++ (match_operand 0 "memory_operand"))) ++ ++(define_constraint "YG" ++ "@internal ++ A vector zero." ++ (and (match_code "const_vector") ++ (match_test "op == CONST0_RTX (mode)"))) +diff -urN empty/gcc/config/riscv/default-32.h gcc-5.2.0/gcc/config/riscv/default-32.h +--- empty/gcc/config/riscv/default-32.h 1970-01-01 01:00:00.000000000 +0100 ++++ gcc-5.2.0/gcc/config/riscv/default-32.h 2015-07-17 22:36:52.319705931 +0200 +@@ -0,0 +1,22 @@ ++/* Definitions of target machine for GCC, for RISC-V, ++ defaulting to 32-bit code generation. ++ ++ Copyright (C) 1999-2014 Free Software Foundation, Inc. ++ ++This file is part of GCC. ++ ++GCC is free software; you can redistribute it and/or modify ++it under the terms of the GNU General Public License as published by ++the Free Software Foundation; either version 3, or (at your option) ++any later version. ++ ++GCC is distributed in the hope that it will be useful, ++but WITHOUT ANY WARRANTY; without even the implied warranty of ++MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++GNU General Public License for more details. ++ ++You should have received a copy of the GNU General Public License ++along with GCC; see the file COPYING3. If not see ++<http://www.gnu.org/licenses/>. */ ++ ++#define TARGET_64BIT_DEFAULT 0 +diff -urN empty/gcc/config/riscv/elf.h gcc-5.2.0/gcc/config/riscv/elf.h +--- empty/gcc/config/riscv/elf.h 1970-01-01 01:00:00.000000000 +0100 ++++ gcc-5.2.0/gcc/config/riscv/elf.h 2015-07-17 22:36:52.319705931 +0200 +@@ -0,0 +1,31 @@ ++/* Target macros for riscv*-elf targets. ++ Copyright (C) 1994, 1997, 1999, 2000, 2002, 2003, 2004, 2007, 2010 ++ Free Software Foundation, Inc. ++ ++This file is part of GCC. ++ ++GCC is free software; you can redistribute it and/or modify ++it under the terms of the GNU General Public License as published by ++the Free Software Foundation; either version 3, or (at your option) ++any later version. ++ ++GCC is distributed in the hope that it will be useful, ++but WITHOUT ANY WARRANTY; without even the implied warranty of ++MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++GNU General Public License for more details. ++ ++You should have received a copy of the GNU General Public License ++along with GCC; see the file COPYING3. If not see ++<http://www.gnu.org/licenses/>. */ ++ ++/* Leave the linker script to choose the appropriate libraries. */ ++#undef LIB_SPEC ++#define LIB_SPEC "" ++ ++#undef STARTFILE_SPEC ++#define STARTFILE_SPEC "crt0%O%s crtbegin%O%s" ++ ++#undef ENDFILE_SPEC ++#define ENDFILE_SPEC "crtend%O%s" ++ ++#define NO_IMPLICIT_EXTERN_C 1 +diff -urN empty/gcc/config/riscv/generic.md gcc-5.2.0/gcc/config/riscv/generic.md +--- empty/gcc/config/riscv/generic.md 1970-01-01 01:00:00.000000000 +0100 ++++ gcc-5.2.0/gcc/config/riscv/generic.md 2015-07-17 22:36:52.319705931 +0200 +@@ -0,0 +1,98 @@ ++;; Generic DFA-based pipeline description for RISC-V targets. ++;; Copyright (C) 2011-2014 Free Software Foundation, Inc. ++;; Contributed by Andrew Waterman (waterman@cs.berkeley.edu) at UC Berkeley. ++;; Based on MIPS target for GNU compiler. ++ ++;; This file is part of GCC. ++ ++;; GCC is free software; you can redistribute it and/or modify it ++;; under the terms of the GNU General Public License as published ++;; by the Free Software Foundation; either version 3, or (at your ++;; option) any later version. ++ ++;; GCC is distributed in the hope that it will be useful, but WITHOUT ++;; ANY WARRANTY; without even the implied warranty of MERCHANTABILITY ++;; or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public ++;; License for more details. ++ ++;; You should have received a copy of the GNU General Public License ++;; along with GCC; see the file COPYING3. If not see ++;; <http://www.gnu.org/licenses/>. ++ ++ ++;; This file is derived from the old define_function_unit description. ++;; Each reservation can be overridden on a processor-by-processor basis. ++ ++(define_insn_reservation "generic_alu" 1 ++ (eq_attr "type" "unknown,const,arith,shift,slt,multi,nop,logical,move") ++ "alu") ++ ++(define_insn_reservation "generic_load" 3 ++ (eq_attr "type" "load,fpload,fpidxload") ++ "alu") ++ ++(define_insn_reservation "generic_store" 1 ++ (eq_attr "type" "store,fpstore,fpidxstore") ++ "alu") ++ ++(define_insn_reservation "generic_xfer" 2 ++ (eq_attr "type" "mfc,mtc") ++ "alu") ++ ++(define_insn_reservation "generic_branch" 1 ++ (eq_attr "type" "branch,jump,call") ++ "alu") ++ ++(define_insn_reservation "generic_imul" 17 ++ (eq_attr "type" "imul") ++ "imuldiv*17") ++ ++(define_insn_reservation "generic_idiv" 38 ++ (eq_attr "type" "idiv") ++ "imuldiv*38") ++ ++(define_insn_reservation "generic_fcvt" 1 ++ (eq_attr "type" "fcvt") ++ "alu") ++ ++(define_insn_reservation "generic_fmove" 2 ++ (eq_attr "type" "fmove") ++ "alu") ++ ++(define_insn_reservation "generic_fcmp" 3 ++ (eq_attr "type" "fcmp") ++ "alu") ++ ++(define_insn_reservation "generic_fadd" 4 ++ (eq_attr "type" "fadd") ++ "alu") ++ ++(define_insn_reservation "generic_fmul_single" 7 ++ (and (eq_attr "type" "fmul,fmadd") ++ (eq_attr "mode" "SF")) ++ "alu") ++ ++(define_insn_reservation "generic_fmul_double" 8 ++ (and (eq_attr "type" "fmul,fmadd") ++ (eq_attr "mode" "DF")) ++ "alu") ++ ++(define_insn_reservation "generic_fdiv_single" 23 ++ (and (eq_attr "type" "fdiv") ++ (eq_attr "mode" "SF")) ++ "alu") ++ ++(define_insn_reservation "generic_fdiv_double" 36 ++ (and (eq_attr "type" "fdiv") ++ (eq_attr "mode" "DF")) ++ "alu") ++ ++(define_insn_reservation "generic_fsqrt_single" 54 ++ (and (eq_attr "type" "fsqrt") ++ (eq_attr "mode" "SF")) ++ "alu") ++ ++(define_insn_reservation "generic_fsqrt_double" 112 ++ (and (eq_attr "type" "fsqrt") ++ (eq_attr "mode" "DF")) ++ "alu") +diff -urN empty/gcc/config/riscv/linux.h gcc-5.2.0/gcc/config/riscv/linux.h +--- empty/gcc/config/riscv/linux.h 1970-01-01 01:00:00.000000000 +0100 ++++ gcc-5.2.0/gcc/config/riscv/linux.h 2015-07-17 22:36:52.319705931 +0200 +@@ -0,0 +1,60 @@ ++/* Definitions for RISC-V GNU/Linux systems with ELF format. ++ Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, ++ 2007, 2008, 2010, 2011 Free Software Foundation, Inc. ++ ++This file is part of GCC. ++ ++GCC is free software; you can redistribute it and/or modify ++it under the terms of the GNU General Public License as published by ++the Free Software Foundation; either version 3, or (at your option) ++any later version. ++ ++GCC is distributed in the hope that it will be useful, ++but WITHOUT ANY WARRANTY; without even the implied warranty of ++MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++GNU General Public License for more details. ++ ++You should have received a copy of the GNU General Public License ++along with GCC; see the file COPYING3. If not see ++<http://www.gnu.org/licenses/>. */ ++ ++#undef WCHAR_TYPE ++#define WCHAR_TYPE "int" ++ ++#undef WCHAR_TYPE_SIZE ++#define WCHAR_TYPE_SIZE 32 ++ ++#define TARGET_OS_CPP_BUILTINS() \ ++ do { \ ++ GNU_USER_TARGET_OS_CPP_BUILTINS(); \ ++ /* The GNU C++ standard library requires this. */ \ ++ if (c_dialect_cxx ()) \ ++ builtin_define ("_GNU_SOURCE"); \ ++ } while (0) ++ ++#undef SUBTARGET_CPP_SPEC ++#define SUBTARGET_CPP_SPEC "%{posix:-D_POSIX_SOURCE} %{pthread:-D_REENTRANT}" ++ ++#define GLIBC_DYNAMIC_LINKER "/lib/ld.so.1" ++ ++/* Borrowed from sparc/linux.h */ ++#undef LINK_SPEC ++#define LINK_SPEC \ ++ "%{shared:-shared} \ ++ %{!shared: \ ++ %{!static: \ ++ %{rdynamic:-export-dynamic} \ ++ -dynamic-linker " GNU_USER_DYNAMIC_LINKER "} \ ++ %{static:-static}}" ++ ++#undef LIB_SPEC ++#define LIB_SPEC "\ ++%{pthread:-lpthread} \ ++%{shared:-lc} \ ++%{!shared: \ ++ %{profile:-lc_p} %{!profile:-lc}}" ++ ++/* Similar to standard Linux, but adding -ffast-math support. */ ++#undef ENDFILE_SPEC ++#define ENDFILE_SPEC \ ++ "%{shared|pie:crtendS.o%s;:crtend.o%s} crtn.o%s" +diff -urN empty/gcc/config/riscv/linux64.h gcc-5.2.0/gcc/config/riscv/linux64.h +--- empty/gcc/config/riscv/linux64.h 1970-01-01 01:00:00.000000000 +0100 ++++ gcc-5.2.0/gcc/config/riscv/linux64.h 2015-07-17 22:36:52.319705931 +0200 +@@ -0,0 +1,43 @@ ++/* Definitions for 64-bit RISC-V GNU/Linux systems with ELF format. ++ Copyright 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2010, 2011 ++ Free Software Foundation, Inc. ++ ++This file is part of GCC. ++ ++GCC is free software; you can redistribute it and/or modify ++it under the terms of the GNU General Public License as published by ++the Free Software Foundation; either version 3, or (at your option) ++any later version. ++ ++GCC is distributed in the hope that it will be useful, ++but WITHOUT ANY WARRANTY; without even the implied warranty of ++MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++GNU General Public License for more details. ++ ++You should have received a copy of the GNU General Public License ++along with GCC; see the file COPYING3. If not see ++<http://www.gnu.org/licenses/>. */ ++ ++/* Force the default ABI flags onto the command line ++ in order to make the other specs easier to write. */ ++#undef LIB_SPEC ++#define LIB_SPEC "\ ++%{pthread:-lpthread} \ ++%{shared:-lc} \ ++%{!shared: \ ++ %{profile:-lc_p} %{!profile:-lc}}" ++ ++#define GLIBC_DYNAMIC_LINKER32 "/lib32/ld.so.1" ++#define GLIBC_DYNAMIC_LINKER64 "/lib/ld.so.1" ++ ++#undef LINK_SPEC ++#define LINK_SPEC "\ ++%{shared} \ ++ %{!shared: \ ++ %{!static: \ ++ %{rdynamic:-export-dynamic} \ ++ %{" OPT_ARCH64 ": -dynamic-linker " GNU_USER_DYNAMIC_LINKER64 "} \ ++ %{" OPT_ARCH32 ": -dynamic-linker " GNU_USER_DYNAMIC_LINKER32 "}} \ ++ %{static:-static}} \ ++%{" OPT_ARCH64 ":-melf64lriscv} \ ++%{" OPT_ARCH32 ":-melf32lriscv}" +diff -urN empty/gcc/config/riscv/opcode-riscv.h gcc-5.2.0/gcc/config/riscv/opcode-riscv.h +--- empty/gcc/config/riscv/opcode-riscv.h 1970-01-01 01:00:00.000000000 +0100 ++++ gcc-5.2.0/gcc/config/riscv/opcode-riscv.h 2015-07-17 22:36:52.319705931 +0200 +@@ -0,0 +1,149 @@ ++/* RISC-V ISA encoding. ++ Copyright (C) 2011-2014 Free Software Foundation, Inc. ++ Contributed by Andrew Waterman (waterman@cs.berkeley.edu) at UC Berkeley. ++ Based on MIPS target for GNU compiler. ++ ++This file is part of GDB, GAS, and the GNU binutils. ++ ++GDB, GAS, and the GNU binutils are free software; you can redistribute ++them and/or modify them under the terms of the GNU General Public ++License as published by the Free Software Foundation; either version ++1, or (at your option) any later version. ++ ++GDB, GAS, and the GNU binutils are distributed in the hope that they ++will be useful, but WITHOUT ANY WARRANTY; without even the implied ++warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See ++the GNU General Public License for more details. ++ ++You should have received a copy of the GNU General Public License ++along with this file; see the file COPYING. If not, write to the Free ++Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */ ++ ++#ifndef _RISCV_H_ ++#define _RISCV_H_ ++ ++#define RV_X(x, s, n) (((x) >> (s)) & ((1<<(n))-1)) ++#define RV_IMM_SIGN(x) (-(((x) >> 31) & 1)) ++ ++#define EXTRACT_ITYPE_IMM(x) \ ++ (RV_X(x, 20, 12) | (RV_IMM_SIGN(x) << 12)) ++#define EXTRACT_STYPE_IMM(x) \ ++ (RV_X(x, 7, 5) | (RV_X(x, 25, 7) << 5) | (RV_IMM_SIGN(x) << 12)) ++#define EXTRACT_SBTYPE_IMM(x) \ ++ ((RV_X(x, 8, 4) << 1) | (RV_X(x, 25, 6) << 5) | (RV_X(x, 7, 1) << 11) | (RV_IMM_SIGN(x) << 12)) ++#define EXTRACT_UTYPE_IMM(x) \ ++ ((RV_X(x, 12, 20) << 20) | (RV_IMM_SIGN(x) << 32)) ++#define EXTRACT_UJTYPE_IMM(x) \ ++ ((RV_X(x, 21, 10) << 1) | (RV_X(x, 20, 1) << 11) | (RV_X(x, 12, 8) << 12) | (RV_IMM_SIGN(x) << 20)) ++ ++#define ENCODE_ITYPE_IMM(x) \ ++ (RV_X(x, 0, 12) << 20) ++#define ENCODE_STYPE_IMM(x) \ ++ ((RV_X(x, 0, 5) << 7) | (RV_X(x, 5, 7) << 25)) ++#define ENCODE_SBTYPE_IMM(x) \ ++ ((RV_X(x, 1, 4) << 8) | (RV_X(x, 5, 6) << 25) | (RV_X(x, 11, 1) << 7) | (RV_X(x, 12, 1) << 31)) ++#define ENCODE_UTYPE_IMM(x) \ ++ (RV_X(x, 12, 20) << 12) ++#define ENCODE_UJTYPE_IMM(x) \ ++ ((RV_X(x, 1, 10) << 21) | (RV_X(x, 11, 1) << 20) | (RV_X(x, 12, 8) << 12) | (RV_X(x, 20, 1) << 31)) ++ ++#define VALID_ITYPE_IMM(x) (EXTRACT_ITYPE_IMM(ENCODE_ITYPE_IMM(x)) == (x)) ++#define VALID_STYPE_IMM(x) (EXTRACT_STYPE_IMM(ENCODE_STYPE_IMM(x)) == (x)) ++#define VALID_SBTYPE_IMM(x) (EXTRACT_SBTYPE_IMM(ENCODE_SBTYPE_IMM(x)) == (x)) ++#define VALID_UTYPE_IMM(x) (EXTRACT_UTYPE_IMM(ENCODE_UTYPE_IMM(x)) == (x)) ++#define VALID_UJTYPE_IMM(x) (EXTRACT_UJTYPE_IMM(ENCODE_UJTYPE_IMM(x)) == (x)) ++ ++#define RISCV_RTYPE(insn, rd, rs1, rs2) \ ++ ((MATCH_ ## insn) | ((rd) << OP_SH_RD) | ((rs1) << OP_SH_RS1) | ((rs2) << OP_SH_RS2)) ++#define RISCV_ITYPE(insn, rd, rs1, imm) \ ++ ((MATCH_ ## insn) | ((rd) << OP_SH_RD) | ((rs1) << OP_SH_RS1) | ENCODE_ITYPE_IMM(imm)) ++#define RISCV_STYPE(insn, rs1, rs2, imm) \ ++ ((MATCH_ ## insn) | ((rs1) << OP_SH_RS1) | ((rs2) << OP_SH_RS2) | ENCODE_STYPE_IMM(imm)) ++#define RISCV_SBTYPE(insn, rs1, rs2, target) \ ++ ((MATCH_ ## insn) | ((rs1) << OP_SH_RS1) | ((rs2) << OP_SH_RS2) | ENCODE_SBTYPE_IMM(target)) ++#define RISCV_UTYPE(insn, rd, bigimm) \ ++ ((MATCH_ ## insn) | ((rd) << OP_SH_RD) | ENCODE_UTYPE_IMM(bigimm)) ++#define RISCV_UJTYPE(insn, rd, target) \ ++ ((MATCH_ ## insn) | ((rd) << OP_SH_RD) | ENCODE_UJTYPE_IMM(target)) ++ ++#define RISCV_NOP RISCV_ITYPE(ADDI, 0, 0, 0) ++ ++#define RISCV_CONST_HIGH_PART(VALUE) \ ++ (((VALUE) + (RISCV_IMM_REACH/2)) & ~(RISCV_IMM_REACH-1)) ++#define RISCV_CONST_LOW_PART(VALUE) ((VALUE) - RISCV_CONST_HIGH_PART (VALUE)) ++ ++/* RV fields */ ++ ++#define OP_MASK_OP 0x7f ++#define OP_SH_OP 0 ++#define OP_MASK_RS2 0x1f ++#define OP_SH_RS2 20 ++#define OP_MASK_RS1 0x1f ++#define OP_SH_RS1 15 ++#define OP_MASK_RS3 0x1f ++#define OP_SH_RS3 27 ++#define OP_MASK_RD 0x1f ++#define OP_SH_RD 7 ++#define OP_MASK_SHAMT 0x3f ++#define OP_SH_SHAMT 20 ++#define OP_MASK_SHAMTW 0x1f ++#define OP_SH_SHAMTW 20 ++#define OP_MASK_RM 0x7 ++#define OP_SH_RM 12 ++#define OP_MASK_PRED 0xf ++#define OP_SH_PRED 24 ++#define OP_MASK_SUCC 0xf ++#define OP_SH_SUCC 20 ++#define OP_MASK_AQ 0x1 ++#define OP_SH_AQ 26 ++#define OP_MASK_RL 0x1 ++#define OP_SH_RL 25 ++ ++#define OP_MASK_VRD 0x1f ++#define OP_SH_VRD 7 ++#define OP_MASK_VRS 0x1f ++#define OP_SH_VRS 15 ++#define OP_MASK_VRT 0x1f ++#define OP_SH_VRT 20 ++#define OP_MASK_VRR 0x1f ++#define OP_SH_VRR 25 ++ ++#define OP_MASK_VFD 0x1f ++#define OP_SH_VFD 7 ++#define OP_MASK_VFS 0x1f ++#define OP_SH_VFS 15 ++#define OP_MASK_VFT 0x1f ++#define OP_SH_VFT 20 ++#define OP_MASK_VFR 0x1f ++#define OP_SH_VFR 25 ++ ++#define OP_MASK_IMMNGPR 0x3f ++#define OP_SH_IMMNGPR 20 ++#define OP_MASK_IMMNFPR 0x3f ++#define OP_SH_IMMNFPR 26 ++#define OP_MASK_IMMSEGNELM 0x1f ++#define OP_SH_IMMSEGNELM 17 ++#define OP_MASK_IMMSEGSTNELM 0x1f ++#define OP_SH_IMMSEGSTNELM 12 ++#define OP_MASK_CUSTOM_IMM 0x7f ++#define OP_SH_CUSTOM_IMM 25 ++ ++#define LINK_REG 1 ++ ++#define RISCV_JUMP_BITS RISCV_BIGIMM_BITS ++#define RISCV_JUMP_ALIGN_BITS 1 ++#define RISCV_JUMP_ALIGN (1 << RISCV_JUMP_ALIGN_BITS) ++#define RISCV_JUMP_REACH ((1ULL<<RISCV_JUMP_BITS)*RISCV_JUMP_ALIGN) ++ ++#define RISCV_IMM_BITS 12 ++#define RISCV_BIGIMM_BITS (32-RISCV_IMM_BITS) ++#define RISCV_IMM_REACH (1LL<<RISCV_IMM_BITS) ++#define RISCV_BIGIMM_REACH (1LL<<RISCV_BIGIMM_BITS) ++#define RISCV_BRANCH_BITS RISCV_IMM_BITS ++#define RISCV_BRANCH_ALIGN_BITS RISCV_JUMP_ALIGN_BITS ++#define RISCV_BRANCH_ALIGN (1 << RISCV_BRANCH_ALIGN_BITS) ++#define RISCV_BRANCH_REACH (RISCV_IMM_REACH*RISCV_BRANCH_ALIGN) ++ ++#include "riscv-opc.h" ++ ++#endif /* _RISCV_H_ */ +diff -urN empty/gcc/config/riscv/peephole.md gcc-5.2.0/gcc/config/riscv/peephole.md +--- empty/gcc/config/riscv/peephole.md 1970-01-01 01:00:00.000000000 +0100 ++++ gcc-5.2.0/gcc/config/riscv/peephole.md 2015-07-17 22:36:52.319705931 +0200 +@@ -0,0 +1,100 @@ ++;;........................ ++;; DI -> SI optimizations ++;;........................ ++ ++;; Simplify (int)(a + 1), etc. ++(define_peephole2 ++ [(set (match_operand:DI 0 "register_operand") ++ (match_operator:DI 4 "modular_operator" ++ [(match_operand:DI 1 "register_operand") ++ (match_operand:DI 2 "arith_operand")])) ++ (set (match_operand:SI 3 "register_operand") ++ (truncate:SI (match_dup 0)))] ++ "TARGET_64BIT && (REGNO (operands[0]) == REGNO (operands[3]) || peep2_reg_dead_p (2, operands[0])) ++ && (GET_CODE (operands[4]) != ASHIFT || (CONST_INT_P (operands[2]) && INTVAL (operands[2]) < 32))" ++ [(set (match_dup 3) ++ (truncate:SI ++ (match_op_dup:DI 4 ++ [(match_operand:DI 1 "register_operand") ++ (match_operand:DI 2 "arith_operand")])))]) ++ ++;; Simplify (int)a + 1, etc. ++(define_peephole2 ++ [(set (match_operand:SI 0 "register_operand") ++ (truncate:SI (match_operand:DI 1 "register_operand"))) ++ (set (match_operand:SI 3 "register_operand") ++ (match_operator:SI 4 "modular_operator" ++ [(match_dup 0) ++ (match_operand:SI 2 "arith_operand")]))] ++ "TARGET_64BIT && (REGNO (operands[0]) == REGNO (operands[3]) || peep2_reg_dead_p (2, operands[0]))" ++ [(set (match_dup 3) ++ (match_op_dup:SI 4 [(match_dup 1) (match_dup 2)]))]) ++ ++;; Simplify -(int)a, etc. ++(define_peephole2 ++ [(set (match_operand:SI 0 "register_operand") ++ (truncate:SI (match_operand:DI 2 "register_operand"))) ++ (set (match_operand:SI 3 "register_operand") ++ (match_operator:SI 4 "modular_operator" ++ [(match_operand:SI 1 "reg_or_0_operand") ++ (match_dup 0)]))] ++ "TARGET_64BIT && (REGNO (operands[0]) == REGNO (operands[3]) || peep2_reg_dead_p (2, operands[0]))" ++ [(set (match_dup 3) ++ (match_op_dup:SI 4 [(match_dup 1) (match_dup 2)]))]) ++ ++;; Simplify PIC loads to static variables. ++;; These will go away once we figure out how to emit auipc discretely. ++(define_insn "*local_pic_load<mode>" ++ [(set (match_operand:ANYI 0 "register_operand" "=r") ++ (mem:ANYI (match_operand 1 "absolute_symbolic_operand" "")))] ++ "flag_pic && SYMBOL_REF_LOCAL_P (operands[1])" ++ "<load>\t%0,%1" ++ [(set (attr "length") (const_int 8))]) ++(define_insn "*local_pic_load<mode>" ++ [(set (match_operand:ANYF 0 "register_operand" "=f") ++ (mem:ANYF (match_operand 1 "absolute_symbolic_operand" ""))) ++ (clobber (match_scratch:DI 2 "=&r"))] ++ "TARGET_HARD_FLOAT && TARGET_64BIT && flag_pic && SYMBOL_REF_LOCAL_P (operands[1])" ++ "<load>\t%0,%1,%2" ++ [(set (attr "length") (const_int 8))]) ++(define_insn "*local_pic_load<mode>" ++ [(set (match_operand:ANYF 0 "register_operand" "=f") ++ (mem:ANYF (match_operand 1 "absolute_symbolic_operand" ""))) ++ (clobber (match_scratch:SI 2 "=&r"))] ++ "TARGET_HARD_FLOAT && !TARGET_64BIT && flag_pic && SYMBOL_REF_LOCAL_P (operands[1])" ++ "<load>\t%0,%1,%2" ++ [(set (attr "length") (const_int 8))]) ++(define_insn "*local_pic_loadu<mode>" ++ [(set (match_operand:SUPERQI 0 "register_operand" "=r") ++ (zero_extend:SUPERQI (mem:SUBDI (match_operand 1 "absolute_symbolic_operand" ""))))] ++ "flag_pic && SYMBOL_REF_LOCAL_P (operands[1])" ++ "<load>u\t%0,%1" ++ [(set (attr "length") (const_int 8))]) ++(define_insn "*local_pic_storedi<mode>" ++ [(set (mem:ANYI (match_operand 0 "absolute_symbolic_operand" "")) ++ (match_operand:ANYI 1 "reg_or_0_operand" "rJ")) ++ (clobber (match_scratch:DI 2 "=&r"))] ++ "TARGET_64BIT && (flag_pic && SYMBOL_REF_LOCAL_P (operands[0]))" ++ "<store>\t%z1,%0,%2" ++ [(set (attr "length") (const_int 8))]) ++(define_insn "*local_pic_storesi<mode>" ++ [(set (mem:ANYI (match_operand 0 "absolute_symbolic_operand" "")) ++ (match_operand:ANYI 1 "reg_or_0_operand" "rJ")) ++ (clobber (match_scratch:SI 2 "=&r"))] ++ "!TARGET_64BIT && (flag_pic && SYMBOL_REF_LOCAL_P (operands[0]))" ++ "<store>\t%z1,%0,%2" ++ [(set (attr "length") (const_int 8))]) ++(define_insn "*local_pic_storedi<mode>" ++ [(set (mem:ANYF (match_operand 0 "absolute_symbolic_operand" "")) ++ (match_operand:ANYF 1 "register_operand" "f")) ++ (clobber (match_scratch:DI 2 "=&r"))] ++ "TARGET_HARD_FLOAT && TARGET_64BIT && (flag_pic && SYMBOL_REF_LOCAL_P (operands[0]))" ++ "<store>\t%1,%0,%2" ++ [(set (attr "length") (const_int 8))]) ++(define_insn "*local_pic_storesi<mode>" ++ [(set (mem:ANYF (match_operand 0 "absolute_symbolic_operand" "")) ++ (match_operand:ANYF 1 "register_operand" "f")) ++ (clobber (match_scratch:SI 2 "=&r"))] ++ "TARGET_HARD_FLOAT && !TARGET_64BIT && (flag_pic && SYMBOL_REF_LOCAL_P (operands[0]))" ++ "<store>\t%1,%0,%2" ++ [(set (attr "length") (const_int 8))]) +diff -urN empty/gcc/config/riscv/predicates.md gcc-5.2.0/gcc/config/riscv/predicates.md +--- empty/gcc/config/riscv/predicates.md 1970-01-01 01:00:00.000000000 +0100 ++++ gcc-5.2.0/gcc/config/riscv/predicates.md 2015-07-17 22:36:52.319705931 +0200 +@@ -0,0 +1,187 @@ ++;; Predicate description for RISC-V target. ++;; Copyright (C) 2011-2014 Free Software Foundation, Inc. ++;; Contributed by Andrew Waterman (waterman@cs.berkeley.edu) at UC Berkeley. ++;; Based on MIPS target for GNU compiler. ++;; ++;; This file is part of GCC. ++;; ++;; GCC is free software; you can redistribute it and/or modify ++;; it under the terms of the GNU General Public License as published by ++;; the Free Software Foundation; either version 3, or (at your option) ++;; any later version. ++;; ++;; GCC is distributed in the hope that it will be useful, ++;; but WITHOUT ANY WARRANTY; without even the implied warranty of ++;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++;; GNU General Public License for more details. ++;; ++;; You should have received a copy of the GNU General Public License ++;; along with GCC; see the file COPYING3. If not see ++;; <http://www.gnu.org/licenses/>. ++ ++(define_predicate "const_arith_operand" ++ (and (match_code "const_int") ++ (match_test "SMALL_OPERAND (INTVAL (op))"))) ++ ++(define_predicate "arith_operand" ++ (ior (match_operand 0 "const_arith_operand") ++ (match_operand 0 "register_operand"))) ++ ++(define_predicate "sle_operand" ++ (and (match_code "const_int") ++ (match_test "SMALL_OPERAND (INTVAL (op) + 1)"))) ++ ++(define_predicate "sleu_operand" ++ (and (match_operand 0 "sle_operand") ++ (match_test "INTVAL (op) + 1 != 0"))) ++ ++(define_predicate "const_0_operand" ++ (and (match_code "const_int,const_double,const_vector") ++ (match_test "op == CONST0_RTX (GET_MODE (op))"))) ++ ++(define_predicate "reg_or_0_operand" ++ (ior (match_operand 0 "const_0_operand") ++ (match_operand 0 "register_operand"))) ++ ++(define_predicate "const_1_operand" ++ (and (match_code "const_int,const_double,const_vector") ++ (match_test "op == CONST1_RTX (GET_MODE (op))"))) ++ ++(define_predicate "reg_or_1_operand" ++ (ior (match_operand 0 "const_1_operand") ++ (match_operand 0 "register_operand"))) ++ ++;; Only use branch-on-bit sequences when the mask is not an ANDI immediate. ++(define_predicate "branch_on_bit_operand" ++ (and (match_code "const_int") ++ (match_test "INTVAL (op) >= RISCV_IMM_BITS - 1"))) ++ ++;; This is used for indexing into vectors, and hence only accepts const_int. ++(define_predicate "const_0_or_1_operand" ++ (and (match_code "const_int") ++ (ior (match_test "op == CONST0_RTX (GET_MODE (op))") ++ (match_test "op == CONST1_RTX (GET_MODE (op))")))) ++ ++(define_special_predicate "pc_or_label_operand" ++ (match_code "pc,label_ref")) ++ ++;; A legitimate CONST_INT operand that takes more than one instruction ++;; to load. ++(define_predicate "splittable_const_int_operand" ++ (match_code "const_int") ++{ ++ /* Don't handle multi-word moves this way; we don't want to introduce ++ the individual word-mode moves until after reload. */ ++ if (GET_MODE_SIZE (mode) > UNITS_PER_WORD) ++ return false; ++ ++ /* Otherwise check whether the constant can be loaded in a single ++ instruction. */ ++ return !LUI_INT (op) && !SMALL_INT (op); ++}) ++ ++(define_predicate "move_operand" ++ (match_operand 0 "general_operand") ++{ ++ enum riscv_symbol_type symbol_type; ++ ++ /* The thinking here is as follows: ++ ++ (1) The move expanders should split complex load sequences into ++ individual instructions. Those individual instructions can ++ then be optimized by all rtl passes. ++ ++ (2) The target of pre-reload load sequences should not be used ++ to store temporary results. If the target register is only ++ assigned one value, reload can rematerialize that value ++ on demand, rather than spill it to the stack. ++ ++ (3) If we allowed pre-reload passes like combine and cse to recreate ++ complex load sequences, we would want to be able to split the ++ sequences before reload as well, so that the pre-reload scheduler ++ can see the individual instructions. This falls foul of (2); ++ the splitter would be forced to reuse the target register for ++ intermediate results. ++ ++ (4) We want to define complex load splitters for combine. These ++ splitters can request a temporary scratch register, which avoids ++ the problem in (2). They allow things like: ++ ++ (set (reg T1) (high SYM)) ++ (set (reg T2) (low (reg T1) SYM)) ++ (set (reg X) (plus (reg T2) (const_int OFFSET))) ++ ++ to be combined into: ++ ++ (set (reg T3) (high SYM+OFFSET)) ++ (set (reg X) (lo_sum (reg T3) SYM+OFFSET)) ++ ++ if T2 is only used this once. */ ++ switch (GET_CODE (op)) ++ { ++ case CONST_INT: ++ return !splittable_const_int_operand (op, mode); ++ ++ case CONST: ++ case SYMBOL_REF: ++ case LABEL_REF: ++ return (riscv_symbolic_constant_p (op, &symbol_type) ++ && !riscv_hi_relocs[symbol_type]); ++ ++ case HIGH: ++ op = XEXP (op, 0); ++ return riscv_symbolic_constant_p (op, &symbol_type); ++ ++ default: ++ return true; ++ } ++}) ++ ++(define_predicate "consttable_operand" ++ (match_test "CONSTANT_P (op)")) ++ ++(define_predicate "symbolic_operand" ++ (match_code "const,symbol_ref,label_ref") ++{ ++ enum riscv_symbol_type type; ++ return riscv_symbolic_constant_p (op, &type); ++}) ++ ++(define_predicate "absolute_symbolic_operand" ++ (match_code "const,symbol_ref,label_ref") ++{ ++ enum riscv_symbol_type type; ++ return (riscv_symbolic_constant_p (op, &type) ++ && type == SYMBOL_ABSOLUTE); ++}) ++ ++(define_predicate "plt_symbolic_operand" ++ (match_code "const,symbol_ref,label_ref") ++{ ++ enum riscv_symbol_type type; ++ return (riscv_symbolic_constant_p (op, &type) ++ && type == SYMBOL_GOT_DISP && !SYMBOL_REF_WEAK (op) && TARGET_PLT); ++}) ++ ++(define_predicate "call_insn_operand" ++ (ior (match_operand 0 "absolute_symbolic_operand") ++ (match_operand 0 "plt_symbolic_operand") ++ (match_operand 0 "register_operand"))) ++ ++(define_predicate "symbol_ref_operand" ++ (match_code "symbol_ref")) ++ ++(define_predicate "modular_operator" ++ (match_code "plus,minus,mult,ashift")) ++ ++(define_predicate "equality_operator" ++ (match_code "eq,ne")) ++ ++(define_predicate "order_operator" ++ (match_code "eq,ne,lt,ltu,le,leu,ge,geu,gt,gtu")) ++ ++(define_predicate "fp_order_operator" ++ (match_code "eq,lt,le,gt,ge")) ++ ++(define_predicate "fp_unorder_operator" ++ (match_code "ordered,unordered")) +diff -urN empty/gcc/config/riscv/riscv-ftypes.def gcc-5.2.0/gcc/config/riscv/riscv-ftypes.def +--- empty/gcc/config/riscv/riscv-ftypes.def 1970-01-01 01:00:00.000000000 +0100 ++++ gcc-5.2.0/gcc/config/riscv/riscv-ftypes.def 2015-07-17 22:36:52.319705931 +0200 +@@ -0,0 +1,39 @@ ++/* Definitions of prototypes for RISC-V built-in functions. ++ Copyright (C) 2011-2014 Free Software Foundation, Inc. ++ Contributed by Andrew Waterman (waterman@cs.berkeley.edu) at UC Berkeley. ++ Based on MIPS target for GNU compiler. ++ ++This file is part of GCC. ++ ++GCC is free software; you can redistribute it and/or modify ++it under the terms of the GNU General Public License as published by ++the Free Software Foundation; either version 3, or (at your option) ++any later version. ++ ++GCC is distributed in the hope that it will be useful, ++but WITHOUT ANY WARRANTY; without even the implied warranty of ++MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++GNU General Public License for more details. ++ ++You should have received a copy of the GNU General Public License ++along with GCC; see the file COPYING3. If not see ++<http://www.gnu.org/licenses/>. */ ++ ++/* Invoke DEF_RISCV_FTYPE (NARGS, LIST) for each prototype used by ++ MIPS built-in functions, where: ++ ++ NARGS is the number of arguments. ++ LIST contains the return-type code followed by the codes for each ++ argument type. ++ ++ Argument- and return-type codes are either modes or one of the following: ++ ++ VOID for void_type_node ++ INT for integer_type_node ++ POINTER for ptr_type_node ++ ++ (we don't use PTR because that's a ANSI-compatibillity macro). ++ ++ Please keep this list lexicographically sorted by the LIST argument. */ ++ ++DEF_RISCV_FTYPE (1, (VOID, VOID)) +diff -urN empty/gcc/config/riscv/riscv-modes.def gcc-5.2.0/gcc/config/riscv/riscv-modes.def +--- empty/gcc/config/riscv/riscv-modes.def 1970-01-01 01:00:00.000000000 +0100 ++++ gcc-5.2.0/gcc/config/riscv/riscv-modes.def 2015-07-17 22:36:52.319705931 +0200 +@@ -0,0 +1,26 @@ ++/* Extra machine modes for RISC-V target. ++ Copyright (C) 2011-2014 Free Software Foundation, Inc. ++ Contributed by Andrew Waterman (waterman@cs.berkeley.edu) at UC Berkeley. ++ Based on MIPS target for GNU compiler. ++ ++This file is part of GCC. ++ ++GCC is free software; you can redistribute it and/or modify ++it under the terms of the GNU General Public License as published by ++the Free Software Foundation; either version 3, or (at your option) ++any later version. ++ ++GCC is distributed in the hope that it will be useful, ++but WITHOUT ANY WARRANTY; without even the implied warranty of ++MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++GNU General Public License for more details. ++ ++You should have received a copy of the GNU General Public License ++along with GCC; see the file COPYING3. If not see ++<http://www.gnu.org/licenses/>. */ ++ ++FLOAT_MODE (TF, 16, ieee_quad_format); ++ ++/* Vector modes. */ ++VECTOR_MODES (INT, 4); /* V8QI V4HI V2SI */ ++VECTOR_MODES (FLOAT, 4); /* V4HF V2SF */ +diff -urN empty/gcc/config/riscv/riscv-opc.h gcc-5.2.0/gcc/config/riscv/riscv-opc.h +--- empty/gcc/config/riscv/riscv-opc.h 1970-01-01 01:00:00.000000000 +0100 ++++ gcc-5.2.0/gcc/config/riscv/riscv-opc.h 2015-07-17 22:36:52.319705931 +0200 +@@ -0,0 +1,1348 @@ ++/* Automatically generated by parse-opcodes */ ++#ifndef RISCV_ENCODING_H ++#define RISCV_ENCODING_H ++#define MATCH_ADD 0x33 ++#define MASK_ADD 0xfe00707f ++#define MATCH_ADDI 0x13 ++#define MASK_ADDI 0x707f ++#define MATCH_ADDIW 0x1b ++#define MASK_ADDIW 0x707f ++#define MATCH_ADDW 0x3b ++#define MASK_ADDW 0xfe00707f ++#define MATCH_AMOADD_D 0x302f ++#define MASK_AMOADD_D 0xf800707f ++#define MATCH_AMOADD_W 0x202f ++#define MASK_AMOADD_W 0xf800707f ++#define MATCH_AMOAND_D 0x6000302f ++#define MASK_AMOAND_D 0xf800707f ++#define MATCH_AMOAND_W 0x6000202f ++#define MASK_AMOAND_W 0xf800707f ++#define MATCH_AMOMAX_D 0xa000302f ++#define MASK_AMOMAX_D 0xf800707f ++#define MATCH_AMOMAX_W 0xa000202f ++#define MASK_AMOMAX_W 0xf800707f ++#define MATCH_AMOMAXU_D 0xe000302f ++#define MASK_AMOMAXU_D 0xf800707f ++#define MATCH_AMOMAXU_W 0xe000202f ++#define MASK_AMOMAXU_W 0xf800707f ++#define MATCH_AMOMIN_D 0x8000302f ++#define MASK_AMOMIN_D 0xf800707f ++#define MATCH_AMOMIN_W 0x8000202f ++#define MASK_AMOMIN_W 0xf800707f ++#define MATCH_AMOMINU_D 0xc000302f ++#define MASK_AMOMINU_D 0xf800707f ++#define MATCH_AMOMINU_W 0xc000202f ++#define MASK_AMOMINU_W 0xf800707f ++#define MATCH_AMOOR_D 0x4000302f ++#define MASK_AMOOR_D 0xf800707f ++#define MATCH_AMOOR_W 0x4000202f ++#define MASK_AMOOR_W 0xf800707f ++#define MATCH_AMOSWAP_D 0x800302f ++#define MASK_AMOSWAP_D 0xf800707f ++#define MATCH_AMOSWAP_W 0x800202f ++#define MASK_AMOSWAP_W 0xf800707f ++#define MATCH_AMOXOR_D 0x2000302f ++#define MASK_AMOXOR_D 0xf800707f ++#define MATCH_AMOXOR_W 0x2000202f ++#define MASK_AMOXOR_W 0xf800707f ++#define MATCH_AND 0x7033 ++#define MASK_AND 0xfe00707f ++#define MATCH_ANDI 0x7013 ++#define MASK_ANDI 0x707f ++#define MATCH_AUIPC 0x17 ++#define MASK_AUIPC 0x7f ++#define MATCH_BEQ 0x63 ++#define MASK_BEQ 0x707f ++#define MATCH_BGE 0x5063 ++#define MASK_BGE 0x707f ++#define MATCH_BGEU 0x7063 ++#define MASK_BGEU 0x707f ++#define MATCH_BLT 0x4063 ++#define MASK_BLT 0x707f ++#define MATCH_BLTU 0x6063 ++#define MASK_BLTU 0x707f ++#define MATCH_BNE 0x1063 ++#define MASK_BNE 0x707f ++#define MATCH_C_ADD 0x1000 ++#define MASK_C_ADD 0xf003 ++#define MATCH_C_ADD3 0xa000 ++#define MASK_C_ADD3 0xe063 ++#define MATCH_C_ADDI 0xc002 ++#define MASK_C_ADDI 0xe003 ++#define MATCH_C_ADDI16SP 0xc002 ++#define MASK_C_ADDI16SP 0xef83 ++#define MATCH_C_ADDI4SPN 0xa001 ++#define MASK_C_ADDI4SPN 0xe003 ++#define MATCH_C_ADDIN 0x8001 ++#define MASK_C_ADDIN 0xe063 ++#define MATCH_C_ADDIW 0xe002 ++#define MASK_C_ADDIW 0xe003 ++#define MATCH_C_ADDW 0x9000 ++#define MASK_C_ADDW 0xf003 ++#define MATCH_C_AND3 0xa060 ++#define MASK_C_AND3 0xe063 ++#define MATCH_C_ANDI 0xe002 ++#define MASK_C_ANDI 0xe003 ++#define MATCH_C_ANDIN 0x8061 ++#define MASK_C_ANDIN 0xe063 ++#define MATCH_C_BEQZ 0x4002 ++#define MASK_C_BEQZ 0xe003 ++#define MATCH_C_BGEZ 0xe001 ++#define MASK_C_BGEZ 0xe003 ++#define MATCH_C_BLTZ 0x6001 ++#define MASK_C_BLTZ 0xe003 ++#define MATCH_C_BNEZ 0x6002 ++#define MASK_C_BNEZ 0xe003 ++#define MATCH_C_EBREAK 0x1000 ++#define MASK_C_EBREAK 0xffff ++#define MATCH_C_J 0x2 ++#define MASK_C_J 0xe003 ++#define MATCH_C_JAL 0x2002 ++#define MASK_C_JAL 0xe003 ++#define MATCH_C_JALR 0xa002 ++#define MASK_C_JALR 0xf07f ++#define MATCH_C_JR 0x8002 ++#define MASK_C_JR 0xf07f ++#define MATCH_C_LD 0xe000 ++#define MASK_C_LD 0xe003 ++#define MATCH_C_LDSP 0xe001 ++#define MASK_C_LDSP 0xe003 ++#define MATCH_C_LI 0x8002 ++#define MASK_C_LI 0xe003 ++#define MATCH_C_LUI 0xa002 ++#define MASK_C_LUI 0xe003 ++#define MATCH_C_LW 0xc000 ++#define MASK_C_LW 0xe003 ++#define MATCH_C_LWSP 0xc001 ++#define MASK_C_LWSP 0xe003 ++#define MATCH_C_MV 0x0 ++#define MASK_C_MV 0xf003 ++#define MATCH_C_OR3 0xa040 ++#define MASK_C_OR3 0xe063 ++#define MATCH_C_ORIN 0x8041 ++#define MASK_C_ORIN 0xe063 ++#define MATCH_C_SD 0x6000 ++#define MASK_C_SD 0xe003 ++#define MATCH_C_SDSP 0x6001 ++#define MASK_C_SDSP 0xe003 ++#define MATCH_C_SLL 0x6400 ++#define MASK_C_SLL 0xfc63 ++#define MATCH_C_SLLI 0x1 ++#define MASK_C_SLLI 0xe003 ++#define MATCH_C_SLLIW 0x8001 ++#define MASK_C_SLLIW 0xe003 ++#define MATCH_C_SLLR 0x6c00 ++#define MASK_C_SLLR 0xfc63 ++#define MATCH_C_SLT 0x6440 ++#define MASK_C_SLT 0xfc63 ++#define MATCH_C_SLTR 0x6c40 ++#define MASK_C_SLTR 0xfc63 ++#define MATCH_C_SLTU 0x6460 ++#define MASK_C_SLTU 0xfc63 ++#define MATCH_C_SLTUR 0x6c60 ++#define MASK_C_SLTUR 0xfc63 ++#define MATCH_C_SRA 0x6020 ++#define MASK_C_SRA 0xfc63 ++#define MATCH_C_SRAI 0x2000 ++#define MASK_C_SRAI 0xe003 ++#define MATCH_C_SRL 0x6420 ++#define MASK_C_SRL 0xfc63 ++#define MATCH_C_SRLI 0x2001 ++#define MASK_C_SRLI 0xe003 ++#define MATCH_C_SRLR 0x6c20 ++#define MASK_C_SRLR 0xfc63 ++#define MATCH_C_SUB 0x8000 ++#define MASK_C_SUB 0xf003 ++#define MATCH_C_SUB3 0xa020 ++#define MASK_C_SUB3 0xe063 ++#define MATCH_C_SW 0x4000 ++#define MASK_C_SW 0xe003 ++#define MATCH_C_SWSP 0x4001 ++#define MASK_C_SWSP 0xe003 ++#define MATCH_C_XOR 0x6000 ++#define MASK_C_XOR 0xfc63 ++#define MATCH_C_XORIN 0x8021 ++#define MASK_C_XORIN 0xe063 ++#define MATCH_CSRRC 0x3073 ++#define MASK_CSRRC 0x707f ++#define MATCH_CSRRCI 0x7073 ++#define MASK_CSRRCI 0x707f ++#define MATCH_CSRRS 0x2073 ++#define MASK_CSRRS 0x707f ++#define MATCH_CSRRSI 0x6073 ++#define MASK_CSRRSI 0x707f ++#define MATCH_CSRRW 0x1073 ++#define MASK_CSRRW 0x707f ++#define MATCH_CSRRWI 0x5073 ++#define MASK_CSRRWI 0x707f ++#define MATCH_CUSTOM0 0xb ++#define MASK_CUSTOM0 0x707f ++#define MATCH_CUSTOM0_RD 0x400b ++#define MASK_CUSTOM0_RD 0x707f ++#define MATCH_CUSTOM0_RD_RS1 0x600b ++#define MASK_CUSTOM0_RD_RS1 0x707f ++#define MATCH_CUSTOM0_RD_RS1_RS2 0x700b ++#define MASK_CUSTOM0_RD_RS1_RS2 0x707f ++#define MATCH_CUSTOM0_RS1 0x200b ++#define MASK_CUSTOM0_RS1 0x707f ++#define MATCH_CUSTOM0_RS1_RS2 0x300b ++#define MASK_CUSTOM0_RS1_RS2 0x707f ++#define MATCH_CUSTOM1 0x2b ++#define MASK_CUSTOM1 0x707f ++#define MATCH_CUSTOM1_RD 0x402b ++#define MASK_CUSTOM1_RD 0x707f ++#define MATCH_CUSTOM1_RD_RS1 0x602b ++#define MASK_CUSTOM1_RD_RS1 0x707f ++#define MATCH_CUSTOM1_RD_RS1_RS2 0x702b ++#define MASK_CUSTOM1_RD_RS1_RS2 0x707f ++#define MATCH_CUSTOM1_RS1 0x202b ++#define MASK_CUSTOM1_RS1 0x707f ++#define MATCH_CUSTOM1_RS1_RS2 0x302b ++#define MASK_CUSTOM1_RS1_RS2 0x707f ++#define MATCH_CUSTOM2 0x5b ++#define MASK_CUSTOM2 0x707f ++#define MATCH_CUSTOM2_RD 0x405b ++#define MASK_CUSTOM2_RD 0x707f ++#define MATCH_CUSTOM2_RD_RS1 0x605b ++#define MASK_CUSTOM2_RD_RS1 0x707f ++#define MATCH_CUSTOM2_RD_RS1_RS2 0x705b ++#define MASK_CUSTOM2_RD_RS1_RS2 0x707f ++#define MATCH_CUSTOM2_RS1 0x205b ++#define MASK_CUSTOM2_RS1 0x707f ++#define MATCH_CUSTOM2_RS1_RS2 0x305b ++#define MASK_CUSTOM2_RS1_RS2 0x707f ++#define MATCH_CUSTOM3 0x7b ++#define MASK_CUSTOM3 0x707f ++#define MATCH_CUSTOM3_RD 0x407b ++#define MASK_CUSTOM3_RD 0x707f ++#define MATCH_CUSTOM3_RD_RS1 0x607b ++#define MASK_CUSTOM3_RD_RS1 0x707f ++#define MATCH_CUSTOM3_RD_RS1_RS2 0x707b ++#define MASK_CUSTOM3_RD_RS1_RS2 0x707f ++#define MATCH_CUSTOM3_RS1 0x207b ++#define MASK_CUSTOM3_RS1 0x707f ++#define MATCH_CUSTOM3_RS1_RS2 0x307b ++#define MASK_CUSTOM3_RS1_RS2 0x707f ++#define MATCH_DIV 0x2004033 ++#define MASK_DIV 0xfe00707f ++#define MATCH_DIVU 0x2005033 ++#define MASK_DIVU 0xfe00707f ++#define MATCH_DIVUW 0x200503b ++#define MASK_DIVUW 0xfe00707f ++#define MATCH_DIVW 0x200403b ++#define MASK_DIVW 0xfe00707f ++#define MATCH_EBREAK 0x100073 ++#define MASK_EBREAK 0xffffffff ++#define MATCH_ECALL 0x73 ++#define MASK_ECALL 0xffffffff ++#define MATCH_ERET 0x10000073 ++#define MASK_ERET 0xffffffff ++#define MATCH_FADD_D 0x2000053 ++#define MASK_FADD_D 0xfe00007f ++#define MATCH_FADD_H 0x4000053 ++#define MASK_FADD_H 0xfe00007f ++#define MATCH_FADD_S 0x53 ++#define MASK_FADD_S 0xfe00007f ++#define MATCH_FCLASS_D 0xe2001053 ++#define MASK_FCLASS_D 0xfff0707f ++#define MATCH_FCLASS_S 0xe0001053 ++#define MASK_FCLASS_S 0xfff0707f ++#define MATCH_FCVT_D_H 0x8c000053 ++#define MASK_FCVT_D_H 0xfff0007f ++#define MATCH_FCVT_D_L 0xd2200053 ++#define MASK_FCVT_D_L 0xfff0007f ++#define MATCH_FCVT_D_LU 0xd2300053 ++#define MASK_FCVT_D_LU 0xfff0007f ++#define MATCH_FCVT_D_S 0x42000053 ++#define MASK_FCVT_D_S 0xfff0007f ++#define MATCH_FCVT_D_W 0xd2000053 ++#define MASK_FCVT_D_W 0xfff0007f ++#define MATCH_FCVT_D_WU 0xd2100053 ++#define MASK_FCVT_D_WU 0xfff0007f ++#define MATCH_FCVT_H_D 0x92000053 ++#define MASK_FCVT_H_D 0xfff0007f ++#define MATCH_FCVT_H_L 0x64000053 ++#define MASK_FCVT_H_L 0xfff0007f ++#define MATCH_FCVT_H_LU 0x6c000053 ++#define MASK_FCVT_H_LU 0xfff0007f ++#define MATCH_FCVT_H_S 0x90000053 ++#define MASK_FCVT_H_S 0xfff0007f ++#define MATCH_FCVT_H_W 0x74000053 ++#define MASK_FCVT_H_W 0xfff0007f ++#define MATCH_FCVT_H_WU 0x7c000053 ++#define MASK_FCVT_H_WU 0xfff0007f ++#define MATCH_FCVT_L_D 0xc2200053 ++#define MASK_FCVT_L_D 0xfff0007f ++#define MATCH_FCVT_L_H 0x44000053 ++#define MASK_FCVT_L_H 0xfff0007f ++#define MATCH_FCVT_L_S 0xc0200053 ++#define MASK_FCVT_L_S 0xfff0007f ++#define MATCH_FCVT_LU_D 0xc2300053 ++#define MASK_FCVT_LU_D 0xfff0007f ++#define MATCH_FCVT_LU_H 0x4c000053 ++#define MASK_FCVT_LU_H 0xfff0007f ++#define MATCH_FCVT_LU_S 0xc0300053 ++#define MASK_FCVT_LU_S 0xfff0007f ++#define MATCH_FCVT_S_D 0x40100053 ++#define MASK_FCVT_S_D 0xfff0007f ++#define MATCH_FCVT_S_H 0x84000053 ++#define MASK_FCVT_S_H 0xfff0007f ++#define MATCH_FCVT_S_L 0xd0200053 ++#define MASK_FCVT_S_L 0xfff0007f ++#define MATCH_FCVT_S_LU 0xd0300053 ++#define MASK_FCVT_S_LU 0xfff0007f ++#define MATCH_FCVT_S_W 0xd0000053 ++#define MASK_FCVT_S_W 0xfff0007f ++#define MATCH_FCVT_S_WU 0xd0100053 ++#define MASK_FCVT_S_WU 0xfff0007f ++#define MATCH_FCVT_W_D 0xc2000053 ++#define MASK_FCVT_W_D 0xfff0007f ++#define MATCH_FCVT_W_H 0x54000053 ++#define MASK_FCVT_W_H 0xfff0007f ++#define MATCH_FCVT_W_S 0xc0000053 ++#define MASK_FCVT_W_S 0xfff0007f ++#define MATCH_FCVT_WU_D 0xc2100053 ++#define MASK_FCVT_WU_D 0xfff0007f ++#define MATCH_FCVT_WU_H 0x5c000053 ++#define MASK_FCVT_WU_H 0xfff0007f ++#define MATCH_FCVT_WU_S 0xc0100053 ++#define MASK_FCVT_WU_S 0xfff0007f ++#define MATCH_FDIV_D 0x1a000053 ++#define MASK_FDIV_D 0xfe00007f ++#define MATCH_FDIV_H 0x1c000053 ++#define MASK_FDIV_H 0xfe00007f ++#define MATCH_FDIV_S 0x18000053 ++#define MASK_FDIV_S 0xfe00007f ++#define MATCH_FENCE 0xf ++#define MASK_FENCE 0x707f ++#define MATCH_FENCE_I 0x100f ++#define MASK_FENCE_I 0x707f ++#define MATCH_FEQ_D 0xa2002053 ++#define MASK_FEQ_D 0xfe00707f ++#define MATCH_FEQ_H 0xac000053 ++#define MASK_FEQ_H 0xfe00707f ++#define MATCH_FEQ_S 0xa0002053 ++#define MASK_FEQ_S 0xfe00707f ++#define MATCH_FLD 0x3007 ++#define MASK_FLD 0x707f ++#define MATCH_FLE_D 0xa2000053 ++#define MASK_FLE_D 0xfe00707f ++#define MATCH_FLE_H 0xbc000053 ++#define MASK_FLE_H 0xfe00707f ++#define MATCH_FLE_S 0xa0000053 ++#define MASK_FLE_S 0xfe00707f ++#define MATCH_FLH 0x1007 ++#define MASK_FLH 0x707f ++#define MATCH_FLT_D 0xa2001053 ++#define MASK_FLT_D 0xfe00707f ++#define MATCH_FLT_H 0xb4000053 ++#define MASK_FLT_H 0xfe00707f ++#define MATCH_FLT_S 0xa0001053 ++#define MASK_FLT_S 0xfe00707f ++#define MATCH_FLW 0x2007 ++#define MASK_FLW 0x707f ++#define MATCH_FMADD_D 0x2000043 ++#define MASK_FMADD_D 0x600007f ++#define MATCH_FMADD_H 0x4000043 ++#define MASK_FMADD_H 0x600007f ++#define MATCH_FMADD_S 0x43 ++#define MASK_FMADD_S 0x600007f ++#define MATCH_FMAX_D 0x2a001053 ++#define MASK_FMAX_D 0xfe00707f ++#define MATCH_FMAX_H 0xcc000053 ++#define MASK_FMAX_H 0xfe00707f ++#define MATCH_FMAX_S 0x28001053 ++#define MASK_FMAX_S 0xfe00707f ++#define MATCH_FMIN_D 0x2a000053 ++#define MASK_FMIN_D 0xfe00707f ++#define MATCH_FMIN_H 0xc4000053 ++#define MASK_FMIN_H 0xfe00707f ++#define MATCH_FMIN_S 0x28000053 ++#define MASK_FMIN_S 0xfe00707f ++#define MATCH_FMOVN 0x6007077 ++#define MASK_FMOVN 0xfe00707f ++#define MATCH_FMOVZ 0x4007077 ++#define MASK_FMOVZ 0xfe00707f ++#define MATCH_FMSUB_D 0x2000047 ++#define MASK_FMSUB_D 0x600007f ++#define MATCH_FMSUB_H 0x4000047 ++#define MASK_FMSUB_H 0x600007f ++#define MATCH_FMSUB_S 0x47 ++#define MASK_FMSUB_S 0x600007f ++#define MATCH_FMUL_D 0x12000053 ++#define MASK_FMUL_D 0xfe00007f ++#define MATCH_FMUL_H 0x14000053 ++#define MASK_FMUL_H 0xfe00007f ++#define MATCH_FMUL_S 0x10000053 ++#define MASK_FMUL_S 0xfe00007f ++#define MATCH_FMV_D_X 0xf2000053 ++#define MASK_FMV_D_X 0xfff0707f ++#define MATCH_FMV_H_X 0xf4000053 ++#define MASK_FMV_H_X 0xfff0707f ++#define MATCH_FMV_S_X 0xf0000053 ++#define MASK_FMV_S_X 0xfff0707f ++#define MATCH_FMV_X_D 0xe2000053 ++#define MASK_FMV_X_D 0xfff0707f ++#define MATCH_FMV_X_H 0xe4000053 ++#define MASK_FMV_X_H 0xfff0707f ++#define MATCH_FMV_X_S 0xe0000053 ++#define MASK_FMV_X_S 0xfff0707f ++#define MATCH_FNMADD_D 0x200004f ++#define MASK_FNMADD_D 0x600007f ++#define MATCH_FNMADD_H 0x400004f ++#define MASK_FNMADD_H 0x600007f ++#define MATCH_FNMADD_S 0x4f ++#define MASK_FNMADD_S 0x600007f ++#define MATCH_FNMSUB_D 0x200004b ++#define MASK_FNMSUB_D 0x600007f ++#define MATCH_FNMSUB_H 0x400004b ++#define MASK_FNMSUB_H 0x600007f ++#define MATCH_FNMSUB_S 0x4b ++#define MASK_FNMSUB_S 0x600007f ++#define MATCH_FRCSR 0x302073 ++#define MASK_FRCSR 0xfffff07f ++#define MATCH_FRFLAGS 0x102073 ++#define MASK_FRFLAGS 0xfffff07f ++#define MATCH_FRRM 0x202073 ++#define MASK_FRRM 0xfffff07f ++#define MATCH_FSCSR 0x301073 ++#define MASK_FSCSR 0xfff0707f ++#define MATCH_FSD 0x3027 ++#define MASK_FSD 0x707f ++#define MATCH_FSFLAGS 0x101073 ++#define MASK_FSFLAGS 0xfff0707f ++#define MATCH_FSFLAGSI 0x105073 ++#define MASK_FSFLAGSI 0xfff0707f ++#define MATCH_FSGNJ_D 0x22000053 ++#define MASK_FSGNJ_D 0xfe00707f ++#define MATCH_FSGNJ_H 0x2c000053 ++#define MASK_FSGNJ_H 0xfe00707f ++#define MATCH_FSGNJ_S 0x20000053 ++#define MASK_FSGNJ_S 0xfe00707f ++#define MATCH_FSGNJN_D 0x22001053 ++#define MASK_FSGNJN_D 0xfe00707f ++#define MATCH_FSGNJN_H 0x34000053 ++#define MASK_FSGNJN_H 0xfe00707f ++#define MATCH_FSGNJN_S 0x20001053 ++#define MASK_FSGNJN_S 0xfe00707f ++#define MATCH_FSGNJX_D 0x22002053 ++#define MASK_FSGNJX_D 0xfe00707f ++#define MATCH_FSGNJX_H 0x3c000053 ++#define MASK_FSGNJX_H 0xfe00707f ++#define MATCH_FSGNJX_S 0x20002053 ++#define MASK_FSGNJX_S 0xfe00707f ++#define MATCH_FSH 0x1027 ++#define MASK_FSH 0x707f ++#define MATCH_FSQRT_D 0x5a000053 ++#define MASK_FSQRT_D 0xfff0007f ++#define MATCH_FSQRT_H 0x24000053 ++#define MASK_FSQRT_H 0xfff0007f ++#define MATCH_FSQRT_S 0x58000053 ++#define MASK_FSQRT_S 0xfff0007f ++#define MATCH_FSRM 0x201073 ++#define MASK_FSRM 0xfff0707f ++#define MATCH_FSRMI 0x205073 ++#define MASK_FSRMI 0xfff0707f ++#define MATCH_FSUB_D 0xa000053 ++#define MASK_FSUB_D 0xfe00007f ++#define MATCH_FSUB_H 0xc000053 ++#define MASK_FSUB_H 0xfe00007f ++#define MATCH_FSUB_S 0x8000053 ++#define MASK_FSUB_S 0xfe00007f ++#define MATCH_FSW 0x2027 ++#define MASK_FSW 0x707f ++#define MATCH_HRTS 0x20500073 ++#define MASK_HRTS 0xffffffff ++#define MATCH_JAL 0x6f ++#define MASK_JAL 0x7f ++#define MATCH_JALR 0x67 ++#define MASK_JALR 0x707f ++#define MATCH_LB 0x3 ++#define MASK_LB 0x707f ++#define MATCH_LBU 0x4003 ++#define MASK_LBU 0x707f ++#define MATCH_LD 0x3003 ++#define MASK_LD 0x707f ++#define MATCH_LH 0x1003 ++#define MASK_LH 0x707f ++#define MATCH_LHU 0x5003 ++#define MASK_LHU 0x707f ++#define MATCH_LR_D 0x1000302f ++#define MASK_LR_D 0xf9f0707f ++#define MATCH_LR_W 0x1000202f ++#define MASK_LR_W 0xf9f0707f ++#define MATCH_LUI 0x37 ++#define MASK_LUI 0x7f ++#define MATCH_LW 0x2003 ++#define MASK_LW 0x707f ++#define MATCH_LWU 0x6003 ++#define MASK_LWU 0x707f ++#define MATCH_MOVN 0x2007077 ++#define MASK_MOVN 0xfe00707f ++#define MATCH_MOVZ 0x7077 ++#define MASK_MOVZ 0xfe00707f ++#define MATCH_MRTH 0x30600073 ++#define MASK_MRTH 0xffffffff ++#define MATCH_MRTS 0x30500073 ++#define MASK_MRTS 0xffffffff ++#define MATCH_MUL 0x2000033 ++#define MASK_MUL 0xfe00707f ++#define MATCH_MULH 0x2001033 ++#define MASK_MULH 0xfe00707f ++#define MATCH_MULHSU 0x2002033 ++#define MASK_MULHSU 0xfe00707f ++#define MATCH_MULHU 0x2003033 ++#define MASK_MULHU 0xfe00707f ++#define MATCH_MULW 0x200003b ++#define MASK_MULW 0xfe00707f ++#define MATCH_OR 0x6033 ++#define MASK_OR 0xfe00707f ++#define MATCH_ORI 0x6013 ++#define MASK_ORI 0x707f ++#define MATCH_RDCYCLE 0xc0002073 ++#define MASK_RDCYCLE 0xfffff07f ++#define MATCH_RDCYCLEH 0xc8002073 ++#define MASK_RDCYCLEH 0xfffff07f ++#define MATCH_RDINSTRET 0xc0202073 ++#define MASK_RDINSTRET 0xfffff07f ++#define MATCH_RDINSTRETH 0xc8202073 ++#define MASK_RDINSTRETH 0xfffff07f ++#define MATCH_RDTIME 0xc0102073 ++#define MASK_RDTIME 0xfffff07f ++#define MATCH_RDTIMEH 0xc8102073 ++#define MASK_RDTIMEH 0xfffff07f ++#define MATCH_REM 0x2006033 ++#define MASK_REM 0xfe00707f ++#define MATCH_REMU 0x2007033 ++#define MASK_REMU 0xfe00707f ++#define MATCH_REMUW 0x200703b ++#define MASK_REMUW 0xfe00707f ++#define MATCH_REMW 0x200603b ++#define MASK_REMW 0xfe00707f ++#define MATCH_SB 0x23 ++#define MASK_SB 0x707f ++#define MATCH_SBREAK 0x100073 ++#define MASK_SBREAK 0xffffffff ++#define MATCH_SC_D 0x1800302f ++#define MASK_SC_D 0xf800707f ++#define MATCH_SC_W 0x1800202f ++#define MASK_SC_W 0xf800707f ++#define MATCH_SCALL 0x73 ++#define MASK_SCALL 0xffffffff ++#define MATCH_SD 0x3023 ++#define MASK_SD 0x707f ++#define MATCH_SFENCE_VM 0x10100073 ++#define MASK_SFENCE_VM 0xfff07fff ++#define MATCH_SH 0x1023 ++#define MASK_SH 0x707f ++#define MATCH_SLL 0x1033 ++#define MASK_SLL 0xfe00707f ++#define MATCH_SLLI 0x1013 ++#define MASK_SLLI 0xfc00707f ++#define MATCH_SLLI_RV32 0x1013 ++#define MASK_SLLI_RV32 0xfe00707f ++#define MATCH_SLLIW 0x101b ++#define MASK_SLLIW 0xfe00707f ++#define MATCH_SLLW 0x103b ++#define MASK_SLLW 0xfe00707f ++#define MATCH_SLT 0x2033 ++#define MASK_SLT 0xfe00707f ++#define MATCH_SLTI 0x2013 ++#define MASK_SLTI 0x707f ++#define MATCH_SLTIU 0x3013 ++#define MASK_SLTIU 0x707f ++#define MATCH_SLTU 0x3033 ++#define MASK_SLTU 0xfe00707f ++#define MATCH_SRA 0x40005033 ++#define MASK_SRA 0xfe00707f ++#define MATCH_SRAI 0x40005013 ++#define MASK_SRAI 0xfc00707f ++#define MATCH_SRAI_RV32 0x40005013 ++#define MASK_SRAI_RV32 0xfe00707f ++#define MATCH_SRAIW 0x4000501b ++#define MASK_SRAIW 0xfe00707f ++#define MATCH_SRAW 0x4000503b ++#define MASK_SRAW 0xfe00707f ++#define MATCH_SRET 0x10000073 ++#define MASK_SRET 0xffffffff ++#define MATCH_SRL 0x5033 ++#define MASK_SRL 0xfe00707f ++#define MATCH_SRLI 0x5013 ++#define MASK_SRLI 0xfc00707f ++#define MATCH_SRLI_RV32 0x5013 ++#define MASK_SRLI_RV32 0xfe00707f ++#define MATCH_SRLIW 0x501b ++#define MASK_SRLIW 0xfe00707f ++#define MATCH_SRLW 0x503b ++#define MASK_SRLW 0xfe00707f ++#define MATCH_STOP 0x5077 ++#define MASK_STOP 0xffffffff ++#define MATCH_SUB 0x40000033 ++#define MASK_SUB 0xfe00707f ++#define MATCH_SUBW 0x4000003b ++#define MASK_SUBW 0xfe00707f ++#define MATCH_SW 0x2023 ++#define MASK_SW 0x707f ++#define MATCH_UTIDX 0x6077 ++#define MASK_UTIDX 0xfffff07f ++#define MATCH_VENQCMD 0xa00302b ++#define MASK_VENQCMD 0xfe007fff ++#define MATCH_VENQCNT 0x1000302b ++#define MASK_VENQCNT 0xfe007fff ++#define MATCH_VENQIMM1 0xc00302b ++#define MASK_VENQIMM1 0xfe007fff ++#define MATCH_VENQIMM2 0xe00302b ++#define MASK_VENQIMM2 0xfe007fff ++#define MATCH_VF 0x10202b ++#define MASK_VF 0x1f0707f ++#define MATCH_VFLD 0x1600205b ++#define MASK_VFLD 0xfff0707f ++#define MATCH_VFLSEGD 0x1600205b ++#define MASK_VFLSEGD 0x1ff0707f ++#define MATCH_VFLSEGSTD 0x1600305b ++#define MASK_VFLSEGSTD 0x1e00707f ++#define MATCH_VFLSEGSTW 0x1400305b ++#define MASK_VFLSEGSTW 0x1e00707f ++#define MATCH_VFLSEGW 0x1400205b ++#define MASK_VFLSEGW 0x1ff0707f ++#define MATCH_VFLSTD 0x1600305b ++#define MASK_VFLSTD 0xfe00707f ++#define MATCH_VFLSTW 0x1400305b ++#define MASK_VFLSTW 0xfe00707f ++#define MATCH_VFLW 0x1400205b ++#define MASK_VFLW 0xfff0707f ++#define MATCH_VFMSV_D 0x1200202b ++#define MASK_VFMSV_D 0xfff0707f ++#define MATCH_VFMSV_S 0x1000202b ++#define MASK_VFMSV_S 0xfff0707f ++#define MATCH_VFMVV 0x1000002b ++#define MASK_VFMVV 0xfff0707f ++#define MATCH_VFSD 0x1600207b ++#define MASK_VFSD 0xfff0707f ++#define MATCH_VFSSEGD 0x1600207b ++#define MASK_VFSSEGD 0x1ff0707f ++#define MATCH_VFSSEGSTD 0x1600307b ++#define MASK_VFSSEGSTD 0x1e00707f ++#define MATCH_VFSSEGSTW 0x1400307b ++#define MASK_VFSSEGSTW 0x1e00707f ++#define MATCH_VFSSEGW 0x1400207b ++#define MASK_VFSSEGW 0x1ff0707f ++#define MATCH_VFSSTD 0x1600307b ++#define MASK_VFSSTD 0xfe00707f ++#define MATCH_VFSSTW 0x1400307b ++#define MASK_VFSSTW 0xfe00707f ++#define MATCH_VFSW 0x1400207b ++#define MASK_VFSW 0xfff0707f ++#define MATCH_VGETCFG 0x400b ++#define MASK_VGETCFG 0xfffff07f ++#define MATCH_VGETVL 0x200400b ++#define MASK_VGETVL 0xfffff07f ++#define MATCH_VLB 0x205b ++#define MASK_VLB 0xfff0707f ++#define MATCH_VLBU 0x800205b ++#define MASK_VLBU 0xfff0707f ++#define MATCH_VLD 0x600205b ++#define MASK_VLD 0xfff0707f ++#define MATCH_VLH 0x200205b ++#define MASK_VLH 0xfff0707f ++#define MATCH_VLHU 0xa00205b ++#define MASK_VLHU 0xfff0707f ++#define MATCH_VLSEGB 0x205b ++#define MASK_VLSEGB 0x1ff0707f ++#define MATCH_VLSEGBU 0x800205b ++#define MASK_VLSEGBU 0x1ff0707f ++#define MATCH_VLSEGD 0x600205b ++#define MASK_VLSEGD 0x1ff0707f ++#define MATCH_VLSEGH 0x200205b ++#define MASK_VLSEGH 0x1ff0707f ++#define MATCH_VLSEGHU 0xa00205b ++#define MASK_VLSEGHU 0x1ff0707f ++#define MATCH_VLSEGSTB 0x305b ++#define MASK_VLSEGSTB 0x1e00707f ++#define MATCH_VLSEGSTBU 0x800305b ++#define MASK_VLSEGSTBU 0x1e00707f ++#define MATCH_VLSEGSTD 0x600305b ++#define MASK_VLSEGSTD 0x1e00707f ++#define MATCH_VLSEGSTH 0x200305b ++#define MASK_VLSEGSTH 0x1e00707f ++#define MATCH_VLSEGSTHU 0xa00305b ++#define MASK_VLSEGSTHU 0x1e00707f ++#define MATCH_VLSEGSTW 0x400305b ++#define MASK_VLSEGSTW 0x1e00707f ++#define MATCH_VLSEGSTWU 0xc00305b ++#define MASK_VLSEGSTWU 0x1e00707f ++#define MATCH_VLSEGW 0x400205b ++#define MASK_VLSEGW 0x1ff0707f ++#define MATCH_VLSEGWU 0xc00205b ++#define MASK_VLSEGWU 0x1ff0707f ++#define MATCH_VLSTB 0x305b ++#define MASK_VLSTB 0xfe00707f ++#define MATCH_VLSTBU 0x800305b ++#define MASK_VLSTBU 0xfe00707f ++#define MATCH_VLSTD 0x600305b ++#define MASK_VLSTD 0xfe00707f ++#define MATCH_VLSTH 0x200305b ++#define MASK_VLSTH 0xfe00707f ++#define MATCH_VLSTHU 0xa00305b ++#define MASK_VLSTHU 0xfe00707f ++#define MATCH_VLSTW 0x400305b ++#define MASK_VLSTW 0xfe00707f ++#define MATCH_VLSTWU 0xc00305b ++#define MASK_VLSTWU 0xfe00707f ++#define MATCH_VLW 0x400205b ++#define MASK_VLW 0xfff0707f ++#define MATCH_VLWU 0xc00205b ++#define MASK_VLWU 0xfff0707f ++#define MATCH_VMSV 0x200202b ++#define MASK_VMSV 0xfff0707f ++#define MATCH_VMVV 0x200002b ++#define MASK_VMVV 0xfff0707f ++#define MATCH_VSB 0x207b ++#define MASK_VSB 0xfff0707f ++#define MATCH_VSD 0x600207b ++#define MASK_VSD 0xfff0707f ++#define MATCH_VSETCFG 0x200b ++#define MASK_VSETCFG 0x7fff ++#define MATCH_VSETVL 0x600b ++#define MASK_VSETVL 0xfff0707f ++#define MATCH_VSH 0x200207b ++#define MASK_VSH 0xfff0707f ++#define MATCH_VSSEGB 0x207b ++#define MASK_VSSEGB 0x1ff0707f ++#define MATCH_VSSEGD 0x600207b ++#define MASK_VSSEGD 0x1ff0707f ++#define MATCH_VSSEGH 0x200207b ++#define MASK_VSSEGH 0x1ff0707f ++#define MATCH_VSSEGSTB 0x307b ++#define MASK_VSSEGSTB 0x1e00707f ++#define MATCH_VSSEGSTD 0x600307b ++#define MASK_VSSEGSTD 0x1e00707f ++#define MATCH_VSSEGSTH 0x200307b ++#define MASK_VSSEGSTH 0x1e00707f ++#define MATCH_VSSEGSTW 0x400307b ++#define MASK_VSSEGSTW 0x1e00707f ++#define MATCH_VSSEGW 0x400207b ++#define MASK_VSSEGW 0x1ff0707f ++#define MATCH_VSSTB 0x307b ++#define MASK_VSSTB 0xfe00707f ++#define MATCH_VSSTD 0x600307b ++#define MASK_VSSTD 0xfe00707f ++#define MATCH_VSSTH 0x200307b ++#define MASK_VSSTH 0xfe00707f ++#define MATCH_VSSTW 0x400307b ++#define MASK_VSSTW 0xfe00707f ++#define MATCH_VSW 0x400207b ++#define MASK_VSW 0xfff0707f ++#define MATCH_VXCPTAUX 0x200402b ++#define MASK_VXCPTAUX 0xfffff07f ++#define MATCH_VXCPTCAUSE 0x402b ++#define MASK_VXCPTCAUSE 0xfffff07f ++#define MATCH_VXCPTEVAC 0x600302b ++#define MASK_VXCPTEVAC 0xfff07fff ++#define MATCH_VXCPTHOLD 0x800302b ++#define MASK_VXCPTHOLD 0xfff07fff ++#define MATCH_VXCPTKILL 0x400302b ++#define MASK_VXCPTKILL 0xffffffff ++#define MATCH_VXCPTRESTORE 0x200302b ++#define MASK_VXCPTRESTORE 0xfff07fff ++#define MATCH_VXCPTSAVE 0x302b ++#define MASK_VXCPTSAVE 0xfff07fff ++#define MATCH_WFI 0x10200073 ++#define MASK_WFI 0xffffffff ++#define MATCH_XOR 0x4033 ++#define MASK_XOR 0xfe00707f ++#define MATCH_XORI 0x4013 ++#define MASK_XORI 0x707f ++#define CSR_FFLAGS 0x1 ++#define CSR_FRM 0x2 ++#define CSR_FCSR 0x3 ++#define CSR_CYCLE 0xc00 ++#define CSR_TIME 0xc01 ++#define CSR_INSTRET 0xc02 ++#define CSR_STATS 0xc0 ++#define CSR_UARCH0 0xcc0 ++#define CSR_UARCH1 0xcc1 ++#define CSR_UARCH2 0xcc2 ++#define CSR_UARCH3 0xcc3 ++#define CSR_UARCH4 0xcc4 ++#define CSR_UARCH5 0xcc5 ++#define CSR_UARCH6 0xcc6 ++#define CSR_UARCH7 0xcc7 ++#define CSR_UARCH8 0xcc8 ++#define CSR_UARCH9 0xcc9 ++#define CSR_UARCH10 0xcca ++#define CSR_UARCH11 0xccb ++#define CSR_UARCH12 0xccc ++#define CSR_UARCH13 0xccd ++#define CSR_UARCH14 0xcce ++#define CSR_UARCH15 0xccf ++#define CSR_SSTATUS 0x100 ++#define CSR_STVEC 0x101 ++#define CSR_SIE 0x104 ++#define CSR_SSCRATCH 0x140 ++#define CSR_SEPC 0x141 ++#define CSR_SIP 0x144 ++#define CSR_SPTBR 0x180 ++#define CSR_SASID 0x181 ++#define CSR_CYCLEW 0x900 ++#define CSR_TIMEW 0x901 ++#define CSR_INSTRETW 0x902 ++#define CSR_STIME 0xd01 ++#define CSR_SCAUSE 0xd42 ++#define CSR_SBADADDR 0xd43 ++#define CSR_STIMEW 0xa01 ++#define CSR_MSTATUS 0x300 ++#define CSR_MTVEC 0x301 ++#define CSR_MTDELEG 0x302 ++#define CSR_MIE 0x304 ++#define CSR_MTIMECMP 0x321 ++#define CSR_MSCRATCH 0x340 ++#define CSR_MEPC 0x341 ++#define CSR_MCAUSE 0x342 ++#define CSR_MBADADDR 0x343 ++#define CSR_MIP 0x344 ++#define CSR_MTIME 0x701 ++#define CSR_MCPUID 0xf00 ++#define CSR_MIMPID 0xf01 ++#define CSR_MHARTID 0xf10 ++#define CSR_MTOHOST 0x780 ++#define CSR_MFROMHOST 0x781 ++#define CSR_MRESET 0x782 ++#define CSR_SEND_IPI 0x783 ++#define CSR_CYCLEH 0xc80 ++#define CSR_TIMEH 0xc81 ++#define CSR_INSTRETH 0xc82 ++#define CSR_CYCLEHW 0x980 ++#define CSR_TIMEHW 0x981 ++#define CSR_INSTRETHW 0x982 ++#define CSR_STIMEH 0xd81 ++#define CSR_STIMEHW 0xa81 ++#define CSR_MTIMECMPH 0x361 ++#define CSR_MTIMEH 0x741 ++#define CAUSE_MISALIGNED_FETCH 0x0 ++#define CAUSE_FAULT_FETCH 0x1 ++#define CAUSE_ILLEGAL_INSTRUCTION 0x2 ++#define CAUSE_BREAKPOINT 0x3 ++#define CAUSE_MISALIGNED_LOAD 0x4 ++#define CAUSE_FAULT_LOAD 0x5 ++#define CAUSE_MISALIGNED_STORE 0x6 ++#define CAUSE_FAULT_STORE 0x7 ++#define CAUSE_USER_ECALL 0x8 ++#define CAUSE_SUPERVISOR_ECALL 0x9 ++#define CAUSE_HYPERVISOR_ECALL 0xa ++#define CAUSE_MACHINE_ECALL 0xb ++#endif ++#ifdef DECLARE_INSN ++DECLARE_INSN(add, MATCH_ADD, MASK_ADD) ++DECLARE_INSN(addi, MATCH_ADDI, MASK_ADDI) ++DECLARE_INSN(addiw, MATCH_ADDIW, MASK_ADDIW) ++DECLARE_INSN(addw, MATCH_ADDW, MASK_ADDW) ++DECLARE_INSN(amoadd_d, MATCH_AMOADD_D, MASK_AMOADD_D) ++DECLARE_INSN(amoadd_w, MATCH_AMOADD_W, MASK_AMOADD_W) ++DECLARE_INSN(amoand_d, MATCH_AMOAND_D, MASK_AMOAND_D) ++DECLARE_INSN(amoand_w, MATCH_AMOAND_W, MASK_AMOAND_W) ++DECLARE_INSN(amomax_d, MATCH_AMOMAX_D, MASK_AMOMAX_D) ++DECLARE_INSN(amomax_w, MATCH_AMOMAX_W, MASK_AMOMAX_W) ++DECLARE_INSN(amomaxu_d, MATCH_AMOMAXU_D, MASK_AMOMAXU_D) ++DECLARE_INSN(amomaxu_w, MATCH_AMOMAXU_W, MASK_AMOMAXU_W) ++DECLARE_INSN(amomin_d, MATCH_AMOMIN_D, MASK_AMOMIN_D) ++DECLARE_INSN(amomin_w, MATCH_AMOMIN_W, MASK_AMOMIN_W) ++DECLARE_INSN(amominu_d, MATCH_AMOMINU_D, MASK_AMOMINU_D) ++DECLARE_INSN(amominu_w, MATCH_AMOMINU_W, MASK_AMOMINU_W) ++DECLARE_INSN(amoor_d, MATCH_AMOOR_D, MASK_AMOOR_D) ++DECLARE_INSN(amoor_w, MATCH_AMOOR_W, MASK_AMOOR_W) ++DECLARE_INSN(amoswap_d, MATCH_AMOSWAP_D, MASK_AMOSWAP_D) ++DECLARE_INSN(amoswap_w, MATCH_AMOSWAP_W, MASK_AMOSWAP_W) ++DECLARE_INSN(amoxor_d, MATCH_AMOXOR_D, MASK_AMOXOR_D) ++DECLARE_INSN(amoxor_w, MATCH_AMOXOR_W, MASK_AMOXOR_W) ++DECLARE_INSN(and, MATCH_AND, MASK_AND) ++DECLARE_INSN(andi, MATCH_ANDI, MASK_ANDI) ++DECLARE_INSN(auipc, MATCH_AUIPC, MASK_AUIPC) ++DECLARE_INSN(beq, MATCH_BEQ, MASK_BEQ) ++DECLARE_INSN(bge, MATCH_BGE, MASK_BGE) ++DECLARE_INSN(bgeu, MATCH_BGEU, MASK_BGEU) ++DECLARE_INSN(blt, MATCH_BLT, MASK_BLT) ++DECLARE_INSN(bltu, MATCH_BLTU, MASK_BLTU) ++DECLARE_INSN(bne, MATCH_BNE, MASK_BNE) ++DECLARE_INSN(c_add, MATCH_C_ADD, MASK_C_ADD) ++DECLARE_INSN(c_add3, MATCH_C_ADD3, MASK_C_ADD3) ++DECLARE_INSN(c_addi, MATCH_C_ADDI, MASK_C_ADDI) ++DECLARE_INSN(c_addi16sp, MATCH_C_ADDI16SP, MASK_C_ADDI16SP) ++DECLARE_INSN(c_addi4spn, MATCH_C_ADDI4SPN, MASK_C_ADDI4SPN) ++DECLARE_INSN(c_addin, MATCH_C_ADDIN, MASK_C_ADDIN) ++DECLARE_INSN(c_addiw, MATCH_C_ADDIW, MASK_C_ADDIW) ++DECLARE_INSN(c_addw, MATCH_C_ADDW, MASK_C_ADDW) ++DECLARE_INSN(c_and3, MATCH_C_AND3, MASK_C_AND3) ++DECLARE_INSN(c_andi, MATCH_C_ANDI, MASK_C_ANDI) ++DECLARE_INSN(c_andin, MATCH_C_ANDIN, MASK_C_ANDIN) ++DECLARE_INSN(c_beqz, MATCH_C_BEQZ, MASK_C_BEQZ) ++DECLARE_INSN(c_bgez, MATCH_C_BGEZ, MASK_C_BGEZ) ++DECLARE_INSN(c_bltz, MATCH_C_BLTZ, MASK_C_BLTZ) ++DECLARE_INSN(c_bnez, MATCH_C_BNEZ, MASK_C_BNEZ) ++DECLARE_INSN(c_ebreak, MATCH_C_EBREAK, MASK_C_EBREAK) ++DECLARE_INSN(c_j, MATCH_C_J, MASK_C_J) ++DECLARE_INSN(c_jal, MATCH_C_JAL, MASK_C_JAL) ++DECLARE_INSN(c_jalr, MATCH_C_JALR, MASK_C_JALR) ++DECLARE_INSN(c_jr, MATCH_C_JR, MASK_C_JR) ++DECLARE_INSN(c_ld, MATCH_C_LD, MASK_C_LD) ++DECLARE_INSN(c_ldsp, MATCH_C_LDSP, MASK_C_LDSP) ++DECLARE_INSN(c_li, MATCH_C_LI, MASK_C_LI) ++DECLARE_INSN(c_lui, MATCH_C_LUI, MASK_C_LUI) ++DECLARE_INSN(c_lw, MATCH_C_LW, MASK_C_LW) ++DECLARE_INSN(c_lwsp, MATCH_C_LWSP, MASK_C_LWSP) ++DECLARE_INSN(c_mv, MATCH_C_MV, MASK_C_MV) ++DECLARE_INSN(c_or3, MATCH_C_OR3, MASK_C_OR3) ++DECLARE_INSN(c_orin, MATCH_C_ORIN, MASK_C_ORIN) ++DECLARE_INSN(c_sd, MATCH_C_SD, MASK_C_SD) ++DECLARE_INSN(c_sdsp, MATCH_C_SDSP, MASK_C_SDSP) ++DECLARE_INSN(c_sll, MATCH_C_SLL, MASK_C_SLL) ++DECLARE_INSN(c_slli, MATCH_C_SLLI, MASK_C_SLLI) ++DECLARE_INSN(c_slliw, MATCH_C_SLLIW, MASK_C_SLLIW) ++DECLARE_INSN(c_sllr, MATCH_C_SLLR, MASK_C_SLLR) ++DECLARE_INSN(c_slt, MATCH_C_SLT, MASK_C_SLT) ++DECLARE_INSN(c_sltr, MATCH_C_SLTR, MASK_C_SLTR) ++DECLARE_INSN(c_sltu, MATCH_C_SLTU, MASK_C_SLTU) ++DECLARE_INSN(c_sltur, MATCH_C_SLTUR, MASK_C_SLTUR) ++DECLARE_INSN(c_sra, MATCH_C_SRA, MASK_C_SRA) ++DECLARE_INSN(c_srai, MATCH_C_SRAI, MASK_C_SRAI) ++DECLARE_INSN(c_srl, MATCH_C_SRL, MASK_C_SRL) ++DECLARE_INSN(c_srli, MATCH_C_SRLI, MASK_C_SRLI) ++DECLARE_INSN(c_srlr, MATCH_C_SRLR, MASK_C_SRLR) ++DECLARE_INSN(c_sub, MATCH_C_SUB, MASK_C_SUB) ++DECLARE_INSN(c_sub3, MATCH_C_SUB3, MASK_C_SUB3) ++DECLARE_INSN(c_sw, MATCH_C_SW, MASK_C_SW) ++DECLARE_INSN(c_swsp, MATCH_C_SWSP, MASK_C_SWSP) ++DECLARE_INSN(c_xor, MATCH_C_XOR, MASK_C_XOR) ++DECLARE_INSN(c_xorin, MATCH_C_XORIN, MASK_C_XORIN) ++DECLARE_INSN(csrrc, MATCH_CSRRC, MASK_CSRRC) ++DECLARE_INSN(csrrci, MATCH_CSRRCI, MASK_CSRRCI) ++DECLARE_INSN(csrrs, MATCH_CSRRS, MASK_CSRRS) ++DECLARE_INSN(csrrsi, MATCH_CSRRSI, MASK_CSRRSI) ++DECLARE_INSN(csrrw, MATCH_CSRRW, MASK_CSRRW) ++DECLARE_INSN(csrrwi, MATCH_CSRRWI, MASK_CSRRWI) ++DECLARE_INSN(custom0, MATCH_CUSTOM0, MASK_CUSTOM0) ++DECLARE_INSN(custom0_rd, MATCH_CUSTOM0_RD, MASK_CUSTOM0_RD) ++DECLARE_INSN(custom0_rd_rs1, MATCH_CUSTOM0_RD_RS1, MASK_CUSTOM0_RD_RS1) ++DECLARE_INSN(custom0_rd_rs1_rs2, MATCH_CUSTOM0_RD_RS1_RS2, MASK_CUSTOM0_RD_RS1_RS2) ++DECLARE_INSN(custom0_rs1, MATCH_CUSTOM0_RS1, MASK_CUSTOM0_RS1) ++DECLARE_INSN(custom0_rs1_rs2, MATCH_CUSTOM0_RS1_RS2, MASK_CUSTOM0_RS1_RS2) ++DECLARE_INSN(custom1, MATCH_CUSTOM1, MASK_CUSTOM1) ++DECLARE_INSN(custom1_rd, MATCH_CUSTOM1_RD, MASK_CUSTOM1_RD) ++DECLARE_INSN(custom1_rd_rs1, MATCH_CUSTOM1_RD_RS1, MASK_CUSTOM1_RD_RS1) ++DECLARE_INSN(custom1_rd_rs1_rs2, MATCH_CUSTOM1_RD_RS1_RS2, MASK_CUSTOM1_RD_RS1_RS2) ++DECLARE_INSN(custom1_rs1, MATCH_CUSTOM1_RS1, MASK_CUSTOM1_RS1) ++DECLARE_INSN(custom1_rs1_rs2, MATCH_CUSTOM1_RS1_RS2, MASK_CUSTOM1_RS1_RS2) ++DECLARE_INSN(custom2, MATCH_CUSTOM2, MASK_CUSTOM2) ++DECLARE_INSN(custom2_rd, MATCH_CUSTOM2_RD, MASK_CUSTOM2_RD) ++DECLARE_INSN(custom2_rd_rs1, MATCH_CUSTOM2_RD_RS1, MASK_CUSTOM2_RD_RS1) ++DECLARE_INSN(custom2_rd_rs1_rs2, MATCH_CUSTOM2_RD_RS1_RS2, MASK_CUSTOM2_RD_RS1_RS2) ++DECLARE_INSN(custom2_rs1, MATCH_CUSTOM2_RS1, MASK_CUSTOM2_RS1) ++DECLARE_INSN(custom2_rs1_rs2, MATCH_CUSTOM2_RS1_RS2, MASK_CUSTOM2_RS1_RS2) ++DECLARE_INSN(custom3, MATCH_CUSTOM3, MASK_CUSTOM3) ++DECLARE_INSN(custom3_rd, MATCH_CUSTOM3_RD, MASK_CUSTOM3_RD) ++DECLARE_INSN(custom3_rd_rs1, MATCH_CUSTOM3_RD_RS1, MASK_CUSTOM3_RD_RS1) ++DECLARE_INSN(custom3_rd_rs1_rs2, MATCH_CUSTOM3_RD_RS1_RS2, MASK_CUSTOM3_RD_RS1_RS2) ++DECLARE_INSN(custom3_rs1, MATCH_CUSTOM3_RS1, MASK_CUSTOM3_RS1) ++DECLARE_INSN(custom3_rs1_rs2, MATCH_CUSTOM3_RS1_RS2, MASK_CUSTOM3_RS1_RS2) ++DECLARE_INSN(div, MATCH_DIV, MASK_DIV) ++DECLARE_INSN(divu, MATCH_DIVU, MASK_DIVU) ++DECLARE_INSN(divuw, MATCH_DIVUW, MASK_DIVUW) ++DECLARE_INSN(divw, MATCH_DIVW, MASK_DIVW) ++DECLARE_INSN(ebreak, MATCH_EBREAK, MASK_EBREAK) ++DECLARE_INSN(ecall, MATCH_ECALL, MASK_ECALL) ++DECLARE_INSN(eret, MATCH_ERET, MASK_ERET) ++DECLARE_INSN(fadd_d, MATCH_FADD_D, MASK_FADD_D) ++DECLARE_INSN(fadd_h, MATCH_FADD_H, MASK_FADD_H) ++DECLARE_INSN(fadd_s, MATCH_FADD_S, MASK_FADD_S) ++DECLARE_INSN(fclass_d, MATCH_FCLASS_D, MASK_FCLASS_D) ++DECLARE_INSN(fclass_s, MATCH_FCLASS_S, MASK_FCLASS_S) ++DECLARE_INSN(fcvt_d_h, MATCH_FCVT_D_H, MASK_FCVT_D_H) ++DECLARE_INSN(fcvt_d_l, MATCH_FCVT_D_L, MASK_FCVT_D_L) ++DECLARE_INSN(fcvt_d_lu, MATCH_FCVT_D_LU, MASK_FCVT_D_LU) ++DECLARE_INSN(fcvt_d_s, MATCH_FCVT_D_S, MASK_FCVT_D_S) ++DECLARE_INSN(fcvt_d_w, MATCH_FCVT_D_W, MASK_FCVT_D_W) ++DECLARE_INSN(fcvt_d_wu, MATCH_FCVT_D_WU, MASK_FCVT_D_WU) ++DECLARE_INSN(fcvt_h_d, MATCH_FCVT_H_D, MASK_FCVT_H_D) ++DECLARE_INSN(fcvt_h_l, MATCH_FCVT_H_L, MASK_FCVT_H_L) ++DECLARE_INSN(fcvt_h_lu, MATCH_FCVT_H_LU, MASK_FCVT_H_LU) ++DECLARE_INSN(fcvt_h_s, MATCH_FCVT_H_S, MASK_FCVT_H_S) ++DECLARE_INSN(fcvt_h_w, MATCH_FCVT_H_W, MASK_FCVT_H_W) ++DECLARE_INSN(fcvt_h_wu, MATCH_FCVT_H_WU, MASK_FCVT_H_WU) ++DECLARE_INSN(fcvt_l_d, MATCH_FCVT_L_D, MASK_FCVT_L_D) ++DECLARE_INSN(fcvt_l_h, MATCH_FCVT_L_H, MASK_FCVT_L_H) ++DECLARE_INSN(fcvt_l_s, MATCH_FCVT_L_S, MASK_FCVT_L_S) ++DECLARE_INSN(fcvt_lu_d, MATCH_FCVT_LU_D, MASK_FCVT_LU_D) ++DECLARE_INSN(fcvt_lu_h, MATCH_FCVT_LU_H, MASK_FCVT_LU_H) ++DECLARE_INSN(fcvt_lu_s, MATCH_FCVT_LU_S, MASK_FCVT_LU_S) ++DECLARE_INSN(fcvt_s_d, MATCH_FCVT_S_D, MASK_FCVT_S_D) ++DECLARE_INSN(fcvt_s_h, MATCH_FCVT_S_H, MASK_FCVT_S_H) ++DECLARE_INSN(fcvt_s_l, MATCH_FCVT_S_L, MASK_FCVT_S_L) ++DECLARE_INSN(fcvt_s_lu, MATCH_FCVT_S_LU, MASK_FCVT_S_LU) ++DECLARE_INSN(fcvt_s_w, MATCH_FCVT_S_W, MASK_FCVT_S_W) ++DECLARE_INSN(fcvt_s_wu, MATCH_FCVT_S_WU, MASK_FCVT_S_WU) ++DECLARE_INSN(fcvt_w_d, MATCH_FCVT_W_D, MASK_FCVT_W_D) ++DECLARE_INSN(fcvt_w_h, MATCH_FCVT_W_H, MASK_FCVT_W_H) ++DECLARE_INSN(fcvt_w_s, MATCH_FCVT_W_S, MASK_FCVT_W_S) ++DECLARE_INSN(fcvt_wu_d, MATCH_FCVT_WU_D, MASK_FCVT_WU_D) ++DECLARE_INSN(fcvt_wu_h, MATCH_FCVT_WU_H, MASK_FCVT_WU_H) ++DECLARE_INSN(fcvt_wu_s, MATCH_FCVT_WU_S, MASK_FCVT_WU_S) ++DECLARE_INSN(fdiv_d, MATCH_FDIV_D, MASK_FDIV_D) ++DECLARE_INSN(fdiv_h, MATCH_FDIV_H, MASK_FDIV_H) ++DECLARE_INSN(fdiv_s, MATCH_FDIV_S, MASK_FDIV_S) ++DECLARE_INSN(fence, MATCH_FENCE, MASK_FENCE) ++DECLARE_INSN(fence_i, MATCH_FENCE_I, MASK_FENCE_I) ++DECLARE_INSN(feq_d, MATCH_FEQ_D, MASK_FEQ_D) ++DECLARE_INSN(feq_h, MATCH_FEQ_H, MASK_FEQ_H) ++DECLARE_INSN(feq_s, MATCH_FEQ_S, MASK_FEQ_S) ++DECLARE_INSN(fld, MATCH_FLD, MASK_FLD) ++DECLARE_INSN(fle_d, MATCH_FLE_D, MASK_FLE_D) ++DECLARE_INSN(fle_h, MATCH_FLE_H, MASK_FLE_H) ++DECLARE_INSN(fle_s, MATCH_FLE_S, MASK_FLE_S) ++DECLARE_INSN(flh, MATCH_FLH, MASK_FLH) ++DECLARE_INSN(flt_d, MATCH_FLT_D, MASK_FLT_D) ++DECLARE_INSN(flt_h, MATCH_FLT_H, MASK_FLT_H) ++DECLARE_INSN(flt_s, MATCH_FLT_S, MASK_FLT_S) ++DECLARE_INSN(flw, MATCH_FLW, MASK_FLW) ++DECLARE_INSN(fmadd_d, MATCH_FMADD_D, MASK_FMADD_D) ++DECLARE_INSN(fmadd_h, MATCH_FMADD_H, MASK_FMADD_H) ++DECLARE_INSN(fmadd_s, MATCH_FMADD_S, MASK_FMADD_S) ++DECLARE_INSN(fmax_d, MATCH_FMAX_D, MASK_FMAX_D) ++DECLARE_INSN(fmax_h, MATCH_FMAX_H, MASK_FMAX_H) ++DECLARE_INSN(fmax_s, MATCH_FMAX_S, MASK_FMAX_S) ++DECLARE_INSN(fmin_d, MATCH_FMIN_D, MASK_FMIN_D) ++DECLARE_INSN(fmin_h, MATCH_FMIN_H, MASK_FMIN_H) ++DECLARE_INSN(fmin_s, MATCH_FMIN_S, MASK_FMIN_S) ++DECLARE_INSN(fmovn, MATCH_FMOVN, MASK_FMOVN) ++DECLARE_INSN(fmovz, MATCH_FMOVZ, MASK_FMOVZ) ++DECLARE_INSN(fmsub_d, MATCH_FMSUB_D, MASK_FMSUB_D) ++DECLARE_INSN(fmsub_h, MATCH_FMSUB_H, MASK_FMSUB_H) ++DECLARE_INSN(fmsub_s, MATCH_FMSUB_S, MASK_FMSUB_S) ++DECLARE_INSN(fmul_d, MATCH_FMUL_D, MASK_FMUL_D) ++DECLARE_INSN(fmul_h, MATCH_FMUL_H, MASK_FMUL_H) ++DECLARE_INSN(fmul_s, MATCH_FMUL_S, MASK_FMUL_S) ++DECLARE_INSN(fmv_d_x, MATCH_FMV_D_X, MASK_FMV_D_X) ++DECLARE_INSN(fmv_h_x, MATCH_FMV_H_X, MASK_FMV_H_X) ++DECLARE_INSN(fmv_s_x, MATCH_FMV_S_X, MASK_FMV_S_X) ++DECLARE_INSN(fmv_x_d, MATCH_FMV_X_D, MASK_FMV_X_D) ++DECLARE_INSN(fmv_x_h, MATCH_FMV_X_H, MASK_FMV_X_H) ++DECLARE_INSN(fmv_x_s, MATCH_FMV_X_S, MASK_FMV_X_S) ++DECLARE_INSN(fnmadd_d, MATCH_FNMADD_D, MASK_FNMADD_D) ++DECLARE_INSN(fnmadd_h, MATCH_FNMADD_H, MASK_FNMADD_H) ++DECLARE_INSN(fnmadd_s, MATCH_FNMADD_S, MASK_FNMADD_S) ++DECLARE_INSN(fnmsub_d, MATCH_FNMSUB_D, MASK_FNMSUB_D) ++DECLARE_INSN(fnmsub_h, MATCH_FNMSUB_H, MASK_FNMSUB_H) ++DECLARE_INSN(fnmsub_s, MATCH_FNMSUB_S, MASK_FNMSUB_S) ++DECLARE_INSN(frcsr, MATCH_FRCSR, MASK_FRCSR) ++DECLARE_INSN(frflags, MATCH_FRFLAGS, MASK_FRFLAGS) ++DECLARE_INSN(frrm, MATCH_FRRM, MASK_FRRM) ++DECLARE_INSN(fscsr, MATCH_FSCSR, MASK_FSCSR) ++DECLARE_INSN(fsd, MATCH_FSD, MASK_FSD) ++DECLARE_INSN(fsflags, MATCH_FSFLAGS, MASK_FSFLAGS) ++DECLARE_INSN(fsflagsi, MATCH_FSFLAGSI, MASK_FSFLAGSI) ++DECLARE_INSN(fsgnj_d, MATCH_FSGNJ_D, MASK_FSGNJ_D) ++DECLARE_INSN(fsgnj_h, MATCH_FSGNJ_H, MASK_FSGNJ_H) ++DECLARE_INSN(fsgnj_s, MATCH_FSGNJ_S, MASK_FSGNJ_S) ++DECLARE_INSN(fsgnjn_d, MATCH_FSGNJN_D, MASK_FSGNJN_D) ++DECLARE_INSN(fsgnjn_h, MATCH_FSGNJN_H, MASK_FSGNJN_H) ++DECLARE_INSN(fsgnjn_s, MATCH_FSGNJN_S, MASK_FSGNJN_S) ++DECLARE_INSN(fsgnjx_d, MATCH_FSGNJX_D, MASK_FSGNJX_D) ++DECLARE_INSN(fsgnjx_h, MATCH_FSGNJX_H, MASK_FSGNJX_H) ++DECLARE_INSN(fsgnjx_s, MATCH_FSGNJX_S, MASK_FSGNJX_S) ++DECLARE_INSN(fsh, MATCH_FSH, MASK_FSH) ++DECLARE_INSN(fsqrt_d, MATCH_FSQRT_D, MASK_FSQRT_D) ++DECLARE_INSN(fsqrt_h, MATCH_FSQRT_H, MASK_FSQRT_H) ++DECLARE_INSN(fsqrt_s, MATCH_FSQRT_S, MASK_FSQRT_S) ++DECLARE_INSN(fsrm, MATCH_FSRM, MASK_FSRM) ++DECLARE_INSN(fsrmi, MATCH_FSRMI, MASK_FSRMI) ++DECLARE_INSN(fsub_d, MATCH_FSUB_D, MASK_FSUB_D) ++DECLARE_INSN(fsub_h, MATCH_FSUB_H, MASK_FSUB_H) ++DECLARE_INSN(fsub_s, MATCH_FSUB_S, MASK_FSUB_S) ++DECLARE_INSN(fsw, MATCH_FSW, MASK_FSW) ++DECLARE_INSN(hrts, MATCH_HRTS, MASK_HRTS) ++DECLARE_INSN(jal, MATCH_JAL, MASK_JAL) ++DECLARE_INSN(jalr, MATCH_JALR, MASK_JALR) ++DECLARE_INSN(lb, MATCH_LB, MASK_LB) ++DECLARE_INSN(lbu, MATCH_LBU, MASK_LBU) ++DECLARE_INSN(ld, MATCH_LD, MASK_LD) ++DECLARE_INSN(lh, MATCH_LH, MASK_LH) ++DECLARE_INSN(lhu, MATCH_LHU, MASK_LHU) ++DECLARE_INSN(lr_d, MATCH_LR_D, MASK_LR_D) ++DECLARE_INSN(lr_w, MATCH_LR_W, MASK_LR_W) ++DECLARE_INSN(lui, MATCH_LUI, MASK_LUI) ++DECLARE_INSN(lw, MATCH_LW, MASK_LW) ++DECLARE_INSN(lwu, MATCH_LWU, MASK_LWU) ++DECLARE_INSN(movn, MATCH_MOVN, MASK_MOVN) ++DECLARE_INSN(movz, MATCH_MOVZ, MASK_MOVZ) ++DECLARE_INSN(mrth, MATCH_MRTH, MASK_MRTH) ++DECLARE_INSN(mrts, MATCH_MRTS, MASK_MRTS) ++DECLARE_INSN(mul, MATCH_MUL, MASK_MUL) ++DECLARE_INSN(mulh, MATCH_MULH, MASK_MULH) ++DECLARE_INSN(mulhsu, MATCH_MULHSU, MASK_MULHSU) ++DECLARE_INSN(mulhu, MATCH_MULHU, MASK_MULHU) ++DECLARE_INSN(mulw, MATCH_MULW, MASK_MULW) ++DECLARE_INSN(or, MATCH_OR, MASK_OR) ++DECLARE_INSN(ori, MATCH_ORI, MASK_ORI) ++DECLARE_INSN(rdcycle, MATCH_RDCYCLE, MASK_RDCYCLE) ++DECLARE_INSN(rdcycleh, MATCH_RDCYCLEH, MASK_RDCYCLEH) ++DECLARE_INSN(rdinstret, MATCH_RDINSTRET, MASK_RDINSTRET) ++DECLARE_INSN(rdinstreth, MATCH_RDINSTRETH, MASK_RDINSTRETH) ++DECLARE_INSN(rdtime, MATCH_RDTIME, MASK_RDTIME) ++DECLARE_INSN(rdtimeh, MATCH_RDTIMEH, MASK_RDTIMEH) ++DECLARE_INSN(rem, MATCH_REM, MASK_REM) ++DECLARE_INSN(remu, MATCH_REMU, MASK_REMU) ++DECLARE_INSN(remuw, MATCH_REMUW, MASK_REMUW) ++DECLARE_INSN(remw, MATCH_REMW, MASK_REMW) ++DECLARE_INSN(sb, MATCH_SB, MASK_SB) ++DECLARE_INSN(sbreak, MATCH_SBREAK, MASK_SBREAK) ++DECLARE_INSN(sc_d, MATCH_SC_D, MASK_SC_D) ++DECLARE_INSN(sc_w, MATCH_SC_W, MASK_SC_W) ++DECLARE_INSN(scall, MATCH_SCALL, MASK_SCALL) ++DECLARE_INSN(sd, MATCH_SD, MASK_SD) ++DECLARE_INSN(sfence_vm, MATCH_SFENCE_VM, MASK_SFENCE_VM) ++DECLARE_INSN(sh, MATCH_SH, MASK_SH) ++DECLARE_INSN(sll, MATCH_SLL, MASK_SLL) ++DECLARE_INSN(slli, MATCH_SLLI, MASK_SLLI) ++DECLARE_INSN(slli_rv32, MATCH_SLLI_RV32, MASK_SLLI_RV32) ++DECLARE_INSN(slliw, MATCH_SLLIW, MASK_SLLIW) ++DECLARE_INSN(sllw, MATCH_SLLW, MASK_SLLW) ++DECLARE_INSN(slt, MATCH_SLT, MASK_SLT) ++DECLARE_INSN(slti, MATCH_SLTI, MASK_SLTI) ++DECLARE_INSN(sltiu, MATCH_SLTIU, MASK_SLTIU) ++DECLARE_INSN(sltu, MATCH_SLTU, MASK_SLTU) ++DECLARE_INSN(sra, MATCH_SRA, MASK_SRA) ++DECLARE_INSN(srai, MATCH_SRAI, MASK_SRAI) ++DECLARE_INSN(srai_rv32, MATCH_SRAI_RV32, MASK_SRAI_RV32) ++DECLARE_INSN(sraiw, MATCH_SRAIW, MASK_SRAIW) ++DECLARE_INSN(sraw, MATCH_SRAW, MASK_SRAW) ++DECLARE_INSN(sret, MATCH_SRET, MASK_SRET) ++DECLARE_INSN(srl, MATCH_SRL, MASK_SRL) ++DECLARE_INSN(srli, MATCH_SRLI, MASK_SRLI) ++DECLARE_INSN(srli_rv32, MATCH_SRLI_RV32, MASK_SRLI_RV32) ++DECLARE_INSN(srliw, MATCH_SRLIW, MASK_SRLIW) ++DECLARE_INSN(srlw, MATCH_SRLW, MASK_SRLW) ++DECLARE_INSN(stop, MATCH_STOP, MASK_STOP) ++DECLARE_INSN(sub, MATCH_SUB, MASK_SUB) ++DECLARE_INSN(subw, MATCH_SUBW, MASK_SUBW) ++DECLARE_INSN(sw, MATCH_SW, MASK_SW) ++DECLARE_INSN(utidx, MATCH_UTIDX, MASK_UTIDX) ++DECLARE_INSN(venqcmd, MATCH_VENQCMD, MASK_VENQCMD) ++DECLARE_INSN(venqcnt, MATCH_VENQCNT, MASK_VENQCNT) ++DECLARE_INSN(venqimm1, MATCH_VENQIMM1, MASK_VENQIMM1) ++DECLARE_INSN(venqimm2, MATCH_VENQIMM2, MASK_VENQIMM2) ++DECLARE_INSN(vf, MATCH_VF, MASK_VF) ++DECLARE_INSN(vfld, MATCH_VFLD, MASK_VFLD) ++DECLARE_INSN(vflsegd, MATCH_VFLSEGD, MASK_VFLSEGD) ++DECLARE_INSN(vflsegstd, MATCH_VFLSEGSTD, MASK_VFLSEGSTD) ++DECLARE_INSN(vflsegstw, MATCH_VFLSEGSTW, MASK_VFLSEGSTW) ++DECLARE_INSN(vflsegw, MATCH_VFLSEGW, MASK_VFLSEGW) ++DECLARE_INSN(vflstd, MATCH_VFLSTD, MASK_VFLSTD) ++DECLARE_INSN(vflstw, MATCH_VFLSTW, MASK_VFLSTW) ++DECLARE_INSN(vflw, MATCH_VFLW, MASK_VFLW) ++DECLARE_INSN(vfmsv_d, MATCH_VFMSV_D, MASK_VFMSV_D) ++DECLARE_INSN(vfmsv_s, MATCH_VFMSV_S, MASK_VFMSV_S) ++DECLARE_INSN(vfmvv, MATCH_VFMVV, MASK_VFMVV) ++DECLARE_INSN(vfsd, MATCH_VFSD, MASK_VFSD) ++DECLARE_INSN(vfssegd, MATCH_VFSSEGD, MASK_VFSSEGD) ++DECLARE_INSN(vfssegstd, MATCH_VFSSEGSTD, MASK_VFSSEGSTD) ++DECLARE_INSN(vfssegstw, MATCH_VFSSEGSTW, MASK_VFSSEGSTW) ++DECLARE_INSN(vfssegw, MATCH_VFSSEGW, MASK_VFSSEGW) ++DECLARE_INSN(vfsstd, MATCH_VFSSTD, MASK_VFSSTD) ++DECLARE_INSN(vfsstw, MATCH_VFSSTW, MASK_VFSSTW) ++DECLARE_INSN(vfsw, MATCH_VFSW, MASK_VFSW) ++DECLARE_INSN(vgetcfg, MATCH_VGETCFG, MASK_VGETCFG) ++DECLARE_INSN(vgetvl, MATCH_VGETVL, MASK_VGETVL) ++DECLARE_INSN(vlb, MATCH_VLB, MASK_VLB) ++DECLARE_INSN(vlbu, MATCH_VLBU, MASK_VLBU) ++DECLARE_INSN(vld, MATCH_VLD, MASK_VLD) ++DECLARE_INSN(vlh, MATCH_VLH, MASK_VLH) ++DECLARE_INSN(vlhu, MATCH_VLHU, MASK_VLHU) ++DECLARE_INSN(vlsegb, MATCH_VLSEGB, MASK_VLSEGB) ++DECLARE_INSN(vlsegbu, MATCH_VLSEGBU, MASK_VLSEGBU) ++DECLARE_INSN(vlsegd, MATCH_VLSEGD, MASK_VLSEGD) ++DECLARE_INSN(vlsegh, MATCH_VLSEGH, MASK_VLSEGH) ++DECLARE_INSN(vlseghu, MATCH_VLSEGHU, MASK_VLSEGHU) ++DECLARE_INSN(vlsegstb, MATCH_VLSEGSTB, MASK_VLSEGSTB) ++DECLARE_INSN(vlsegstbu, MATCH_VLSEGSTBU, MASK_VLSEGSTBU) ++DECLARE_INSN(vlsegstd, MATCH_VLSEGSTD, MASK_VLSEGSTD) ++DECLARE_INSN(vlsegsth, MATCH_VLSEGSTH, MASK_VLSEGSTH) ++DECLARE_INSN(vlsegsthu, MATCH_VLSEGSTHU, MASK_VLSEGSTHU) ++DECLARE_INSN(vlsegstw, MATCH_VLSEGSTW, MASK_VLSEGSTW) ++DECLARE_INSN(vlsegstwu, MATCH_VLSEGSTWU, MASK_VLSEGSTWU) ++DECLARE_INSN(vlsegw, MATCH_VLSEGW, MASK_VLSEGW) ++DECLARE_INSN(vlsegwu, MATCH_VLSEGWU, MASK_VLSEGWU) ++DECLARE_INSN(vlstb, MATCH_VLSTB, MASK_VLSTB) ++DECLARE_INSN(vlstbu, MATCH_VLSTBU, MASK_VLSTBU) ++DECLARE_INSN(vlstd, MATCH_VLSTD, MASK_VLSTD) ++DECLARE_INSN(vlsth, MATCH_VLSTH, MASK_VLSTH) ++DECLARE_INSN(vlsthu, MATCH_VLSTHU, MASK_VLSTHU) ++DECLARE_INSN(vlstw, MATCH_VLSTW, MASK_VLSTW) ++DECLARE_INSN(vlstwu, MATCH_VLSTWU, MASK_VLSTWU) ++DECLARE_INSN(vlw, MATCH_VLW, MASK_VLW) ++DECLARE_INSN(vlwu, MATCH_VLWU, MASK_VLWU) ++DECLARE_INSN(vmsv, MATCH_VMSV, MASK_VMSV) ++DECLARE_INSN(vmvv, MATCH_VMVV, MASK_VMVV) ++DECLARE_INSN(vsb, MATCH_VSB, MASK_VSB) ++DECLARE_INSN(vsd, MATCH_VSD, MASK_VSD) ++DECLARE_INSN(vsetcfg, MATCH_VSETCFG, MASK_VSETCFG) ++DECLARE_INSN(vsetvl, MATCH_VSETVL, MASK_VSETVL) ++DECLARE_INSN(vsh, MATCH_VSH, MASK_VSH) ++DECLARE_INSN(vssegb, MATCH_VSSEGB, MASK_VSSEGB) ++DECLARE_INSN(vssegd, MATCH_VSSEGD, MASK_VSSEGD) ++DECLARE_INSN(vssegh, MATCH_VSSEGH, MASK_VSSEGH) ++DECLARE_INSN(vssegstb, MATCH_VSSEGSTB, MASK_VSSEGSTB) ++DECLARE_INSN(vssegstd, MATCH_VSSEGSTD, MASK_VSSEGSTD) ++DECLARE_INSN(vssegsth, MATCH_VSSEGSTH, MASK_VSSEGSTH) ++DECLARE_INSN(vssegstw, MATCH_VSSEGSTW, MASK_VSSEGSTW) ++DECLARE_INSN(vssegw, MATCH_VSSEGW, MASK_VSSEGW) ++DECLARE_INSN(vsstb, MATCH_VSSTB, MASK_VSSTB) ++DECLARE_INSN(vsstd, MATCH_VSSTD, MASK_VSSTD) ++DECLARE_INSN(vssth, MATCH_VSSTH, MASK_VSSTH) ++DECLARE_INSN(vsstw, MATCH_VSSTW, MASK_VSSTW) ++DECLARE_INSN(vsw, MATCH_VSW, MASK_VSW) ++DECLARE_INSN(vxcptaux, MATCH_VXCPTAUX, MASK_VXCPTAUX) ++DECLARE_INSN(vxcptcause, MATCH_VXCPTCAUSE, MASK_VXCPTCAUSE) ++DECLARE_INSN(vxcptevac, MATCH_VXCPTEVAC, MASK_VXCPTEVAC) ++DECLARE_INSN(vxcpthold, MATCH_VXCPTHOLD, MASK_VXCPTHOLD) ++DECLARE_INSN(vxcptkill, MATCH_VXCPTKILL, MASK_VXCPTKILL) ++DECLARE_INSN(vxcptrestore, MATCH_VXCPTRESTORE, MASK_VXCPTRESTORE) ++DECLARE_INSN(vxcptsave, MATCH_VXCPTSAVE, MASK_VXCPTSAVE) ++DECLARE_INSN(wfi, MATCH_WFI, MASK_WFI) ++DECLARE_INSN(xor, MATCH_XOR, MASK_XOR) ++DECLARE_INSN(xori, MATCH_XORI, MASK_XORI) ++#endif ++#ifdef DECLARE_CSR ++DECLARE_CSR(fflags, CSR_FFLAGS) ++DECLARE_CSR(frm, CSR_FRM) ++DECLARE_CSR(fcsr, CSR_FCSR) ++DECLARE_CSR(cycle, CSR_CYCLE) ++DECLARE_CSR(time, CSR_TIME) ++DECLARE_CSR(instret, CSR_INSTRET) ++DECLARE_CSR(stats, CSR_STATS) ++DECLARE_CSR(uarch0, CSR_UARCH0) ++DECLARE_CSR(uarch1, CSR_UARCH1) ++DECLARE_CSR(uarch2, CSR_UARCH2) ++DECLARE_CSR(uarch3, CSR_UARCH3) ++DECLARE_CSR(uarch4, CSR_UARCH4) ++DECLARE_CSR(uarch5, CSR_UARCH5) ++DECLARE_CSR(uarch6, CSR_UARCH6) ++DECLARE_CSR(uarch7, CSR_UARCH7) ++DECLARE_CSR(uarch8, CSR_UARCH8) ++DECLARE_CSR(uarch9, CSR_UARCH9) ++DECLARE_CSR(uarch10, CSR_UARCH10) ++DECLARE_CSR(uarch11, CSR_UARCH11) ++DECLARE_CSR(uarch12, CSR_UARCH12) ++DECLARE_CSR(uarch13, CSR_UARCH13) ++DECLARE_CSR(uarch14, CSR_UARCH14) ++DECLARE_CSR(uarch15, CSR_UARCH15) ++DECLARE_CSR(sstatus, CSR_SSTATUS) ++DECLARE_CSR(stvec, CSR_STVEC) ++DECLARE_CSR(sie, CSR_SIE) ++DECLARE_CSR(sscratch, CSR_SSCRATCH) ++DECLARE_CSR(sepc, CSR_SEPC) ++DECLARE_CSR(sip, CSR_SIP) ++DECLARE_CSR(sptbr, CSR_SPTBR) ++DECLARE_CSR(sasid, CSR_SASID) ++DECLARE_CSR(cyclew, CSR_CYCLEW) ++DECLARE_CSR(timew, CSR_TIMEW) ++DECLARE_CSR(instretw, CSR_INSTRETW) ++DECLARE_CSR(stime, CSR_STIME) ++DECLARE_CSR(scause, CSR_SCAUSE) ++DECLARE_CSR(sbadaddr, CSR_SBADADDR) ++DECLARE_CSR(stimew, CSR_STIMEW) ++DECLARE_CSR(mstatus, CSR_MSTATUS) ++DECLARE_CSR(mtvec, CSR_MTVEC) ++DECLARE_CSR(mtdeleg, CSR_MTDELEG) ++DECLARE_CSR(mie, CSR_MIE) ++DECLARE_CSR(mtimecmp, CSR_MTIMECMP) ++DECLARE_CSR(mscratch, CSR_MSCRATCH) ++DECLARE_CSR(mepc, CSR_MEPC) ++DECLARE_CSR(mcause, CSR_MCAUSE) ++DECLARE_CSR(mbadaddr, CSR_MBADADDR) ++DECLARE_CSR(mip, CSR_MIP) ++DECLARE_CSR(mtime, CSR_MTIME) ++DECLARE_CSR(mcpuid, CSR_MCPUID) ++DECLARE_CSR(mimpid, CSR_MIMPID) ++DECLARE_CSR(mhartid, CSR_MHARTID) ++DECLARE_CSR(mtohost, CSR_MTOHOST) ++DECLARE_CSR(mfromhost, CSR_MFROMHOST) ++DECLARE_CSR(mreset, CSR_MRESET) ++DECLARE_CSR(send_ipi, CSR_SEND_IPI) ++DECLARE_CSR(cycleh, CSR_CYCLEH) ++DECLARE_CSR(timeh, CSR_TIMEH) ++DECLARE_CSR(instreth, CSR_INSTRETH) ++DECLARE_CSR(cyclehw, CSR_CYCLEHW) ++DECLARE_CSR(timehw, CSR_TIMEHW) ++DECLARE_CSR(instrethw, CSR_INSTRETHW) ++DECLARE_CSR(stimeh, CSR_STIMEH) ++DECLARE_CSR(stimehw, CSR_STIMEHW) ++DECLARE_CSR(mtimecmph, CSR_MTIMECMPH) ++DECLARE_CSR(mtimeh, CSR_MTIMEH) ++#endif ++#ifdef DECLARE_CAUSE ++DECLARE_CAUSE("fflags", CAUSE_FFLAGS) ++DECLARE_CAUSE("frm", CAUSE_FRM) ++DECLARE_CAUSE("fcsr", CAUSE_FCSR) ++DECLARE_CAUSE("cycle", CAUSE_CYCLE) ++DECLARE_CAUSE("time", CAUSE_TIME) ++DECLARE_CAUSE("instret", CAUSE_INSTRET) ++DECLARE_CAUSE("stats", CAUSE_STATS) ++DECLARE_CAUSE("uarch0", CAUSE_UARCH0) ++DECLARE_CAUSE("uarch1", CAUSE_UARCH1) ++DECLARE_CAUSE("uarch2", CAUSE_UARCH2) ++DECLARE_CAUSE("uarch3", CAUSE_UARCH3) ++DECLARE_CAUSE("uarch4", CAUSE_UARCH4) ++DECLARE_CAUSE("uarch5", CAUSE_UARCH5) ++DECLARE_CAUSE("uarch6", CAUSE_UARCH6) ++DECLARE_CAUSE("uarch7", CAUSE_UARCH7) ++DECLARE_CAUSE("uarch8", CAUSE_UARCH8) ++DECLARE_CAUSE("uarch9", CAUSE_UARCH9) ++DECLARE_CAUSE("uarch10", CAUSE_UARCH10) ++DECLARE_CAUSE("uarch11", CAUSE_UARCH11) ++DECLARE_CAUSE("uarch12", CAUSE_UARCH12) ++DECLARE_CAUSE("uarch13", CAUSE_UARCH13) ++DECLARE_CAUSE("uarch14", CAUSE_UARCH14) ++DECLARE_CAUSE("uarch15", CAUSE_UARCH15) ++DECLARE_CAUSE("sstatus", CAUSE_SSTATUS) ++DECLARE_CAUSE("stvec", CAUSE_STVEC) ++DECLARE_CAUSE("sie", CAUSE_SIE) ++DECLARE_CAUSE("sscratch", CAUSE_SSCRATCH) ++DECLARE_CAUSE("sepc", CAUSE_SEPC) ++DECLARE_CAUSE("sip", CAUSE_SIP) ++DECLARE_CAUSE("sptbr", CAUSE_SPTBR) ++DECLARE_CAUSE("sasid", CAUSE_SASID) ++DECLARE_CAUSE("cyclew", CAUSE_CYCLEW) ++DECLARE_CAUSE("timew", CAUSE_TIMEW) ++DECLARE_CAUSE("instretw", CAUSE_INSTRETW) ++DECLARE_CAUSE("stime", CAUSE_STIME) ++DECLARE_CAUSE("scause", CAUSE_SCAUSE) ++DECLARE_CAUSE("sbadaddr", CAUSE_SBADADDR) ++DECLARE_CAUSE("stimew", CAUSE_STIMEW) ++DECLARE_CAUSE("mstatus", CAUSE_MSTATUS) ++DECLARE_CAUSE("mtvec", CAUSE_MTVEC) ++DECLARE_CAUSE("mtdeleg", CAUSE_MTDELEG) ++DECLARE_CAUSE("mie", CAUSE_MIE) ++DECLARE_CAUSE("mtimecmp", CAUSE_MTIMECMP) ++DECLARE_CAUSE("mscratch", CAUSE_MSCRATCH) ++DECLARE_CAUSE("mepc", CAUSE_MEPC) ++DECLARE_CAUSE("mcause", CAUSE_MCAUSE) ++DECLARE_CAUSE("mbadaddr", CAUSE_MBADADDR) ++DECLARE_CAUSE("mip", CAUSE_MIP) ++DECLARE_CAUSE("mtime", CAUSE_MTIME) ++DECLARE_CAUSE("mcpuid", CAUSE_MCPUID) ++DECLARE_CAUSE("mimpid", CAUSE_MIMPID) ++DECLARE_CAUSE("mhartid", CAUSE_MHARTID) ++DECLARE_CAUSE("mtohost", CAUSE_MTOHOST) ++DECLARE_CAUSE("mfromhost", CAUSE_MFROMHOST) ++DECLARE_CAUSE("mreset", CAUSE_MRESET) ++DECLARE_CAUSE("send_ipi", CAUSE_SEND_IPI) ++DECLARE_CAUSE("cycleh", CAUSE_CYCLEH) ++DECLARE_CAUSE("timeh", CAUSE_TIMEH) ++DECLARE_CAUSE("instreth", CAUSE_INSTRETH) ++DECLARE_CAUSE("cyclehw", CAUSE_CYCLEHW) ++DECLARE_CAUSE("timehw", CAUSE_TIMEHW) ++DECLARE_CAUSE("instrethw", CAUSE_INSTRETHW) ++DECLARE_CAUSE("stimeh", CAUSE_STIMEH) ++DECLARE_CAUSE("stimehw", CAUSE_STIMEHW) ++DECLARE_CAUSE("mtimecmph", CAUSE_MTIMECMPH) ++DECLARE_CAUSE("mtimeh", CAUSE_MTIMEH) ++#endif +diff -urN empty/gcc/config/riscv/riscv-protos.h gcc-5.2.0/gcc/config/riscv/riscv-protos.h +--- empty/gcc/config/riscv/riscv-protos.h 1970-01-01 01:00:00.000000000 +0100 ++++ gcc-5.2.0/gcc/config/riscv/riscv-protos.h 2015-07-17 22:36:52.319705931 +0200 +@@ -0,0 +1,96 @@ ++/* Definition of RISC-V target for GNU compiler. ++ Copyright (C) 2011-2014 Free Software Foundation, Inc. ++ Contributed by Andrew Waterman (waterman@cs.berkeley.edu) at UC Berkeley. ++ Based on MIPS target for GNU compiler. ++ ++This file is part of GCC. ++ ++GCC is free software; you can redistribute it and/or modify ++it under the terms of the GNU General Public License as published by ++the Free Software Foundation; either version 3, or (at your option) ++any later version. ++ ++GCC is distributed in the hope that it will be useful, ++but WITHOUT ANY WARRANTY; without even the implied warranty of ++MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++GNU General Public License for more details. ++ ++You should have received a copy of the GNU General Public License ++along with GCC; see the file COPYING3. If not see ++<http://www.gnu.org/licenses/>. */ ++ ++#ifndef GCC_RISCV_PROTOS_H ++#define GCC_RISCV_PROTOS_H ++ ++enum riscv_symbol_type { ++ SYMBOL_ABSOLUTE, ++ SYMBOL_GOT_DISP, ++ SYMBOL_TLS, ++ SYMBOL_TLS_LE, ++ SYMBOL_TLS_IE, ++ SYMBOL_TLS_GD ++}; ++#define NUM_SYMBOL_TYPES (SYMBOL_TLS_GD + 1) ++ ++enum riscv_code_model { ++ CM_MEDLOW, ++ CM_MEDANY, ++ CM_PIC ++}; ++extern enum riscv_code_model riscv_cmodel; ++ ++extern bool riscv_symbolic_constant_p (rtx, enum riscv_symbol_type *); ++extern int riscv_regno_mode_ok_for_base_p (int, enum machine_mode, bool); ++extern int riscv_address_insns (rtx, enum machine_mode, bool); ++extern int riscv_const_insns (rtx); ++extern int riscv_split_const_insns (rtx); ++extern int riscv_load_store_insns (rtx, rtx_insn *); ++extern rtx riscv_emit_move (rtx, rtx); ++extern bool riscv_split_symbol (rtx, rtx, enum machine_mode, rtx *); ++extern rtx riscv_unspec_address (rtx, enum riscv_symbol_type); ++extern void riscv_move_integer (rtx, rtx, HOST_WIDE_INT); ++extern bool riscv_legitimize_move (enum machine_mode, rtx, rtx); ++extern bool riscv_legitimize_vector_move (enum machine_mode, rtx, rtx); ++ ++extern rtx riscv_subword (rtx, bool); ++extern bool riscv_split_64bit_move_p (rtx, rtx); ++extern void riscv_split_doubleword_move (rtx, rtx); ++extern const char *riscv_output_move (rtx, rtx); ++extern const char *riscv_output_gpr_save (unsigned); ++#ifdef RTX_CODE ++extern void riscv_expand_scc (rtx *); ++extern void riscv_expand_conditional_branch (rtx *); ++#endif ++extern rtx riscv_expand_call (bool, rtx, rtx, rtx); ++extern void riscv_expand_fcc_reload (rtx, rtx, rtx); ++extern void riscv_set_return_address (rtx, rtx); ++extern bool riscv_expand_block_move (rtx, rtx, rtx); ++extern void riscv_expand_synci_loop (rtx, rtx); ++ ++extern bool riscv_expand_ext_as_unaligned_load (rtx, rtx, HOST_WIDE_INT, ++ HOST_WIDE_INT); ++extern bool riscv_expand_ins_as_unaligned_store (rtx, rtx, HOST_WIDE_INT, ++ HOST_WIDE_INT); ++extern void riscv_order_regs_for_local_alloc (void); ++ ++extern rtx riscv_return_addr (int, rtx); ++extern HOST_WIDE_INT riscv_initial_elimination_offset (int, int); ++extern void riscv_expand_prologue (void); ++extern void riscv_expand_epilogue (bool); ++extern bool riscv_can_use_return_insn (void); ++extern rtx riscv_function_value (const_tree, const_tree, enum machine_mode); ++ ++extern enum reg_class riscv_secondary_reload_class (enum reg_class, ++ enum machine_mode, ++ rtx, bool); ++extern int riscv_class_max_nregs (enum reg_class, enum machine_mode); ++ ++extern unsigned int riscv_hard_regno_nregs (int, enum machine_mode); ++ ++extern void irix_asm_output_align (FILE *, unsigned); ++extern const char *current_section_name (void); ++extern unsigned int current_section_flags (void); ++ ++extern void riscv_expand_vector_init (rtx, rtx); ++ ++#endif /* ! GCC_RISCV_PROTOS_H */ +diff -urN empty/gcc/config/riscv/riscv.c gcc-5.2.0/gcc/config/riscv/riscv.c +--- empty/gcc/config/riscv/riscv.c 1970-01-01 01:00:00.000000000 +0100 ++++ gcc-5.2.0/gcc/config/riscv/riscv.c 2015-07-17 22:36:52.319705931 +0200 +@@ -0,0 +1,4439 @@ ++/* Subroutines used for code generation for RISC-V. ++ Copyright (C) 2011-2014 Free Software Foundation, Inc. ++ Contributed by Andrew Waterman (waterman@cs.berkeley.edu) at UC Berkeley. ++ Based on MIPS target for GNU compiler. ++ ++This file is part of GCC. ++ ++GCC is free software; you can redistribute it and/or modify ++it under the terms of the GNU General Public License as published by ++the Free Software Foundation; either version 3, or (at your option) ++any later version. ++ ++GCC is distributed in the hope that it will be useful, ++but WITHOUT ANY WARRANTY; without even the implied warranty of ++MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++GNU General Public License for more details. ++ ++You should have received a copy of the GNU General Public License ++along with GCC; see the file COPYING3. If not see ++<http://www.gnu.org/licenses/>. */ ++ ++#include "config.h" ++#include "system.h" ++#include "coretypes.h" ++#include "tm.h" ++#include "rtl.h" ++#include "regs.h" ++#include "hard-reg-set.h" ++#include "insn-config.h" ++#include "conditions.h" ++#include "insn-attr.h" ++#include "recog.h" ++#include "output.h" ++#include "hash-set.h" ++#include "machmode.h" ++#include "vec.h" ++#include "double-int.h" ++#include "input.h" ++#include "alias.h" ++#include "symtab.h" ++#include "wide-int.h" ++#include "inchash.h" ++#include "tree.h" ++#include "fold-const.h" ++#include "varasm.h" ++#include "stringpool.h" ++#include "stor-layout.h" ++#include "calls.h" ++#include "function.h" ++#include "hashtab.h" ++#include "flags.h" ++#include "statistics.h" ++#include "real.h" ++#include "fixed-value.h" ++#include "expmed.h" ++#include "dojump.h" ++#include "explow.h" ++#include "emit-rtl.h" ++#include "stmt.h" ++#include "expr.h" ++#include "insn-codes.h" ++#include "optabs.h" ++#include "libfuncs.h" ++#include "reload.h" ++#include "tm_p.h" ++#include "ggc.h" ++#include "gstab.h" ++#include "hash-table.h" ++#include "debug.h" ++#include "target.h" ++#include "target-def.h" ++#include "common/common-target.h" ++#include "langhooks.h" ++#include "dominance.h" ++#include "cfg.h" ++#include "cfgrtl.h" ++#include "cfganal.h" ++#include "lcm.h" ++#include "cfgbuild.h" ++#include "cfgcleanup.h" ++#include "predict.h" ++#include "basic-block.h" ++#include "sched-int.h" ++#include "tree-ssa-alias.h" ++#include "internal-fn.h" ++#include "gimple-fold.h" ++#include "tree-eh.h" ++#include "gimple-expr.h" ++#include "is-a.h" ++#include "gimple.h" ++#include "gimplify.h" ++#include "bitmap.h" ++#include "diagnostic.h" ++#include "target-globals.h" ++#include "opts.h" ++#include "tree-pass.h" ++#include "context.h" ++#include "hash-map.h" ++#include "plugin-api.h" ++#include "ipa-ref.h" ++#include "cgraph.h" ++#include "builtins.h" ++#include "rtl-iter.h" ++#include <stdint.h> ++ ++/* True if X is an UNSPEC wrapper around a SYMBOL_REF or LABEL_REF. */ ++#define UNSPEC_ADDRESS_P(X) \ ++ (GET_CODE (X) == UNSPEC \ ++ && XINT (X, 1) >= UNSPEC_ADDRESS_FIRST \ ++ && XINT (X, 1) < UNSPEC_ADDRESS_FIRST + NUM_SYMBOL_TYPES) ++ ++/* Extract the symbol or label from UNSPEC wrapper X. */ ++#define UNSPEC_ADDRESS(X) \ ++ XVECEXP (X, 0, 0) ++ ++/* Extract the symbol type from UNSPEC wrapper X. */ ++#define UNSPEC_ADDRESS_TYPE(X) \ ++ ((enum riscv_symbol_type) (XINT (X, 1) - UNSPEC_ADDRESS_FIRST)) ++ ++/* The maximum distance between the top of the stack frame and the ++ value sp has when we save and restore registers. This is set by the ++ range of load/store offsets and must also preserve stack alignment. */ ++#define RISCV_MAX_FIRST_STACK_STEP (RISCV_IMM_REACH/2 - 16) ++ ++/* True if INSN is a riscv.md pattern or asm statement. */ ++#define USEFUL_INSN_P(INSN) \ ++ (NONDEBUG_INSN_P (INSN) \ ++ && GET_CODE (PATTERN (INSN)) != USE \ ++ && GET_CODE (PATTERN (INSN)) != CLOBBER \ ++ && GET_CODE (PATTERN (INSN)) != ADDR_VEC \ ++ && GET_CODE (PATTERN (INSN)) != ADDR_DIFF_VEC) ++ ++/* True if bit BIT is set in VALUE. */ ++#define BITSET_P(VALUE, BIT) (((VALUE) & (1 << (BIT))) != 0) ++ ++/* Classifies an address. ++ ++ ADDRESS_REG ++ A natural register + offset address. The register satisfies ++ riscv_valid_base_register_p and the offset is a const_arith_operand. ++ ++ ADDRESS_LO_SUM ++ A LO_SUM rtx. The first operand is a valid base register and ++ the second operand is a symbolic address. ++ ++ ADDRESS_CONST_INT ++ A signed 16-bit constant address. ++ ++ ADDRESS_SYMBOLIC: ++ A constant symbolic address. */ ++enum riscv_address_type { ++ ADDRESS_REG, ++ ADDRESS_LO_SUM, ++ ADDRESS_CONST_INT, ++ ADDRESS_SYMBOLIC ++}; ++ ++enum riscv_code_model riscv_cmodel = TARGET_DEFAULT_CMODEL; ++ ++/* Macros to create an enumeration identifier for a function prototype. */ ++#define RISCV_FTYPE_NAME1(A, B) RISCV_##A##_FTYPE_##B ++#define RISCV_FTYPE_NAME2(A, B, C) RISCV_##A##_FTYPE_##B##_##C ++#define RISCV_FTYPE_NAME3(A, B, C, D) RISCV_##A##_FTYPE_##B##_##C##_##D ++#define RISCV_FTYPE_NAME4(A, B, C, D, E) RISCV_##A##_FTYPE_##B##_##C##_##D##_##E ++ ++/* Classifies the prototype of a built-in function. */ ++enum riscv_function_type { ++#define DEF_RISCV_FTYPE(NARGS, LIST) RISCV_FTYPE_NAME##NARGS LIST, ++#include "config/riscv/riscv-ftypes.def" ++#undef DEF_RISCV_FTYPE ++ RISCV_MAX_FTYPE_MAX ++}; ++ ++/* Specifies how a built-in function should be converted into rtl. */ ++enum riscv_builtin_type { ++ /* The function corresponds directly to an .md pattern. The return ++ value is mapped to operand 0 and the arguments are mapped to ++ operands 1 and above. */ ++ RISCV_BUILTIN_DIRECT, ++ ++ /* The function corresponds directly to an .md pattern. There is no return ++ value and the arguments are mapped to operands 0 and above. */ ++ RISCV_BUILTIN_DIRECT_NO_TARGET ++}; ++ ++/* Information about a function's frame layout. */ ++struct GTY(()) riscv_frame_info { ++ /* The size of the frame in bytes. */ ++ HOST_WIDE_INT total_size; ++ ++ /* Bit X is set if the function saves or restores GPR X. */ ++ unsigned int mask; ++ ++ /* Likewise FPR X. */ ++ unsigned int fmask; ++ ++ /* How much the GPR save/restore routines adjust sp (or 0 if unused). */ ++ unsigned save_libcall_adjustment; ++ ++ /* Offsets of fixed-point and floating-point save areas from frame bottom */ ++ HOST_WIDE_INT gp_sp_offset; ++ HOST_WIDE_INT fp_sp_offset; ++ ++ /* Offset of virtual frame pointer from stack pointer/frame bottom */ ++ HOST_WIDE_INT frame_pointer_offset; ++ ++ /* Offset of hard frame pointer from stack pointer/frame bottom */ ++ HOST_WIDE_INT hard_frame_pointer_offset; ++ ++ /* The offset of arg_pointer_rtx from the bottom of the frame. */ ++ HOST_WIDE_INT arg_pointer_offset; ++}; ++ ++struct GTY(()) machine_function { ++ /* The number of extra stack bytes taken up by register varargs. ++ This area is allocated by the callee at the very top of the frame. */ ++ int varargs_size; ++ ++ /* Cached return value of leaf_function_p. <0 if false, >0 if true. */ ++ int is_leaf; ++ ++ /* The current frame information, calculated by riscv_compute_frame_info. */ ++ struct riscv_frame_info frame; ++}; ++ ++/* Information about a single argument. */ ++struct riscv_arg_info { ++ /* True if the argument is passed in a floating-point register, or ++ would have been if we hadn't run out of registers. */ ++ bool fpr_p; ++ ++ /* The number of words passed in registers, rounded up. */ ++ unsigned int reg_words; ++ ++ /* For EABI, the offset of the first register from GP_ARG_FIRST or ++ FP_ARG_FIRST. For other ABIs, the offset of the first register from ++ the start of the ABI's argument structure (see the CUMULATIVE_ARGS ++ comment for details). ++ ++ The value is MAX_ARGS_IN_REGISTERS if the argument is passed entirely ++ on the stack. */ ++ unsigned int reg_offset; ++ ++ /* The number of words that must be passed on the stack, rounded up. */ ++ unsigned int stack_words; ++ ++ /* The offset from the start of the stack overflow area of the argument's ++ first stack word. Only meaningful when STACK_WORDS is nonzero. */ ++ unsigned int stack_offset; ++}; ++ ++/* Information about an address described by riscv_address_type. ++ ++ ADDRESS_CONST_INT ++ No fields are used. ++ ++ ADDRESS_REG ++ REG is the base register and OFFSET is the constant offset. ++ ++ ADDRESS_LO_SUM ++ REG and OFFSET are the operands to the LO_SUM and SYMBOL_TYPE ++ is the type of symbol it references. ++ ++ ADDRESS_SYMBOLIC ++ SYMBOL_TYPE is the type of symbol that the address references. */ ++struct riscv_address_info { ++ enum riscv_address_type type; ++ rtx reg; ++ rtx offset; ++ enum riscv_symbol_type symbol_type; ++}; ++ ++/* One stage in a constant building sequence. These sequences have ++ the form: ++ ++ A = VALUE[0] ++ A = A CODE[1] VALUE[1] ++ A = A CODE[2] VALUE[2] ++ ... ++ ++ where A is an accumulator, each CODE[i] is a binary rtl operation ++ and each VALUE[i] is a constant integer. CODE[0] is undefined. */ ++struct riscv_integer_op { ++ enum rtx_code code; ++ unsigned HOST_WIDE_INT value; ++}; ++ ++/* The largest number of operations needed to load an integer constant. ++ The worst case is LUI, ADDI, SLLI, ADDI, SLLI, ADDI, SLLI, ADDI, ++ but we may attempt and reject even worse sequences. */ ++#define RISCV_MAX_INTEGER_OPS 32 ++ ++/* Costs of various operations on the different architectures. */ ++ ++struct riscv_tune_info ++{ ++ unsigned short fp_add[2]; ++ unsigned short fp_mul[2]; ++ unsigned short fp_div[2]; ++ unsigned short int_mul[2]; ++ unsigned short int_div[2]; ++ unsigned short issue_rate; ++ unsigned short branch_cost; ++ unsigned short fp_to_int_cost; ++ unsigned short memory_cost; ++}; ++ ++/* Information about one CPU we know about. */ ++struct riscv_cpu_info { ++ /* This CPU's canonical name. */ ++ const char *name; ++ ++ /* The RISC-V ISA and extensions supported by this CPU. */ ++ const char *isa; ++ ++ /* Tuning parameters for this CPU. */ ++ const struct riscv_tune_info *tune_info; ++}; ++ ++/* Global variables for machine-dependent things. */ ++ ++/* Which tuning parameters to use. */ ++static const struct riscv_tune_info *tune_info; ++ ++/* Index [M][R] is true if register R is allowed to hold a value of mode M. */ ++bool riscv_hard_regno_mode_ok[(int) MAX_MACHINE_MODE][FIRST_PSEUDO_REGISTER]; ++ ++/* riscv_lo_relocs[X] is the relocation to use when a symbol of type X ++ appears in a LO_SUM. It can be null if such LO_SUMs aren't valid or ++ if they are matched by a special .md file pattern. */ ++const char *riscv_lo_relocs[NUM_SYMBOL_TYPES]; ++ ++/* Likewise for HIGHs. */ ++const char *riscv_hi_relocs[NUM_SYMBOL_TYPES]; ++ ++/* Index R is the smallest register class that contains register R. */ ++const enum reg_class riscv_regno_to_class[FIRST_PSEUDO_REGISTER] = { ++ GR_REGS, GR_REGS, GR_REGS, GR_REGS, ++ GR_REGS, T_REGS, T_REGS, T_REGS, ++ GR_REGS, GR_REGS, GR_REGS, GR_REGS, ++ GR_REGS, GR_REGS, GR_REGS, GR_REGS, ++ GR_REGS, GR_REGS, GR_REGS, GR_REGS, ++ GR_REGS, GR_REGS, GR_REGS, GR_REGS, ++ GR_REGS, GR_REGS, GR_REGS, GR_REGS, ++ T_REGS, T_REGS, T_REGS, T_REGS, ++ FP_REGS, FP_REGS, FP_REGS, FP_REGS, ++ FP_REGS, FP_REGS, FP_REGS, FP_REGS, ++ FP_REGS, FP_REGS, FP_REGS, FP_REGS, ++ FP_REGS, FP_REGS, FP_REGS, FP_REGS, ++ FP_REGS, FP_REGS, FP_REGS, FP_REGS, ++ FP_REGS, FP_REGS, FP_REGS, FP_REGS, ++ FP_REGS, FP_REGS, FP_REGS, FP_REGS, ++ FP_REGS, FP_REGS, FP_REGS, FP_REGS, ++ FRAME_REGS, FRAME_REGS, ++}; ++ ++/* Costs to use when optimizing for size. */ ++static const struct riscv_tune_info rocket_tune_info = { ++ {COSTS_N_INSNS (4), COSTS_N_INSNS (5)}, /* fp_add */ ++ {COSTS_N_INSNS (4), COSTS_N_INSNS (5)}, /* fp_mul */ ++ {COSTS_N_INSNS (20), COSTS_N_INSNS (20)}, /* fp_div */ ++ {COSTS_N_INSNS (4), COSTS_N_INSNS (4)}, /* int_mul */ ++ {COSTS_N_INSNS (6), COSTS_N_INSNS (6)}, /* int_div */ ++ 1, /* issue_rate */ ++ 3, /* branch_cost */ ++ COSTS_N_INSNS (2), /* fp_to_int_cost */ ++ 5 /* memory_cost */ ++}; ++ ++/* Costs to use when optimizing for size. */ ++static const struct riscv_tune_info optimize_size_tune_info = { ++ {COSTS_N_INSNS (1), COSTS_N_INSNS (1)}, /* fp_add */ ++ {COSTS_N_INSNS (1), COSTS_N_INSNS (1)}, /* fp_mul */ ++ {COSTS_N_INSNS (1), COSTS_N_INSNS (1)}, /* fp_div */ ++ {COSTS_N_INSNS (1), COSTS_N_INSNS (1)}, /* int_mul */ ++ {COSTS_N_INSNS (1), COSTS_N_INSNS (1)}, /* int_div */ ++ 1, /* issue_rate */ ++ 1, /* branch_cost */ ++ COSTS_N_INSNS (1), /* fp_to_int_cost */ ++ 1 /* memory_cost */ ++}; ++ ++/* A table describing all the processors GCC knows about. */ ++static const struct riscv_cpu_info riscv_cpu_info_table[] = { ++ /* Entries for generic ISAs. */ ++ { "rocket", "IMAFD", &rocket_tune_info }, ++}; ++ ++/* Return the riscv_cpu_info entry for the given name string. */ ++ ++static const struct riscv_cpu_info * ++riscv_parse_cpu (const char *cpu_string) ++{ ++ unsigned int i; ++ ++ for (i = 0; i < ARRAY_SIZE (riscv_cpu_info_table); i++) ++ if (strcmp (riscv_cpu_info_table[i].name, cpu_string) == 0) ++ return riscv_cpu_info_table + i; ++ ++ error ("unknown cpu `%s'", cpu_string); ++ return riscv_cpu_info_table; ++} ++ ++/* Fill CODES with a sequence of rtl operations to load VALUE. ++ Return the number of operations needed. */ ++ ++static int ++riscv_build_integer_1 (struct riscv_integer_op *codes, HOST_WIDE_INT value, ++ enum machine_mode mode) ++{ ++ HOST_WIDE_INT low_part = RISCV_CONST_LOW_PART (value); ++ int cost = INT_MAX, alt_cost; ++ struct riscv_integer_op alt_codes[RISCV_MAX_INTEGER_OPS]; ++ ++ if (SMALL_OPERAND (value) || LUI_OPERAND (value)) ++ { ++ /* Simply ADDI or LUI */ ++ codes[0].code = UNKNOWN; ++ codes[0].value = value; ++ return 1; ++ } ++ ++ /* End with ADDI */ ++ if (low_part != 0 ++ && !(mode == HImode && (int16_t)(value - low_part) != (value - low_part))) ++ { ++ cost = 1 + riscv_build_integer_1 (codes, value - low_part, mode); ++ codes[cost-1].code = PLUS; ++ codes[cost-1].value = low_part; ++ } ++ ++ /* End with XORI */ ++ if (cost > 2 && (low_part < 0 || mode == HImode)) ++ { ++ alt_cost = 1 + riscv_build_integer_1 (alt_codes, value ^ low_part, mode); ++ alt_codes[alt_cost-1].code = XOR; ++ alt_codes[alt_cost-1].value = low_part; ++ if (alt_cost < cost) ++ cost = alt_cost, memcpy (codes, alt_codes, sizeof(alt_codes)); ++ } ++ ++ /* Eliminate trailing zeros and end with SLLI */ ++ if (cost > 2 && (value & 1) == 0) ++ { ++ int shift = 0; ++ while ((value & 1) == 0) ++ shift++, value >>= 1; ++ alt_cost = 1 + riscv_build_integer_1 (alt_codes, value, mode); ++ alt_codes[alt_cost-1].code = ASHIFT; ++ alt_codes[alt_cost-1].value = shift; ++ if (alt_cost < cost) ++ cost = alt_cost, memcpy (codes, alt_codes, sizeof(alt_codes)); ++ } ++ ++ gcc_assert (cost <= RISCV_MAX_INTEGER_OPS); ++ return cost; ++} ++ ++static int ++riscv_build_integer (struct riscv_integer_op *codes, HOST_WIDE_INT value, ++ enum machine_mode mode) ++{ ++ int cost = riscv_build_integer_1 (codes, value, mode); ++ ++ /* Eliminate leading zeros and end with SRLI */ ++ if (value > 0 && cost > 2) ++ { ++ struct riscv_integer_op alt_codes[RISCV_MAX_INTEGER_OPS]; ++ int alt_cost, shift = 0; ++ HOST_WIDE_INT shifted_val; ++ ++ /* Try filling trailing bits with 1s */ ++ while ((value << shift) >= 0) ++ shift++; ++ shifted_val = (value << shift) | ((((HOST_WIDE_INT) 1) << shift) - 1); ++ alt_cost = 1 + riscv_build_integer_1 (alt_codes, shifted_val, mode); ++ alt_codes[alt_cost-1].code = LSHIFTRT; ++ alt_codes[alt_cost-1].value = shift; ++ if (alt_cost < cost) ++ cost = alt_cost, memcpy (codes, alt_codes, sizeof (alt_codes)); ++ ++ /* Try filling trailing bits with 0s */ ++ shifted_val = value << shift; ++ alt_cost = 1 + riscv_build_integer_1 (alt_codes, shifted_val, mode); ++ alt_codes[alt_cost-1].code = LSHIFTRT; ++ alt_codes[alt_cost-1].value = shift; ++ if (alt_cost < cost) ++ cost = alt_cost, memcpy (codes, alt_codes, sizeof (alt_codes)); ++ } ++ ++ return cost; ++} ++ ++static int ++riscv_split_integer_cost (HOST_WIDE_INT val) ++{ ++ int cost; ++ int32_t loval = val, hival = (val - (int32_t)val) >> 32; ++ struct riscv_integer_op codes[RISCV_MAX_INTEGER_OPS]; ++ ++ cost = 2 + riscv_build_integer (codes, loval, VOIDmode); ++ if (loval != hival) ++ cost += riscv_build_integer (codes, hival, VOIDmode); ++ ++ return cost; ++} ++ ++static int ++riscv_integer_cost (HOST_WIDE_INT val) ++{ ++ struct riscv_integer_op codes[RISCV_MAX_INTEGER_OPS]; ++ return MIN (riscv_build_integer (codes, val, VOIDmode), ++ riscv_split_integer_cost (val)); ++} ++ ++/* Try to split a 64b integer into 32b parts, then reassemble. */ ++ ++static rtx ++riscv_split_integer (HOST_WIDE_INT val, enum machine_mode mode) ++{ ++ int32_t loval = val, hival = (val - (int32_t)val) >> 32; ++ rtx hi = gen_reg_rtx (mode), lo = gen_reg_rtx (mode); ++ ++ riscv_move_integer (hi, hi, hival); ++ riscv_move_integer (lo, lo, loval); ++ ++ hi = gen_rtx_fmt_ee (ASHIFT, mode, hi, GEN_INT (32)); ++ hi = force_reg (mode, hi); ++ ++ return gen_rtx_fmt_ee (PLUS, mode, hi, lo); ++} ++ ++/* Return true if X is a thread-local symbol. */ ++ ++static bool ++riscv_tls_symbol_p (const_rtx x) ++{ ++ return GET_CODE (x) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (x) != 0; ++} ++ ++static bool ++riscv_symbol_binds_local_p (const_rtx x) ++{ ++ return (SYMBOL_REF_DECL (x) ++ ? targetm.binds_local_p (SYMBOL_REF_DECL (x)) ++ : SYMBOL_REF_LOCAL_P (x)); ++} ++ ++/* Return the method that should be used to access SYMBOL_REF or ++ LABEL_REF X in context CONTEXT. */ ++ ++static enum riscv_symbol_type ++riscv_classify_symbol (const_rtx x) ++{ ++ if (riscv_tls_symbol_p (x)) ++ return SYMBOL_TLS; ++ ++ if (GET_CODE (x) == LABEL_REF) ++ { ++ if (LABEL_REF_NONLOCAL_P (x)) ++ return SYMBOL_GOT_DISP; ++ return SYMBOL_ABSOLUTE; ++ } ++ ++ gcc_assert (GET_CODE (x) == SYMBOL_REF); ++ ++ if (flag_pic && !riscv_symbol_binds_local_p (x)) ++ return SYMBOL_GOT_DISP; ++ ++ return SYMBOL_ABSOLUTE; ++} ++ ++/* Classify the base of symbolic expression X, given that X appears in ++ context CONTEXT. */ ++ ++static enum riscv_symbol_type ++riscv_classify_symbolic_expression (rtx x) ++{ ++ rtx offset; ++ ++ split_const (x, &x, &offset); ++ if (UNSPEC_ADDRESS_P (x)) ++ return UNSPEC_ADDRESS_TYPE (x); ++ ++ return riscv_classify_symbol (x); ++} ++ ++/* Return true if X is a symbolic constant that can be used in context ++ CONTEXT. If it is, store the type of the symbol in *SYMBOL_TYPE. */ ++ ++bool ++riscv_symbolic_constant_p (rtx x, enum riscv_symbol_type *symbol_type) ++{ ++ rtx offset; ++ ++ split_const (x, &x, &offset); ++ if (UNSPEC_ADDRESS_P (x)) ++ { ++ *symbol_type = UNSPEC_ADDRESS_TYPE (x); ++ x = UNSPEC_ADDRESS (x); ++ } ++ else if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF) ++ *symbol_type = riscv_classify_symbol (x); ++ else ++ return false; ++ ++ if (offset == const0_rtx) ++ return true; ++ ++ /* Check whether a nonzero offset is valid for the underlying ++ relocations. */ ++ switch (*symbol_type) ++ { ++ case SYMBOL_ABSOLUTE: ++ case SYMBOL_TLS_LE: ++ return (int32_t) INTVAL (offset) == INTVAL (offset); ++ ++ default: ++ return false; ++ } ++ gcc_unreachable (); ++} ++ ++/* Returns the number of instructions necessary to reference a symbol. */ ++ ++static int riscv_symbol_insns (enum riscv_symbol_type type) ++{ ++ switch (type) ++ { ++ case SYMBOL_TLS: return 0; /* Depends on the TLS model. */ ++ case SYMBOL_ABSOLUTE: return 2; /* LUI + the reference itself */ ++ case SYMBOL_TLS_LE: return 3; /* LUI + ADD TP + the reference itself */ ++ case SYMBOL_GOT_DISP: return 3; /* AUIPC + LD GOT + the reference itself */ ++ default: gcc_unreachable(); ++ } ++} ++ ++/* Implement TARGET_LEGITIMATE_CONSTANT_P. */ ++ ++static bool ++riscv_legitimate_constant_p (enum machine_mode mode ATTRIBUTE_UNUSED, rtx x) ++{ ++ return riscv_const_insns (x) > 0; ++} ++ ++/* Implement TARGET_CANNOT_FORCE_CONST_MEM. */ ++ ++static bool ++riscv_cannot_force_const_mem (enum machine_mode mode ATTRIBUTE_UNUSED, rtx x) ++{ ++ enum riscv_symbol_type type; ++ rtx base, offset; ++ ++ /* There is no assembler syntax for expressing an address-sized ++ high part. */ ++ if (GET_CODE (x) == HIGH) ++ return true; ++ ++ split_const (x, &base, &offset); ++ if (riscv_symbolic_constant_p (base, &type)) ++ { ++ /* As an optimization, don't spill symbolic constants that are as ++ cheap to rematerialize as to access in the constant pool. */ ++ if (SMALL_INT (offset) && riscv_symbol_insns (type) > 0) ++ return true; ++ ++ /* As an optimization, avoid needlessly generate dynamic relocations. */ ++ if (flag_pic) ++ return true; ++ } ++ ++ /* TLS symbols must be computed by riscv_legitimize_move. */ ++ if (tls_referenced_p (x)) ++ return true; ++ ++ return false; ++} ++ ++/* Return true if register REGNO is a valid base register for mode MODE. ++ STRICT_P is true if REG_OK_STRICT is in effect. */ ++ ++int ++riscv_regno_mode_ok_for_base_p (int regno, enum machine_mode mode ATTRIBUTE_UNUSED, ++ bool strict_p) ++{ ++ if (!HARD_REGISTER_NUM_P (regno)) ++ { ++ if (!strict_p) ++ return true; ++ regno = reg_renumber[regno]; ++ } ++ ++ /* These fake registers will be eliminated to either the stack or ++ hard frame pointer, both of which are usually valid base registers. ++ Reload deals with the cases where the eliminated form isn't valid. */ ++ if (regno == ARG_POINTER_REGNUM || regno == FRAME_POINTER_REGNUM) ++ return true; ++ ++ return GP_REG_P (regno); ++} ++ ++/* Return true if X is a valid base register for mode MODE. ++ STRICT_P is true if REG_OK_STRICT is in effect. */ ++ ++static bool ++riscv_valid_base_register_p (rtx x, enum machine_mode mode, bool strict_p) ++{ ++ if (!strict_p && GET_CODE (x) == SUBREG) ++ x = SUBREG_REG (x); ++ ++ return (REG_P (x) ++ && riscv_regno_mode_ok_for_base_p (REGNO (x), mode, strict_p)); ++} ++ ++/* Return true if, for every base register BASE_REG, (plus BASE_REG X) ++ can address a value of mode MODE. */ ++ ++static bool ++riscv_valid_offset_p (rtx x, enum machine_mode mode) ++{ ++ /* Check that X is a signed 12-bit number. */ ++ if (!const_arith_operand (x, Pmode)) ++ return false; ++ ++ /* We may need to split multiword moves, so make sure that every word ++ is accessible. */ ++ if (GET_MODE_SIZE (mode) > UNITS_PER_WORD ++ && !SMALL_OPERAND (INTVAL (x) + GET_MODE_SIZE (mode) - UNITS_PER_WORD)) ++ return false; ++ ++ return true; ++} ++ ++/* Return true if a LO_SUM can address a value of mode MODE when the ++ LO_SUM symbol has type SYMBOL_TYPE. */ ++ ++static bool ++riscv_valid_lo_sum_p (enum riscv_symbol_type symbol_type, enum machine_mode mode) ++{ ++ /* Check that symbols of type SYMBOL_TYPE can be used to access values ++ of mode MODE. */ ++ if (riscv_symbol_insns (symbol_type) == 0) ++ return false; ++ ++ /* Check that there is a known low-part relocation. */ ++ if (riscv_lo_relocs[symbol_type] == NULL) ++ return false; ++ ++ /* We may need to split multiword moves, so make sure that each word ++ can be accessed without inducing a carry. This is mainly needed ++ for o64, which has historically only guaranteed 64-bit alignment ++ for 128-bit types. */ ++ if (GET_MODE_SIZE (mode) > UNITS_PER_WORD ++ && GET_MODE_BITSIZE (mode) > GET_MODE_ALIGNMENT (mode)) ++ return false; ++ ++ return true; ++} ++ ++/* Return true if X is a valid address for machine mode MODE. If it is, ++ fill in INFO appropriately. STRICT_P is true if REG_OK_STRICT is in ++ effect. */ ++ ++static bool ++riscv_classify_address (struct riscv_address_info *info, rtx x, ++ enum machine_mode mode, bool strict_p) ++{ ++ switch (GET_CODE (x)) ++ { ++ case REG: ++ case SUBREG: ++ info->type = ADDRESS_REG; ++ info->reg = x; ++ info->offset = const0_rtx; ++ return riscv_valid_base_register_p (info->reg, mode, strict_p); ++ ++ case PLUS: ++ info->type = ADDRESS_REG; ++ info->reg = XEXP (x, 0); ++ info->offset = XEXP (x, 1); ++ return (riscv_valid_base_register_p (info->reg, mode, strict_p) ++ && riscv_valid_offset_p (info->offset, mode)); ++ ++ case LO_SUM: ++ info->type = ADDRESS_LO_SUM; ++ info->reg = XEXP (x, 0); ++ info->offset = XEXP (x, 1); ++ /* We have to trust the creator of the LO_SUM to do something vaguely ++ sane. Target-independent code that creates a LO_SUM should also ++ create and verify the matching HIGH. Target-independent code that ++ adds an offset to a LO_SUM must prove that the offset will not ++ induce a carry. Failure to do either of these things would be ++ a bug, and we are not required to check for it here. The RISCV ++ backend itself should only create LO_SUMs for valid symbolic ++ constants, with the high part being either a HIGH or a copy ++ of _gp. */ ++ info->symbol_type ++ = riscv_classify_symbolic_expression (info->offset); ++ return (riscv_valid_base_register_p (info->reg, mode, strict_p) ++ && riscv_valid_lo_sum_p (info->symbol_type, mode)); ++ ++ case CONST_INT: ++ /* Small-integer addresses don't occur very often, but they ++ are legitimate if $0 is a valid base register. */ ++ info->type = ADDRESS_CONST_INT; ++ return SMALL_INT (x); ++ ++ default: ++ return false; ++ } ++} ++ ++/* Implement TARGET_LEGITIMATE_ADDRESS_P. */ ++ ++static bool ++riscv_legitimate_address_p (enum machine_mode mode, rtx x, bool strict_p) ++{ ++ struct riscv_address_info addr; ++ ++ return riscv_classify_address (&addr, x, mode, strict_p); ++} ++ ++/* Return the number of instructions needed to load or store a value ++ of mode MODE at address X. Return 0 if X isn't valid for MODE. ++ Assume that multiword moves may need to be split into word moves ++ if MIGHT_SPLIT_P, otherwise assume that a single load or store is ++ enough. */ ++ ++int ++riscv_address_insns (rtx x, enum machine_mode mode, bool might_split_p) ++{ ++ struct riscv_address_info addr; ++ int n = 1; ++ ++ if (!riscv_classify_address (&addr, x, mode, false)) ++ return 0; ++ ++ /* BLKmode is used for single unaligned loads and stores and should ++ not count as a multiword mode. */ ++ if (mode != BLKmode && might_split_p) ++ n += (GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD; ++ ++ if (addr.type == ADDRESS_LO_SUM) ++ n += riscv_symbol_insns (addr.symbol_type) - 1; ++ ++ return n; ++} ++ ++/* Return the number of instructions needed to load constant X. ++ Return 0 if X isn't a valid constant. */ ++ ++int ++riscv_const_insns (rtx x) ++{ ++ enum riscv_symbol_type symbol_type; ++ rtx offset; ++ ++ switch (GET_CODE (x)) ++ { ++ case HIGH: ++ if (!riscv_symbolic_constant_p (XEXP (x, 0), &symbol_type) ++ || !riscv_hi_relocs[symbol_type]) ++ return 0; ++ ++ /* This is simply an LUI. */ ++ return 1; ++ ++ case CONST_INT: ++ { ++ int cost = riscv_integer_cost (INTVAL (x)); ++ /* Force complicated constants to memory. */ ++ return cost < 4 ? cost : 0; ++ } ++ ++ case CONST_DOUBLE: ++ case CONST_VECTOR: ++ /* Allow zeros for normal mode, where we can use x0. */ ++ return x == CONST0_RTX (GET_MODE (x)) ? 1 : 0; ++ ++ case CONST: ++ /* See if we can refer to X directly. */ ++ if (riscv_symbolic_constant_p (x, &symbol_type)) ++ return riscv_symbol_insns (symbol_type); ++ ++ /* Otherwise try splitting the constant into a base and offset. ++ If the offset is a 16-bit value, we can load the base address ++ into a register and then use (D)ADDIU to add in the offset. ++ If the offset is larger, we can load the base and offset ++ into separate registers and add them together with (D)ADDU. ++ However, the latter is only possible before reload; during ++ and after reload, we must have the option of forcing the ++ constant into the pool instead. */ ++ split_const (x, &x, &offset); ++ if (offset != 0) ++ { ++ int n = riscv_const_insns (x); ++ if (n != 0) ++ { ++ if (SMALL_INT (offset)) ++ return n + 1; ++ else if (!targetm.cannot_force_const_mem (GET_MODE (x), x)) ++ return n + 1 + riscv_integer_cost (INTVAL (offset)); ++ } ++ } ++ return 0; ++ ++ case SYMBOL_REF: ++ case LABEL_REF: ++ return riscv_symbol_insns (riscv_classify_symbol (x)); ++ ++ default: ++ return 0; ++ } ++} ++ ++/* X is a doubleword constant that can be handled by splitting it into ++ two words and loading each word separately. Return the number of ++ instructions required to do this. */ ++ ++int ++riscv_split_const_insns (rtx x) ++{ ++ unsigned int low, high; ++ ++ low = riscv_const_insns (riscv_subword (x, false)); ++ high = riscv_const_insns (riscv_subword (x, true)); ++ gcc_assert (low > 0 && high > 0); ++ return low + high; ++} ++ ++/* Return the number of instructions needed to implement INSN, ++ given that it loads from or stores to MEM. */ ++ ++int ++riscv_load_store_insns (rtx mem, rtx_insn *insn) ++{ ++ enum machine_mode mode; ++ bool might_split_p; ++ rtx set; ++ ++ gcc_assert (MEM_P (mem)); ++ mode = GET_MODE (mem); ++ ++ /* Try to prove that INSN does not need to be split. */ ++ might_split_p = true; ++ if (GET_MODE_BITSIZE (mode) == 64) ++ { ++ set = single_set (insn); ++ if (set && !riscv_split_64bit_move_p (SET_DEST (set), SET_SRC (set))) ++ might_split_p = false; ++ } ++ ++ return riscv_address_insns (XEXP (mem, 0), mode, might_split_p); ++} ++ ++/* Emit a move from SRC to DEST. Assume that the move expanders can ++ handle all moves if !can_create_pseudo_p (). The distinction is ++ important because, unlike emit_move_insn, the move expanders know ++ how to force Pmode objects into the constant pool even when the ++ constant pool address is not itself legitimate. */ ++ ++rtx ++riscv_emit_move (rtx dest, rtx src) ++{ ++ return (can_create_pseudo_p () ++ ? emit_move_insn (dest, src) ++ : emit_move_insn_1 (dest, src)); ++} ++ ++/* Emit an instruction of the form (set TARGET (CODE OP0 OP1)). */ ++ ++static void ++riscv_emit_binary (enum rtx_code code, rtx target, rtx op0, rtx op1) ++{ ++ emit_insn (gen_rtx_SET (VOIDmode, target, ++ gen_rtx_fmt_ee (code, GET_MODE (target), op0, op1))); ++} ++ ++/* Compute (CODE OP0 OP1) and store the result in a new register ++ of mode MODE. Return that new register. */ ++ ++static rtx ++riscv_force_binary (enum machine_mode mode, enum rtx_code code, rtx op0, rtx op1) ++{ ++ rtx reg; ++ ++ reg = gen_reg_rtx (mode); ++ riscv_emit_binary (code, reg, op0, op1); ++ return reg; ++} ++ ++/* Copy VALUE to a register and return that register. If new pseudos ++ are allowed, copy it into a new register, otherwise use DEST. */ ++ ++static rtx ++riscv_force_temporary (rtx dest, rtx value) ++{ ++ if (can_create_pseudo_p ()) ++ return force_reg (Pmode, value); ++ else ++ { ++ riscv_emit_move (dest, value); ++ return dest; ++ } ++} ++ ++/* Wrap symbol or label BASE in an UNSPEC address of type SYMBOL_TYPE, ++ then add CONST_INT OFFSET to the result. */ ++ ++static rtx ++riscv_unspec_address_offset (rtx base, rtx offset, ++ enum riscv_symbol_type symbol_type) ++{ ++ base = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, base), ++ UNSPEC_ADDRESS_FIRST + symbol_type); ++ if (offset != const0_rtx) ++ base = gen_rtx_PLUS (Pmode, base, offset); ++ return gen_rtx_CONST (Pmode, base); ++} ++ ++/* Return an UNSPEC address with underlying address ADDRESS and symbol ++ type SYMBOL_TYPE. */ ++ ++rtx ++riscv_unspec_address (rtx address, enum riscv_symbol_type symbol_type) ++{ ++ rtx base, offset; ++ ++ split_const (address, &base, &offset); ++ return riscv_unspec_address_offset (base, offset, symbol_type); ++} ++ ++/* If OP is an UNSPEC address, return the address to which it refers, ++ otherwise return OP itself. */ ++ ++static rtx ++riscv_strip_unspec_address (rtx op) ++{ ++ rtx base, offset; ++ ++ split_const (op, &base, &offset); ++ if (UNSPEC_ADDRESS_P (base)) ++ op = plus_constant (Pmode, UNSPEC_ADDRESS (base), INTVAL (offset)); ++ return op; ++} ++ ++/* If riscv_unspec_address (ADDR, SYMBOL_TYPE) is a 32-bit value, add the ++ high part to BASE and return the result. Just return BASE otherwise. ++ TEMP is as for riscv_force_temporary. ++ ++ The returned expression can be used as the first operand to a LO_SUM. */ ++ ++static rtx ++riscv_unspec_offset_high (rtx temp, rtx addr, enum riscv_symbol_type symbol_type) ++{ ++ addr = gen_rtx_HIGH (Pmode, riscv_unspec_address (addr, symbol_type)); ++ return riscv_force_temporary (temp, addr); ++} ++ ++/* Load an entry from the GOT. */ ++static rtx riscv_got_load_tls_gd(rtx dest, rtx sym) ++{ ++ return (Pmode == DImode ? gen_got_load_tls_gddi(dest, sym) : gen_got_load_tls_gdsi(dest, sym)); ++} ++ ++static rtx riscv_got_load_tls_ie(rtx dest, rtx sym) ++{ ++ return (Pmode == DImode ? gen_got_load_tls_iedi(dest, sym) : gen_got_load_tls_iesi(dest, sym)); ++} ++ ++static rtx riscv_tls_add_tp_le(rtx dest, rtx base, rtx sym) ++{ ++ rtx tp = gen_rtx_REG (Pmode, THREAD_POINTER_REGNUM); ++ return (Pmode == DImode ? gen_tls_add_tp_ledi(dest, base, tp, sym) : gen_tls_add_tp_lesi(dest, base, tp, sym)); ++} ++ ++/* If MODE is MAX_MACHINE_MODE, ADDR appears as a move operand, otherwise ++ it appears in a MEM of that mode. Return true if ADDR is a legitimate ++ constant in that context and can be split into high and low parts. ++ If so, and if LOW_OUT is nonnull, emit the high part and store the ++ low part in *LOW_OUT. Leave *LOW_OUT unchanged otherwise. ++ ++ TEMP is as for riscv_force_temporary and is used to load the high ++ part into a register. ++ ++ When MODE is MAX_MACHINE_MODE, the low part is guaranteed to be ++ a legitimize SET_SRC for an .md pattern, otherwise the low part ++ is guaranteed to be a legitimate address for mode MODE. */ ++ ++bool ++riscv_split_symbol (rtx temp, rtx addr, enum machine_mode mode, rtx *low_out) ++{ ++ enum riscv_symbol_type symbol_type; ++ rtx high; ++ ++ if ((GET_CODE (addr) == HIGH && mode == MAX_MACHINE_MODE) ++ || !riscv_symbolic_constant_p (addr, &symbol_type) ++ || riscv_symbol_insns (symbol_type) == 0 ++ || !riscv_hi_relocs[symbol_type]) ++ return false; ++ ++ if (low_out) ++ { ++ switch (symbol_type) ++ { ++ case SYMBOL_ABSOLUTE: ++ high = gen_rtx_HIGH (Pmode, copy_rtx (addr)); ++ high = riscv_force_temporary (temp, high); ++ *low_out = gen_rtx_LO_SUM (Pmode, high, addr); ++ break; ++ ++ default: ++ gcc_unreachable (); ++ } ++ } ++ ++ return true; ++} ++ ++/* Return a legitimate address for REG + OFFSET. TEMP is as for ++ riscv_force_temporary; it is only needed when OFFSET is not a ++ SMALL_OPERAND. */ ++ ++static rtx ++riscv_add_offset (rtx temp, rtx reg, HOST_WIDE_INT offset) ++{ ++ if (!SMALL_OPERAND (offset)) ++ { ++ rtx high; ++ ++ /* Leave OFFSET as a 16-bit offset and put the excess in HIGH. ++ The addition inside the macro CONST_HIGH_PART may cause an ++ overflow, so we need to force a sign-extension check. */ ++ high = gen_int_mode (RISCV_CONST_HIGH_PART (offset), Pmode); ++ offset = RISCV_CONST_LOW_PART (offset); ++ high = riscv_force_temporary (temp, high); ++ reg = riscv_force_temporary (temp, gen_rtx_PLUS (Pmode, high, reg)); ++ } ++ return plus_constant (Pmode, reg, offset); ++} ++ ++/* The __tls_get_attr symbol. */ ++static GTY(()) rtx riscv_tls_symbol; ++ ++/* Return an instruction sequence that calls __tls_get_addr. SYM is ++ the TLS symbol we are referencing and TYPE is the symbol type to use ++ (either global dynamic or local dynamic). RESULT is an RTX for the ++ return value location. */ ++ ++static rtx ++riscv_call_tls_get_addr (rtx sym, rtx result) ++{ ++ rtx insn, a0 = gen_rtx_REG (Pmode, GP_ARG_FIRST); ++ ++ if (!riscv_tls_symbol) ++ riscv_tls_symbol = init_one_libfunc ("__tls_get_addr"); ++ ++ start_sequence (); ++ ++ emit_insn (riscv_got_load_tls_gd (a0, sym)); ++ insn = riscv_expand_call (false, result, riscv_tls_symbol, const0_rtx); ++ RTL_CONST_CALL_P (insn) = 1; ++ use_reg (&CALL_INSN_FUNCTION_USAGE (insn), a0); ++ insn = get_insns (); ++ ++ end_sequence (); ++ ++ return insn; ++} ++ ++/* Generate the code to access LOC, a thread-local SYMBOL_REF, and return ++ its address. The return value will be both a valid address and a valid ++ SET_SRC (either a REG or a LO_SUM). */ ++ ++static rtx ++riscv_legitimize_tls_address (rtx loc) ++{ ++ rtx dest, insn, tp, tmp1; ++ enum tls_model model = SYMBOL_REF_TLS_MODEL (loc); ++ ++ /* Since we support TLS copy relocs, non-PIC TLS accesses may all use LE. */ ++ if (!flag_pic) ++ model = TLS_MODEL_LOCAL_EXEC; ++ ++ switch (model) ++ { ++ case TLS_MODEL_LOCAL_DYNAMIC: ++ /* Rely on section anchors for the optimization that LDM TLS ++ provides. The anchor's address is loaded with GD TLS. */ ++ case TLS_MODEL_GLOBAL_DYNAMIC: ++ tmp1 = gen_rtx_REG (Pmode, GP_RETURN); ++ insn = riscv_call_tls_get_addr (loc, tmp1); ++ dest = gen_reg_rtx (Pmode); ++ emit_libcall_block (insn, dest, tmp1, loc); ++ break; ++ ++ case TLS_MODEL_INITIAL_EXEC: ++ /* la.tls.ie; tp-relative add */ ++ tp = gen_rtx_REG (Pmode, THREAD_POINTER_REGNUM); ++ tmp1 = gen_reg_rtx (Pmode); ++ emit_insn (riscv_got_load_tls_ie (tmp1, loc)); ++ dest = gen_reg_rtx (Pmode); ++ emit_insn (gen_add3_insn (dest, tmp1, tp)); ++ break; ++ ++ case TLS_MODEL_LOCAL_EXEC: ++ tmp1 = riscv_unspec_offset_high (NULL, loc, SYMBOL_TLS_LE); ++ dest = gen_reg_rtx (Pmode); ++ emit_insn (riscv_tls_add_tp_le (dest, tmp1, loc)); ++ dest = gen_rtx_LO_SUM (Pmode, dest, ++ riscv_unspec_address (loc, SYMBOL_TLS_LE)); ++ break; ++ ++ default: ++ gcc_unreachable (); ++ } ++ return dest; ++} ++ ++/* If X is not a valid address for mode MODE, force it into a register. */ ++ ++static rtx ++riscv_force_address (rtx x, enum machine_mode mode) ++{ ++ if (!riscv_legitimate_address_p (mode, x, false)) ++ x = force_reg (Pmode, x); ++ return x; ++} ++ ++/* This function is used to implement LEGITIMIZE_ADDRESS. If X can ++ be legitimized in a way that the generic machinery might not expect, ++ return a new address, otherwise return NULL. MODE is the mode of ++ the memory being accessed. */ ++ ++static rtx ++riscv_legitimize_address (rtx x, rtx oldx ATTRIBUTE_UNUSED, ++ enum machine_mode mode) ++{ ++ rtx addr; ++ ++ if (riscv_tls_symbol_p (x)) ++ return riscv_legitimize_tls_address (x); ++ ++ /* See if the address can split into a high part and a LO_SUM. */ ++ if (riscv_split_symbol (NULL, x, mode, &addr)) ++ return riscv_force_address (addr, mode); ++ ++ /* Handle BASE + OFFSET using riscv_add_offset. */ ++ if (GET_CODE (x) == PLUS && CONST_INT_P (XEXP (x, 1)) ++ && INTVAL (XEXP (x, 1)) != 0) ++ { ++ rtx base = XEXP (x, 0); ++ HOST_WIDE_INT offset = INTVAL (XEXP (x, 1)); ++ ++ if (!riscv_valid_base_register_p (base, mode, false)) ++ base = copy_to_mode_reg (Pmode, base); ++ addr = riscv_add_offset (NULL, base, offset); ++ return riscv_force_address (addr, mode); ++ } ++ ++ return x; ++} ++ ++/* Load VALUE into DEST. TEMP is as for riscv_force_temporary. */ ++ ++void ++riscv_move_integer (rtx temp, rtx dest, HOST_WIDE_INT value) ++{ ++ struct riscv_integer_op codes[RISCV_MAX_INTEGER_OPS]; ++ enum machine_mode mode; ++ int i, num_ops; ++ rtx x; ++ ++ mode = GET_MODE (dest); ++ num_ops = riscv_build_integer (codes, value, mode); ++ ++ if (can_create_pseudo_p () && num_ops > 2 /* not a simple constant */ ++ && num_ops >= riscv_split_integer_cost (value)) ++ x = riscv_split_integer (value, mode); ++ else ++ { ++ /* Apply each binary operation to X. */ ++ x = GEN_INT (codes[0].value); ++ ++ for (i = 1; i < num_ops; i++) ++ { ++ if (!can_create_pseudo_p ()) ++ { ++ emit_insn (gen_rtx_SET (VOIDmode, temp, x)); ++ x = temp; ++ } ++ else ++ x = force_reg (mode, x); ++ ++ x = gen_rtx_fmt_ee (codes[i].code, mode, x, GEN_INT (codes[i].value)); ++ } ++ } ++ ++ emit_insn (gen_rtx_SET (VOIDmode, dest, x)); ++} ++ ++/* Subroutine of riscv_legitimize_move. Move constant SRC into register ++ DEST given that SRC satisfies immediate_operand but doesn't satisfy ++ move_operand. */ ++ ++static void ++riscv_legitimize_const_move (enum machine_mode mode, rtx dest, rtx src) ++{ ++ rtx base, offset; ++ ++ /* Split moves of big integers into smaller pieces. */ ++ if (splittable_const_int_operand (src, mode)) ++ { ++ riscv_move_integer (dest, dest, INTVAL (src)); ++ return; ++ } ++ ++ /* Split moves of symbolic constants into high/low pairs. */ ++ if (riscv_split_symbol (dest, src, MAX_MACHINE_MODE, &src)) ++ { ++ emit_insn (gen_rtx_SET (VOIDmode, dest, src)); ++ return; ++ } ++ ++ /* Generate the appropriate access sequences for TLS symbols. */ ++ if (riscv_tls_symbol_p (src)) ++ { ++ riscv_emit_move (dest, riscv_legitimize_tls_address (src)); ++ return; ++ } ++ ++ /* If we have (const (plus symbol offset)), and that expression cannot ++ be forced into memory, load the symbol first and add in the offset. Also ++ prefer to do this even if the constant _can_ be forced into memory, as it ++ usually produces better code. */ ++ split_const (src, &base, &offset); ++ if (offset != const0_rtx ++ && (targetm.cannot_force_const_mem (mode, src) || can_create_pseudo_p ())) ++ { ++ base = riscv_force_temporary (dest, base); ++ riscv_emit_move (dest, riscv_add_offset (NULL, base, INTVAL (offset))); ++ return; ++ } ++ ++ src = force_const_mem (mode, src); ++ ++ /* When using explicit relocs, constant pool references are sometimes ++ not legitimate addresses. */ ++ riscv_split_symbol (dest, XEXP (src, 0), mode, &XEXP (src, 0)); ++ riscv_emit_move (dest, src); ++} ++ ++/* If (set DEST SRC) is not a valid move instruction, emit an equivalent ++ sequence that is valid. */ ++ ++bool ++riscv_legitimize_move (enum machine_mode mode, rtx dest, rtx src) ++{ ++ if (!register_operand (dest, mode) && !reg_or_0_operand (src, mode)) ++ { ++ riscv_emit_move (dest, force_reg (mode, src)); ++ return true; ++ } ++ ++ /* We need to deal with constants that would be legitimate ++ immediate_operands but aren't legitimate move_operands. */ ++ if (CONSTANT_P (src) && !move_operand (src, mode)) ++ { ++ riscv_legitimize_const_move (mode, dest, src); ++ set_unique_reg_note (get_last_insn (), REG_EQUAL, copy_rtx (src)); ++ return true; ++ } ++ return false; ++} ++ ++/* Return true if there is an instruction that implements CODE and accepts ++ X as an immediate operand. */ ++ ++static int ++riscv_immediate_operand_p (int code, HOST_WIDE_INT x) ++{ ++ switch (code) ++ { ++ case ASHIFT: ++ case ASHIFTRT: ++ case LSHIFTRT: ++ /* All shift counts are truncated to a valid constant. */ ++ return true; ++ ++ case AND: ++ case IOR: ++ case XOR: ++ case PLUS: ++ case LT: ++ case LTU: ++ /* These instructions take 12-bit signed immediates. */ ++ return SMALL_OPERAND (x); ++ ++ case LE: ++ /* We add 1 to the immediate and use SLT. */ ++ return SMALL_OPERAND (x + 1); ++ ++ case LEU: ++ /* Likewise SLTU, but reject the always-true case. */ ++ return SMALL_OPERAND (x + 1) && x + 1 != 0; ++ ++ case GE: ++ case GEU: ++ /* We can emulate an immediate of 1 by using GT/GTU against x0. */ ++ return x == 1; ++ ++ default: ++ /* By default assume that x0 can be used for 0. */ ++ return x == 0; ++ } ++} ++ ++/* Return the cost of binary operation X, given that the instruction ++ sequence for a word-sized or smaller operation takes SIGNLE_INSNS ++ instructions and that the sequence of a double-word operation takes ++ DOUBLE_INSNS instructions. */ ++ ++static int ++riscv_binary_cost (rtx x, int single_insns, int double_insns) ++{ ++ if (GET_MODE_SIZE (GET_MODE (x)) == UNITS_PER_WORD * 2) ++ return COSTS_N_INSNS (double_insns); ++ return COSTS_N_INSNS (single_insns); ++} ++ ++/* Return the cost of sign-extending OP to mode MODE, not including the ++ cost of OP itself. */ ++ ++static int ++riscv_sign_extend_cost (enum machine_mode mode, rtx op) ++{ ++ if (MEM_P (op)) ++ /* Extended loads are as cheap as unextended ones. */ ++ return 0; ++ ++ if (TARGET_64BIT && mode == DImode && GET_MODE (op) == SImode) ++ /* A sign extension from SImode to DImode in 64-bit mode is free. */ ++ return 0; ++ ++ /* We need to use a shift left and a shift right. */ ++ return COSTS_N_INSNS (2); ++} ++ ++/* Return the cost of zero-extending OP to mode MODE, not including the ++ cost of OP itself. */ ++ ++static int ++riscv_zero_extend_cost (enum machine_mode mode, rtx op) ++{ ++ if (MEM_P (op)) ++ /* Extended loads are as cheap as unextended ones. */ ++ return 0; ++ ++ if ((TARGET_64BIT && mode == DImode && GET_MODE (op) == SImode) || ++ ((mode == DImode || mode == SImode) && GET_MODE (op) == HImode)) ++ /* We need a shift left by 32 bits and a shift right by 32 bits. */ ++ return COSTS_N_INSNS (2); ++ ++ /* We can use ANDI. */ ++ return COSTS_N_INSNS (1); ++} ++ ++/* Implement TARGET_RTX_COSTS. */ ++ ++static bool ++riscv_rtx_costs (rtx x, int code, int outer_code, int opno ATTRIBUTE_UNUSED, ++ int *total, bool speed) ++{ ++ enum machine_mode mode = GET_MODE (x); ++ bool float_mode_p = FLOAT_MODE_P (mode); ++ int cost; ++ ++ switch (code) ++ { ++ case CONST_INT: ++ if (riscv_immediate_operand_p (outer_code, INTVAL (x))) ++ { ++ *total = 0; ++ return true; ++ } ++ /* Fall through. */ ++ ++ case SYMBOL_REF: ++ case LABEL_REF: ++ case CONST_DOUBLE: ++ case CONST: ++ if (speed) ++ *total = 1; ++ else if ((cost = riscv_const_insns (x)) > 0) ++ *total = COSTS_N_INSNS (cost); ++ else /* The instruction will be fetched from the constant pool. */ ++ *total = COSTS_N_INSNS (riscv_symbol_insns (SYMBOL_ABSOLUTE)); ++ return true; ++ ++ case MEM: ++ /* If the address is legitimate, return the number of ++ instructions it needs. */ ++ if ((cost = riscv_address_insns (XEXP (x, 0), mode, true)) > 0) ++ { ++ *total = COSTS_N_INSNS (cost + tune_info->memory_cost); ++ return true; ++ } ++ /* Otherwise use the default handling. */ ++ return false; ++ ++ case NOT: ++ *total = COSTS_N_INSNS (GET_MODE_SIZE (mode) > UNITS_PER_WORD ? 2 : 1); ++ return false; ++ ++ case AND: ++ case IOR: ++ case XOR: ++ /* Double-word operations use two single-word operations. */ ++ *total = riscv_binary_cost (x, 1, 2); ++ return false; ++ ++ case ASHIFT: ++ case ASHIFTRT: ++ case LSHIFTRT: ++ *total = riscv_binary_cost (x, 1, CONSTANT_P (XEXP (x, 1)) ? 4 : 9); ++ return false; ++ ++ case ABS: ++ *total = COSTS_N_INSNS (float_mode_p ? 1 : 3); ++ return false; ++ ++ case LO_SUM: ++ *total = set_src_cost (XEXP (x, 0), speed); ++ return true; ++ ++ case LT: ++ case LTU: ++ case LE: ++ case LEU: ++ case GT: ++ case GTU: ++ case GE: ++ case GEU: ++ case EQ: ++ case NE: ++ case UNORDERED: ++ case LTGT: ++ /* Branch comparisons have VOIDmode, so use the first operand's ++ mode instead. */ ++ mode = GET_MODE (XEXP (x, 0)); ++ if (float_mode_p) ++ *total = tune_info->fp_add[mode == DFmode]; ++ else ++ *total = riscv_binary_cost (x, 1, 3); ++ return false; ++ ++ case MINUS: ++ if (float_mode_p ++ && !HONOR_NANS (mode) ++ && !HONOR_SIGNED_ZEROS (mode)) ++ { ++ /* See if we can use NMADD or NMSUB. See riscv.md for the ++ associated patterns. */ ++ rtx op0 = XEXP (x, 0); ++ rtx op1 = XEXP (x, 1); ++ if (GET_CODE (op0) == MULT && GET_CODE (XEXP (op0, 0)) == NEG) ++ { ++ *total = (tune_info->fp_mul[mode == DFmode] ++ + set_src_cost (XEXP (XEXP (op0, 0), 0), speed) ++ + set_src_cost (XEXP (op0, 1), speed) ++ + set_src_cost (op1, speed)); ++ return true; ++ } ++ if (GET_CODE (op1) == MULT) ++ { ++ *total = (tune_info->fp_mul[mode == DFmode] ++ + set_src_cost (op0, speed) ++ + set_src_cost (XEXP (op1, 0), speed) ++ + set_src_cost (XEXP (op1, 1), speed)); ++ return true; ++ } ++ } ++ /* Fall through. */ ++ ++ case PLUS: ++ if (float_mode_p) ++ *total = tune_info->fp_add[mode == DFmode]; ++ else ++ *total = riscv_binary_cost (x, 1, 4); ++ return false; ++ ++ case NEG: ++ if (float_mode_p ++ && !HONOR_NANS (mode) ++ && HONOR_SIGNED_ZEROS (mode)) ++ { ++ /* See if we can use NMADD or NMSUB. See riscv.md for the ++ associated patterns. */ ++ rtx op = XEXP (x, 0); ++ if ((GET_CODE (op) == PLUS || GET_CODE (op) == MINUS) ++ && GET_CODE (XEXP (op, 0)) == MULT) ++ { ++ *total = (tune_info->fp_mul[mode == DFmode] ++ + set_src_cost (XEXP (XEXP (op, 0), 0), speed) ++ + set_src_cost (XEXP (XEXP (op, 0), 1), speed) ++ + set_src_cost (XEXP (op, 1), speed)); ++ return true; ++ } ++ } ++ ++ if (float_mode_p) ++ *total = tune_info->fp_add[mode == DFmode]; ++ else ++ *total = COSTS_N_INSNS (GET_MODE_SIZE (mode) > UNITS_PER_WORD ? 4 : 1); ++ return false; ++ ++ case MULT: ++ if (float_mode_p) ++ *total = tune_info->fp_mul[mode == DFmode]; ++ else if (GET_MODE_SIZE (mode) > UNITS_PER_WORD) ++ *total = 3 * tune_info->int_mul[0] + COSTS_N_INSNS (2); ++ else if (!speed) ++ *total = COSTS_N_INSNS (1); ++ else ++ *total = tune_info->int_mul[mode == DImode]; ++ return false; ++ ++ case DIV: ++ case SQRT: ++ case MOD: ++ if (float_mode_p) ++ { ++ *total = tune_info->fp_div[mode == DFmode]; ++ return false; ++ } ++ /* Fall through. */ ++ ++ case UDIV: ++ case UMOD: ++ if (speed) ++ *total = tune_info->int_div[mode == DImode]; ++ else ++ *total = COSTS_N_INSNS (1); ++ return false; ++ ++ case SIGN_EXTEND: ++ *total = riscv_sign_extend_cost (mode, XEXP (x, 0)); ++ return false; ++ ++ case ZERO_EXTEND: ++ *total = riscv_zero_extend_cost (mode, XEXP (x, 0)); ++ return false; ++ ++ case FLOAT: ++ case UNSIGNED_FLOAT: ++ case FIX: ++ case FLOAT_EXTEND: ++ case FLOAT_TRUNCATE: ++ *total = tune_info->fp_add[mode == DFmode]; ++ return false; ++ ++ default: ++ return false; ++ } ++} ++ ++/* Implement TARGET_ADDRESS_COST. */ ++ ++static int ++riscv_address_cost (rtx addr, enum machine_mode mode, ++ addr_space_t as ATTRIBUTE_UNUSED, ++ bool speed ATTRIBUTE_UNUSED) ++{ ++ return riscv_address_insns (addr, mode, false); ++} ++ ++/* Return one word of double-word value OP. HIGH_P is true to select the ++ high part or false to select the low part. */ ++ ++rtx ++riscv_subword (rtx op, bool high_p) ++{ ++ unsigned int byte; ++ enum machine_mode mode; ++ ++ mode = GET_MODE (op); ++ if (mode == VOIDmode) ++ mode = TARGET_64BIT ? TImode : DImode; ++ ++ byte = high_p ? UNITS_PER_WORD : 0; ++ ++ if (FP_REG_RTX_P (op)) ++ return gen_rtx_REG (word_mode, REGNO (op) + high_p); ++ ++ if (MEM_P (op)) ++ return adjust_address (op, word_mode, byte); ++ ++ return simplify_gen_subreg (word_mode, op, mode, byte); ++} ++ ++/* Return true if a 64-bit move from SRC to DEST should be split into two. */ ++ ++bool ++riscv_split_64bit_move_p (rtx dest, rtx src) ++{ ++ /* All 64b moves are legal in 64b mode. All 64b FPR <-> FPR and ++ FPR <-> MEM moves are legal in 32b mode, too. Although ++ FPR <-> GPR moves are not available in general in 32b mode, ++ we can at least load 0 into an FPR with fcvt.d.w fpr, x0. */ ++ return !(TARGET_64BIT ++ || (FP_REG_RTX_P (src) && FP_REG_RTX_P (dest)) ++ || (FP_REG_RTX_P (dest) && MEM_P (src)) ++ || (FP_REG_RTX_P (src) && MEM_P (dest)) ++ || (FP_REG_RTX_P(dest) && src == CONST0_RTX(GET_MODE(src)))); ++} ++ ++/* Split a doubleword move from SRC to DEST. On 32-bit targets, ++ this function handles 64-bit moves for which riscv_split_64bit_move_p ++ holds. For 64-bit targets, this function handles 128-bit moves. */ ++ ++void ++riscv_split_doubleword_move (rtx dest, rtx src) ++{ ++ rtx low_dest; ++ ++ /* The operation can be split into two normal moves. Decide in ++ which order to do them. */ ++ low_dest = riscv_subword (dest, false); ++ if (REG_P (low_dest) && reg_overlap_mentioned_p (low_dest, src)) ++ { ++ riscv_emit_move (riscv_subword (dest, true), riscv_subword (src, true)); ++ riscv_emit_move (low_dest, riscv_subword (src, false)); ++ } ++ else ++ { ++ riscv_emit_move (low_dest, riscv_subword (src, false)); ++ riscv_emit_move (riscv_subword (dest, true), riscv_subword (src, true)); ++ } ++} ++ ++/* Return the appropriate instructions to move SRC into DEST. Assume ++ that SRC is operand 1 and DEST is operand 0. */ ++ ++const char * ++riscv_output_move (rtx dest, rtx src) ++{ ++ enum rtx_code dest_code, src_code; ++ enum machine_mode mode; ++ bool dbl_p; ++ ++ dest_code = GET_CODE (dest); ++ src_code = GET_CODE (src); ++ mode = GET_MODE (dest); ++ dbl_p = (GET_MODE_SIZE (mode) == 8); ++ ++ if (dbl_p && riscv_split_64bit_move_p (dest, src)) ++ return "#"; ++ ++ if ((src_code == REG && GP_REG_P (REGNO (src))) ++ || (src == CONST0_RTX (mode))) ++ { ++ if (dest_code == REG) ++ { ++ if (GP_REG_P (REGNO (dest))) ++ return "mv\t%0,%z1"; ++ ++ if (FP_REG_P (REGNO (dest))) ++ { ++ if (!dbl_p) ++ return "fmv.s.x\t%0,%z1"; ++ if (TARGET_64BIT) ++ return "fmv.d.x\t%0,%z1"; ++ /* in RV32, we can emulate fmv.d.x %0, x0 using fcvt.d.w */ ++ gcc_assert (src == CONST0_RTX (mode)); ++ return "fcvt.d.w\t%0,x0"; ++ } ++ } ++ if (dest_code == MEM) ++ switch (GET_MODE_SIZE (mode)) ++ { ++ case 1: return "sb\t%z1,%0"; ++ case 2: return "sh\t%z1,%0"; ++ case 4: return "sw\t%z1,%0"; ++ case 8: return "sd\t%z1,%0"; ++ } ++ } ++ if (dest_code == REG && GP_REG_P (REGNO (dest))) ++ { ++ if (src_code == REG) ++ { ++ if (FP_REG_P (REGNO (src))) ++ return dbl_p ? "fmv.x.d\t%0,%1" : "fmv.x.s\t%0,%1"; ++ } ++ ++ if (src_code == MEM) ++ switch (GET_MODE_SIZE (mode)) ++ { ++ case 1: return "lbu\t%0,%1"; ++ case 2: return "lhu\t%0,%1"; ++ case 4: return "lw\t%0,%1"; ++ case 8: return "ld\t%0,%1"; ++ } ++ ++ if (src_code == CONST_INT) ++ return "li\t%0,%1"; ++ ++ if (src_code == HIGH) ++ return "lui\t%0,%h1"; ++ ++ if (symbolic_operand (src, VOIDmode)) ++ switch (riscv_classify_symbolic_expression (src)) ++ { ++ case SYMBOL_GOT_DISP: return "la\t%0,%1"; ++ case SYMBOL_ABSOLUTE: return "lla\t%0,%1"; ++ default: gcc_unreachable(); ++ } ++ } ++ if (src_code == REG && FP_REG_P (REGNO (src))) ++ { ++ if (dest_code == REG && FP_REG_P (REGNO (dest))) ++ return dbl_p ? "fmv.d\t%0,%1" : "fmv.s\t%0,%1"; ++ ++ if (dest_code == MEM) ++ return dbl_p ? "fsd\t%1,%0" : "fsw\t%1,%0"; ++ } ++ if (dest_code == REG && FP_REG_P (REGNO (dest))) ++ { ++ if (src_code == MEM) ++ return dbl_p ? "fld\t%0,%1" : "flw\t%0,%1"; ++ } ++ gcc_unreachable (); ++} ++ ++/* Return true if CMP1 is a suitable second operand for integer ordering ++ test CODE. See also the *sCC patterns in riscv.md. */ ++ ++static bool ++riscv_int_order_operand_ok_p (enum rtx_code code, rtx cmp1) ++{ ++ switch (code) ++ { ++ case GT: ++ case GTU: ++ return reg_or_0_operand (cmp1, VOIDmode); ++ ++ case GE: ++ case GEU: ++ return cmp1 == const1_rtx; ++ ++ case LT: ++ case LTU: ++ return arith_operand (cmp1, VOIDmode); ++ ++ case LE: ++ return sle_operand (cmp1, VOIDmode); ++ ++ case LEU: ++ return sleu_operand (cmp1, VOIDmode); ++ ++ default: ++ gcc_unreachable (); ++ } ++} ++ ++/* Return true if *CMP1 (of mode MODE) is a valid second operand for ++ integer ordering test *CODE, or if an equivalent combination can ++ be formed by adjusting *CODE and *CMP1. When returning true, update ++ *CODE and *CMP1 with the chosen code and operand, otherwise leave ++ them alone. */ ++ ++static bool ++riscv_canonicalize_int_order_test (enum rtx_code *code, rtx *cmp1, ++ enum machine_mode mode) ++{ ++ HOST_WIDE_INT plus_one; ++ ++ if (riscv_int_order_operand_ok_p (*code, *cmp1)) ++ return true; ++ ++ if (CONST_INT_P (*cmp1)) ++ switch (*code) ++ { ++ case LE: ++ plus_one = trunc_int_for_mode (UINTVAL (*cmp1) + 1, mode); ++ if (INTVAL (*cmp1) < plus_one) ++ { ++ *code = LT; ++ *cmp1 = force_reg (mode, GEN_INT (plus_one)); ++ return true; ++ } ++ break; ++ ++ case LEU: ++ plus_one = trunc_int_for_mode (UINTVAL (*cmp1) + 1, mode); ++ if (plus_one != 0) ++ { ++ *code = LTU; ++ *cmp1 = force_reg (mode, GEN_INT (plus_one)); ++ return true; ++ } ++ break; ++ ++ default: ++ break; ++ } ++ return false; ++} ++ ++/* Compare CMP0 and CMP1 using ordering test CODE and store the result ++ in TARGET. CMP0 and TARGET are register_operands. If INVERT_PTR ++ is nonnull, it's OK to set TARGET to the inverse of the result and ++ flip *INVERT_PTR instead. */ ++ ++static void ++riscv_emit_int_order_test (enum rtx_code code, bool *invert_ptr, ++ rtx target, rtx cmp0, rtx cmp1) ++{ ++ enum machine_mode mode; ++ ++ /* First see if there is a RISCV instruction that can do this operation. ++ If not, try doing the same for the inverse operation. If that also ++ fails, force CMP1 into a register and try again. */ ++ mode = GET_MODE (cmp0); ++ if (riscv_canonicalize_int_order_test (&code, &cmp1, mode)) ++ riscv_emit_binary (code, target, cmp0, cmp1); ++ else ++ { ++ enum rtx_code inv_code = reverse_condition (code); ++ if (!riscv_canonicalize_int_order_test (&inv_code, &cmp1, mode)) ++ { ++ cmp1 = force_reg (mode, cmp1); ++ riscv_emit_int_order_test (code, invert_ptr, target, cmp0, cmp1); ++ } ++ else if (invert_ptr == 0) ++ { ++ rtx inv_target; ++ ++ inv_target = riscv_force_binary (GET_MODE (target), ++ inv_code, cmp0, cmp1); ++ riscv_emit_binary (XOR, target, inv_target, const1_rtx); ++ } ++ else ++ { ++ *invert_ptr = !*invert_ptr; ++ riscv_emit_binary (inv_code, target, cmp0, cmp1); ++ } ++ } ++} ++ ++/* Return a register that is zero iff CMP0 and CMP1 are equal. ++ The register will have the same mode as CMP0. */ ++ ++static rtx ++riscv_zero_if_equal (rtx cmp0, rtx cmp1) ++{ ++ if (cmp1 == const0_rtx) ++ return cmp0; ++ ++ return expand_binop (GET_MODE (cmp0), sub_optab, ++ cmp0, cmp1, 0, 0, OPTAB_DIRECT); ++} ++ ++/* Return false if we can easily emit code for the FP comparison specified ++ by *CODE. If not, set *CODE to its inverse and return true. */ ++ ++static bool ++riscv_reversed_fp_cond (enum rtx_code *code) ++{ ++ switch (*code) ++ { ++ case EQ: ++ case LT: ++ case LE: ++ case GT: ++ case GE: ++ case LTGT: ++ case ORDERED: ++ /* We know how to emit code for these cases... */ ++ return false; ++ ++ default: ++ /* ...but we must invert these and rely on the others. */ ++ *code = reverse_condition_maybe_unordered (*code); ++ return true; ++ } ++} ++ ++/* Convert a comparison into something that can be used in a branch or ++ conditional move. On entry, *OP0 and *OP1 are the values being ++ compared and *CODE is the code used to compare them. ++ ++ Update *CODE, *OP0 and *OP1 so that they describe the final comparison. */ ++ ++static void ++riscv_emit_compare (enum rtx_code *code, rtx *op0, rtx *op1) ++{ ++ rtx cmp_op0 = *op0; ++ rtx cmp_op1 = *op1; ++ ++ if (GET_MODE_CLASS (GET_MODE (*op0)) == MODE_INT) ++ { ++ if (splittable_const_int_operand (cmp_op1, VOIDmode)) ++ { ++ HOST_WIDE_INT rhs = INTVAL (cmp_op1), new_rhs; ++ enum rtx_code new_code; ++ ++ switch (*code) ++ { ++ case LTU: new_rhs = rhs - 1; new_code = LEU; goto try_new_rhs; ++ case LEU: new_rhs = rhs + 1; new_code = LTU; goto try_new_rhs; ++ case GTU: new_rhs = rhs + 1; new_code = GEU; goto try_new_rhs; ++ case GEU: new_rhs = rhs - 1; new_code = GTU; goto try_new_rhs; ++ case LT: new_rhs = rhs - 1; new_code = LE; goto try_new_rhs; ++ case LE: new_rhs = rhs + 1; new_code = LT; goto try_new_rhs; ++ case GT: new_rhs = rhs + 1; new_code = GE; goto try_new_rhs; ++ case GE: new_rhs = rhs - 1; new_code = GT; ++ try_new_rhs: ++ /* Convert e.g. OP0 > 4095 into OP0 >= 4096. */ ++ if ((rhs < 0) == (new_rhs < 0) ++ && riscv_integer_cost (new_rhs) < riscv_integer_cost (rhs)) ++ { ++ *op1 = GEN_INT (new_rhs); ++ *code = new_code; ++ } ++ break; ++ ++ case EQ: ++ case NE: ++ /* Convert e.g. OP0 == 2048 into OP0 - 2048 == 0. */ ++ if (SMALL_OPERAND (-rhs)) ++ { ++ *op0 = gen_reg_rtx (GET_MODE (cmp_op0)); ++ riscv_emit_binary (PLUS, *op0, cmp_op0, GEN_INT (-rhs)); ++ *op1 = const0_rtx; ++ } ++ default: ++ break; ++ } ++ } ++ ++ if (*op1 != const0_rtx) ++ *op1 = force_reg (GET_MODE (cmp_op0), *op1); ++ } ++ else ++ { ++ /* For FP comparisons, set an integer register with the result of the ++ comparison, then branch on it. */ ++ rtx tmp0, tmp1, final_op; ++ enum rtx_code fp_code = *code; ++ *code = riscv_reversed_fp_cond (&fp_code) ? EQ : NE; ++ ++ switch (fp_code) ++ { ++ case ORDERED: ++ /* a == a && b == b */ ++ tmp0 = gen_reg_rtx (SImode); ++ riscv_emit_binary (EQ, tmp0, cmp_op0, cmp_op0); ++ tmp1 = gen_reg_rtx (SImode); ++ riscv_emit_binary (EQ, tmp1, cmp_op1, cmp_op1); ++ final_op = gen_reg_rtx (SImode); ++ riscv_emit_binary (AND, final_op, tmp0, tmp1); ++ break; ++ ++ case LTGT: ++ /* a < b || a > b */ ++ tmp0 = gen_reg_rtx (SImode); ++ riscv_emit_binary (LT, tmp0, cmp_op0, cmp_op1); ++ tmp1 = gen_reg_rtx (SImode); ++ riscv_emit_binary (GT, tmp1, cmp_op0, cmp_op1); ++ final_op = gen_reg_rtx (SImode); ++ riscv_emit_binary (IOR, final_op, tmp0, tmp1); ++ break; ++ ++ case EQ: ++ case LE: ++ case LT: ++ case GE: ++ case GT: ++ /* We have instructions for these cases. */ ++ final_op = gen_reg_rtx (SImode); ++ riscv_emit_binary (fp_code, final_op, cmp_op0, cmp_op1); ++ break; ++ ++ default: ++ gcc_unreachable (); ++ } ++ ++ /* Compare the binary result against 0. */ ++ *op0 = final_op; ++ *op1 = const0_rtx; ++ } ++} ++ ++/* Try performing the comparison in OPERANDS[1], whose arms are OPERANDS[2] ++ and OPERAND[3]. Store the result in OPERANDS[0]. ++ ++ On 64-bit targets, the mode of the comparison and target will always be ++ SImode, thus possibly narrower than that of the comparison's operands. */ ++ ++void ++riscv_expand_scc (rtx operands[]) ++{ ++ rtx target = operands[0]; ++ enum rtx_code code = GET_CODE (operands[1]); ++ rtx op0 = operands[2]; ++ rtx op1 = operands[3]; ++ ++ gcc_assert (GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT); ++ ++ if (code == EQ || code == NE) ++ { ++ rtx zie = riscv_zero_if_equal (op0, op1); ++ riscv_emit_binary (code, target, zie, const0_rtx); ++ } ++ else ++ riscv_emit_int_order_test (code, 0, target, op0, op1); ++} ++ ++/* Compare OPERANDS[1] with OPERANDS[2] using comparison code ++ CODE and jump to OPERANDS[3] if the condition holds. */ ++ ++void ++riscv_expand_conditional_branch (rtx *operands) ++{ ++ enum rtx_code code = GET_CODE (operands[0]); ++ rtx op0 = operands[1]; ++ rtx op1 = operands[2]; ++ rtx condition; ++ ++ riscv_emit_compare (&code, &op0, &op1); ++ condition = gen_rtx_fmt_ee (code, VOIDmode, op0, op1); ++ emit_jump_insn (gen_condjump (condition, operands[3])); ++} ++ ++/* Implement TARGET_FUNCTION_ARG_BOUNDARY. Every parameter gets at ++ least PARM_BOUNDARY bits of alignment, but will be given anything up ++ to STACK_BOUNDARY bits if the type requires it. */ ++ ++static unsigned int ++riscv_function_arg_boundary (enum machine_mode mode, const_tree type) ++{ ++ unsigned int alignment; ++ ++ alignment = type ? TYPE_ALIGN (type) : GET_MODE_ALIGNMENT (mode); ++ if (alignment < PARM_BOUNDARY) ++ alignment = PARM_BOUNDARY; ++ if (alignment > STACK_BOUNDARY) ++ alignment = STACK_BOUNDARY; ++ return alignment; ++} ++ ++/* Fill INFO with information about a single argument. CUM is the ++ cumulative state for earlier arguments. MODE is the mode of this ++ argument and TYPE is its type (if known). NAMED is true if this ++ is a named (fixed) argument rather than a variable one. */ ++ ++static void ++riscv_get_arg_info (struct riscv_arg_info *info, const CUMULATIVE_ARGS *cum, ++ enum machine_mode mode, const_tree type, bool named) ++{ ++ bool doubleword_aligned_p; ++ unsigned int num_bytes, num_words, max_regs; ++ ++ /* Work out the size of the argument. */ ++ num_bytes = type ? int_size_in_bytes (type) : GET_MODE_SIZE (mode); ++ num_words = (num_bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD; ++ ++ /* Scalar, complex and vector floating-point types are passed in ++ floating-point registers, as long as this is a named rather ++ than a variable argument. */ ++ info->fpr_p = (named ++ && (type == 0 || FLOAT_TYPE_P (type)) ++ && (GET_MODE_CLASS (mode) == MODE_FLOAT ++ || GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT ++ || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT) ++ && GET_MODE_UNIT_SIZE (mode) <= UNITS_PER_FPVALUE); ++ ++ /* Complex floats should only go into FPRs if there are two FPRs free, ++ otherwise they should be passed in the same way as a struct ++ containing two floats. */ ++ if (info->fpr_p ++ && GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT ++ && GET_MODE_UNIT_SIZE (mode) < UNITS_PER_FPVALUE) ++ { ++ if (cum->num_gprs >= MAX_ARGS_IN_REGISTERS - 1) ++ info->fpr_p = false; ++ else ++ num_words = 2; ++ } ++ ++ /* See whether the argument has doubleword alignment. */ ++ doubleword_aligned_p = (riscv_function_arg_boundary (mode, type) ++ > BITS_PER_WORD); ++ ++ /* Set REG_OFFSET to the register count we're interested in. ++ The EABI allocates the floating-point registers separately, ++ but the other ABIs allocate them like integer registers. */ ++ info->reg_offset = cum->num_gprs; ++ ++ /* Advance to an even register if the argument is doubleword-aligned. */ ++ if (doubleword_aligned_p) ++ info->reg_offset += info->reg_offset & 1; ++ ++ /* Work out the offset of a stack argument. */ ++ info->stack_offset = cum->stack_words; ++ if (doubleword_aligned_p) ++ info->stack_offset += info->stack_offset & 1; ++ ++ max_regs = MAX_ARGS_IN_REGISTERS - info->reg_offset; ++ ++ /* Partition the argument between registers and stack. */ ++ info->reg_words = MIN (num_words, max_regs); ++ info->stack_words = num_words - info->reg_words; ++} ++ ++/* INFO describes a register argument that has the normal format for the ++ argument's mode. Return the register it uses, assuming that FPRs are ++ available if HARD_FLOAT_P. */ ++ ++static unsigned int ++riscv_arg_regno (const struct riscv_arg_info *info, bool hard_float_p) ++{ ++ if (!info->fpr_p || !hard_float_p) ++ return GP_ARG_FIRST + info->reg_offset; ++ else ++ return FP_ARG_FIRST + info->reg_offset; ++} ++ ++/* Implement TARGET_FUNCTION_ARG. */ ++ ++static rtx ++riscv_function_arg (cumulative_args_t cum_v, enum machine_mode mode, ++ const_tree type, bool named) ++{ ++ CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v); ++ struct riscv_arg_info info; ++ ++ if (mode == VOIDmode) ++ return NULL; ++ ++ riscv_get_arg_info (&info, cum, mode, type, named); ++ ++ /* Return straight away if the whole argument is passed on the stack. */ ++ if (info.reg_offset == MAX_ARGS_IN_REGISTERS) ++ return NULL; ++ ++ /* The n32 and n64 ABIs say that if any 64-bit chunk of the structure ++ contains a double in its entirety, then that 64-bit chunk is passed ++ in a floating-point register. */ ++ if (TARGET_HARD_FLOAT ++ && named ++ && type != 0 ++ && TREE_CODE (type) == RECORD_TYPE ++ && TYPE_SIZE_UNIT (type) ++ && tree_fits_uhwi_p (TYPE_SIZE_UNIT (type))) ++ { ++ tree field; ++ ++ /* First check to see if there is any such field. */ ++ for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field)) ++ if (TREE_CODE (field) == FIELD_DECL ++ && SCALAR_FLOAT_TYPE_P (TREE_TYPE (field)) ++ && TYPE_PRECISION (TREE_TYPE (field)) == BITS_PER_WORD ++ && tree_fits_shwi_p (bit_position (field)) ++ && int_bit_position (field) % BITS_PER_WORD == 0) ++ break; ++ ++ if (field != 0) ++ { ++ /* Now handle the special case by returning a PARALLEL ++ indicating where each 64-bit chunk goes. INFO.REG_WORDS ++ chunks are passed in registers. */ ++ unsigned int i; ++ HOST_WIDE_INT bitpos; ++ rtx ret; ++ ++ /* assign_parms checks the mode of ENTRY_PARM, so we must ++ use the actual mode here. */ ++ ret = gen_rtx_PARALLEL (mode, rtvec_alloc (info.reg_words)); ++ ++ bitpos = 0; ++ field = TYPE_FIELDS (type); ++ for (i = 0; i < info.reg_words; i++) ++ { ++ rtx reg; ++ ++ for (; field; field = DECL_CHAIN (field)) ++ if (TREE_CODE (field) == FIELD_DECL ++ && int_bit_position (field) >= bitpos) ++ break; ++ ++ if (field ++ && int_bit_position (field) == bitpos ++ && SCALAR_FLOAT_TYPE_P (TREE_TYPE (field)) ++ && TYPE_PRECISION (TREE_TYPE (field)) == BITS_PER_WORD) ++ reg = gen_rtx_REG (DFmode, FP_ARG_FIRST + info.reg_offset + i); ++ else ++ reg = gen_rtx_REG (DImode, GP_ARG_FIRST + info.reg_offset + i); ++ ++ XVECEXP (ret, 0, i) ++ = gen_rtx_EXPR_LIST (VOIDmode, reg, ++ GEN_INT (bitpos / BITS_PER_UNIT)); ++ ++ bitpos += BITS_PER_WORD; ++ } ++ return ret; ++ } ++ } ++ ++ /* Handle the n32/n64 conventions for passing complex floating-point ++ arguments in FPR pairs. The real part goes in the lower register ++ and the imaginary part goes in the upper register. */ ++ if (info.fpr_p ++ && GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT) ++ { ++ rtx real, imag; ++ enum machine_mode inner; ++ unsigned int regno; ++ ++ inner = GET_MODE_INNER (mode); ++ regno = FP_ARG_FIRST + info.reg_offset; ++ if (info.reg_words * UNITS_PER_WORD == GET_MODE_SIZE (inner)) ++ { ++ /* Real part in registers, imaginary part on stack. */ ++ gcc_assert (info.stack_words == info.reg_words); ++ return gen_rtx_REG (inner, regno); ++ } ++ else ++ { ++ gcc_assert (info.stack_words == 0); ++ real = gen_rtx_EXPR_LIST (VOIDmode, ++ gen_rtx_REG (inner, regno), ++ const0_rtx); ++ imag = gen_rtx_EXPR_LIST (VOIDmode, ++ gen_rtx_REG (inner, ++ regno + info.reg_words / 2), ++ GEN_INT (GET_MODE_SIZE (inner))); ++ return gen_rtx_PARALLEL (mode, gen_rtvec (2, real, imag)); ++ } ++ } ++ ++ return gen_rtx_REG (mode, riscv_arg_regno (&info, TARGET_HARD_FLOAT)); ++} ++ ++/* Implement TARGET_FUNCTION_ARG_ADVANCE. */ ++ ++static void ++riscv_function_arg_advance (cumulative_args_t cum_v, enum machine_mode mode, ++ const_tree type, bool named) ++{ ++ CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v); ++ struct riscv_arg_info info; ++ ++ riscv_get_arg_info (&info, cum, mode, type, named); ++ ++ /* Advance the register count. This has the effect of setting ++ num_gprs to MAX_ARGS_IN_REGISTERS if a doubleword-aligned ++ argument required us to skip the final GPR and pass the whole ++ argument on the stack. */ ++ cum->num_gprs = info.reg_offset + info.reg_words; ++ ++ /* Advance the stack word count. */ ++ if (info.stack_words > 0) ++ cum->stack_words = info.stack_offset + info.stack_words; ++} ++ ++/* Implement TARGET_ARG_PARTIAL_BYTES. */ ++ ++static int ++riscv_arg_partial_bytes (cumulative_args_t cum, ++ enum machine_mode mode, tree type, bool named) ++{ ++ struct riscv_arg_info info; ++ ++ riscv_get_arg_info (&info, get_cumulative_args (cum), mode, type, named); ++ return info.stack_words > 0 ? info.reg_words * UNITS_PER_WORD : 0; ++} ++ ++/* See whether VALTYPE is a record whose fields should be returned in ++ floating-point registers. If so, return the number of fields and ++ list them in FIELDS (which should have two elements). Return 0 ++ otherwise. ++ ++ For n32 & n64, a structure with one or two fields is returned in ++ floating-point registers as long as every field has a floating-point ++ type. */ ++ ++static int ++riscv_fpr_return_fields (const_tree valtype, tree *fields) ++{ ++ tree field; ++ int i; ++ ++ if (TREE_CODE (valtype) != RECORD_TYPE) ++ return 0; ++ ++ i = 0; ++ for (field = TYPE_FIELDS (valtype); field != 0; field = DECL_CHAIN (field)) ++ { ++ if (TREE_CODE (field) != FIELD_DECL) ++ continue; ++ ++ if (!SCALAR_FLOAT_TYPE_P (TREE_TYPE (field))) ++ return 0; ++ ++ if (i == 2) ++ return 0; ++ ++ fields[i++] = field; ++ } ++ return i; ++} ++ ++/* Return true if the function return value MODE will get returned in a ++ floating-point register. */ ++ ++static bool ++riscv_return_mode_in_fpr_p (enum machine_mode mode) ++{ ++ return ((GET_MODE_CLASS (mode) == MODE_FLOAT ++ || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT ++ || GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT) ++ && GET_MODE_UNIT_SIZE (mode) <= UNITS_PER_HWFPVALUE); ++} ++ ++/* Return the representation of an FPR return register when the ++ value being returned in FP_RETURN has mode VALUE_MODE and the ++ return type itself has mode TYPE_MODE. On NewABI targets, ++ the two modes may be different for structures like: ++ ++ struct __attribute__((packed)) foo { float f; } ++ ++ where we return the SFmode value of "f" in FP_RETURN, but where ++ the structure itself has mode BLKmode. */ ++ ++static rtx ++riscv_return_fpr_single (enum machine_mode type_mode, ++ enum machine_mode value_mode) ++{ ++ rtx x; ++ ++ x = gen_rtx_REG (value_mode, FP_RETURN); ++ if (type_mode != value_mode) ++ { ++ x = gen_rtx_EXPR_LIST (VOIDmode, x, const0_rtx); ++ x = gen_rtx_PARALLEL (type_mode, gen_rtvec (1, x)); ++ } ++ return x; ++} ++ ++/* Return a composite value in a pair of floating-point registers. ++ MODE1 and OFFSET1 are the mode and byte offset for the first value, ++ likewise MODE2 and OFFSET2 for the second. MODE is the mode of the ++ complete value. ++ ++ For n32 & n64, $f0 always holds the first value and $f2 the second. ++ Otherwise the values are packed together as closely as possible. */ ++ ++static rtx ++riscv_return_fpr_pair (enum machine_mode mode, ++ enum machine_mode mode1, HOST_WIDE_INT offset1, ++ enum machine_mode mode2, HOST_WIDE_INT offset2) ++{ ++ return gen_rtx_PARALLEL ++ (mode, ++ gen_rtvec (2, ++ gen_rtx_EXPR_LIST (VOIDmode, ++ gen_rtx_REG (mode1, FP_RETURN), ++ GEN_INT (offset1)), ++ gen_rtx_EXPR_LIST (VOIDmode, ++ gen_rtx_REG (mode2, FP_RETURN + 1), ++ GEN_INT (offset2)))); ++ ++} ++ ++/* Implement FUNCTION_VALUE and LIBCALL_VALUE. For normal calls, ++ VALTYPE is the return type and MODE is VOIDmode. For libcalls, ++ VALTYPE is null and MODE is the mode of the return value. */ ++ ++rtx ++riscv_function_value (const_tree valtype, const_tree func, enum machine_mode mode) ++{ ++ if (valtype) ++ { ++ tree fields[2]; ++ int unsigned_p; ++ ++ mode = TYPE_MODE (valtype); ++ unsigned_p = TYPE_UNSIGNED (valtype); ++ ++ /* Since TARGET_PROMOTE_FUNCTION_MODE unconditionally promotes, ++ return values, promote the mode here too. */ ++ mode = promote_function_mode (valtype, mode, &unsigned_p, func, 1); ++ ++ /* Handle structures whose fields are returned in $f0/$f2. */ ++ switch (riscv_fpr_return_fields (valtype, fields)) ++ { ++ case 1: ++ return riscv_return_fpr_single (mode, ++ TYPE_MODE (TREE_TYPE (fields[0]))); ++ ++ case 2: ++ return riscv_return_fpr_pair (mode, ++ TYPE_MODE (TREE_TYPE (fields[0])), ++ int_byte_position (fields[0]), ++ TYPE_MODE (TREE_TYPE (fields[1])), ++ int_byte_position (fields[1])); ++ } ++ ++ /* Only use FPRs for scalar, complex or vector types. */ ++ if (!FLOAT_TYPE_P (valtype)) ++ return gen_rtx_REG (mode, GP_RETURN); ++ } ++ ++ /* Handle long doubles for n32 & n64. */ ++ if (mode == TFmode) ++ return riscv_return_fpr_pair (mode, ++ DImode, 0, ++ DImode, GET_MODE_SIZE (mode) / 2); ++ ++ if (riscv_return_mode_in_fpr_p (mode)) ++ { ++ if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT) ++ return riscv_return_fpr_pair (mode, ++ GET_MODE_INNER (mode), 0, ++ GET_MODE_INNER (mode), ++ GET_MODE_SIZE (mode) / 2); ++ else ++ return gen_rtx_REG (mode, FP_RETURN); ++ } ++ ++ return gen_rtx_REG (mode, GP_RETURN); ++} ++ ++/* Implement TARGET_RETURN_IN_MEMORY. Scalars and small structures ++ that fit in two registers are returned in a0/a1. */ ++ ++static bool ++riscv_return_in_memory (const_tree type, const_tree fndecl ATTRIBUTE_UNUSED) ++{ ++ return !IN_RANGE (int_size_in_bytes (type), 0, 2 * UNITS_PER_WORD); ++} ++ ++/* Implement TARGET_PASS_BY_REFERENCE. */ ++ ++static bool ++riscv_pass_by_reference (cumulative_args_t cum ATTRIBUTE_UNUSED, ++ enum machine_mode mode, const_tree type, ++ bool named ATTRIBUTE_UNUSED) ++{ ++ if (type && riscv_return_in_memory (type, NULL_TREE)) ++ return true; ++ return targetm.calls.must_pass_in_stack (mode, type); ++} ++ ++/* Implement TARGET_SETUP_INCOMING_VARARGS. */ ++ ++static void ++riscv_setup_incoming_varargs (cumulative_args_t cum, enum machine_mode mode, ++ tree type, int *pretend_size ATTRIBUTE_UNUSED, ++ int no_rtl) ++{ ++ CUMULATIVE_ARGS local_cum; ++ int gp_saved; ++ ++ /* The caller has advanced CUM up to, but not beyond, the last named ++ argument. Advance a local copy of CUM past the last "real" named ++ argument, to find out how many registers are left over. */ ++ local_cum = *get_cumulative_args (cum); ++ riscv_function_arg_advance (pack_cumulative_args (&local_cum), mode, type, 1); ++ ++ /* Found out how many registers we need to save. */ ++ gp_saved = MAX_ARGS_IN_REGISTERS - local_cum.num_gprs; ++ ++ if (!no_rtl && gp_saved > 0) ++ { ++ rtx ptr, mem; ++ ++ ptr = plus_constant (Pmode, virtual_incoming_args_rtx, ++ REG_PARM_STACK_SPACE (cfun->decl) ++ - gp_saved * UNITS_PER_WORD); ++ mem = gen_frame_mem (BLKmode, ptr); ++ set_mem_alias_set (mem, get_varargs_alias_set ()); ++ ++ move_block_from_reg (local_cum.num_gprs + GP_ARG_FIRST, ++ mem, gp_saved); ++ } ++ if (REG_PARM_STACK_SPACE (cfun->decl) == 0) ++ cfun->machine->varargs_size = gp_saved * UNITS_PER_WORD; ++} ++ ++/* Implement TARGET_EXPAND_BUILTIN_VA_START. */ ++ ++static void ++riscv_va_start (tree valist, rtx nextarg) ++{ ++ nextarg = plus_constant (Pmode, nextarg, -cfun->machine->varargs_size); ++ std_expand_builtin_va_start (valist, nextarg); ++} ++ ++/* Expand a call of type TYPE. RESULT is where the result will go (null ++ for "call"s and "sibcall"s), ADDR is the address of the function, ++ ARGS_SIZE is the size of the arguments and AUX is the value passed ++ to us by riscv_function_arg. Return the call itself. */ ++ ++rtx ++riscv_expand_call (bool sibcall_p, rtx result, rtx addr, rtx args_size) ++{ ++ rtx pattern; ++ ++ if (!call_insn_operand (addr, VOIDmode)) ++ { ++ rtx reg = RISCV_EPILOGUE_TEMP (Pmode); ++ riscv_emit_move (reg, addr); ++ addr = reg; ++ } ++ ++ if (result == 0) ++ { ++ rtx (*fn) (rtx, rtx); ++ ++ if (sibcall_p) ++ fn = gen_sibcall_internal; ++ else ++ fn = gen_call_internal; ++ ++ pattern = fn (addr, args_size); ++ } ++ else if (GET_CODE (result) == PARALLEL && XVECLEN (result, 0) == 2) ++ { ++ /* Handle return values created by riscv_return_fpr_pair. */ ++ rtx (*fn) (rtx, rtx, rtx, rtx); ++ rtx reg1, reg2; ++ ++ if (sibcall_p) ++ fn = gen_sibcall_value_multiple_internal; ++ else ++ fn = gen_call_value_multiple_internal; ++ ++ reg1 = XEXP (XVECEXP (result, 0, 0), 0); ++ reg2 = XEXP (XVECEXP (result, 0, 1), 0); ++ pattern = fn (reg1, addr, args_size, reg2); ++ } ++ else ++ { ++ rtx (*fn) (rtx, rtx, rtx); ++ ++ if (sibcall_p) ++ fn = gen_sibcall_value_internal; ++ else ++ fn = gen_call_value_internal; ++ ++ /* Handle return values created by riscv_return_fpr_single. */ ++ if (GET_CODE (result) == PARALLEL && XVECLEN (result, 0) == 1) ++ result = XEXP (XVECEXP (result, 0, 0), 0); ++ pattern = fn (result, addr, args_size); ++ } ++ ++ return emit_call_insn (pattern); ++} ++ ++/* Emit straight-line code to move LENGTH bytes from SRC to DEST. ++ Assume that the areas do not overlap. */ ++ ++static void ++riscv_block_move_straight (rtx dest, rtx src, HOST_WIDE_INT length) ++{ ++ HOST_WIDE_INT offset, delta; ++ unsigned HOST_WIDE_INT bits; ++ int i; ++ enum machine_mode mode; ++ rtx *regs; ++ ++ bits = MAX( BITS_PER_UNIT, ++ MIN( BITS_PER_WORD, MIN( MEM_ALIGN(src),MEM_ALIGN(dest) ) ) ); ++ ++ mode = mode_for_size (bits, MODE_INT, 0); ++ delta = bits / BITS_PER_UNIT; ++ ++ /* Allocate a buffer for the temporary registers. */ ++ regs = XALLOCAVEC (rtx, length / delta); ++ ++ /* Load as many BITS-sized chunks as possible. Use a normal load if ++ the source has enough alignment, otherwise use left/right pairs. */ ++ for (offset = 0, i = 0; offset + delta <= length; offset += delta, i++) ++ { ++ regs[i] = gen_reg_rtx (mode); ++ riscv_emit_move (regs[i], adjust_address (src, mode, offset)); ++ } ++ ++ /* Copy the chunks to the destination. */ ++ for (offset = 0, i = 0; offset + delta <= length; offset += delta, i++) ++ riscv_emit_move (adjust_address (dest, mode, offset), regs[i]); ++ ++ /* Mop up any left-over bytes. */ ++ if (offset < length) ++ { ++ src = adjust_address (src, BLKmode, offset); ++ dest = adjust_address (dest, BLKmode, offset); ++ move_by_pieces (dest, src, length - offset, ++ MIN (MEM_ALIGN (src), MEM_ALIGN (dest)), 0); ++ } ++} ++ ++/* Helper function for doing a loop-based block operation on memory ++ reference MEM. Each iteration of the loop will operate on LENGTH ++ bytes of MEM. ++ ++ Create a new base register for use within the loop and point it to ++ the start of MEM. Create a new memory reference that uses this ++ register. Store them in *LOOP_REG and *LOOP_MEM respectively. */ ++ ++static void ++riscv_adjust_block_mem (rtx mem, HOST_WIDE_INT length, ++ rtx *loop_reg, rtx *loop_mem) ++{ ++ *loop_reg = copy_addr_to_reg (XEXP (mem, 0)); ++ ++ /* Although the new mem does not refer to a known location, ++ it does keep up to LENGTH bytes of alignment. */ ++ *loop_mem = change_address (mem, BLKmode, *loop_reg); ++ set_mem_align (*loop_mem, MIN (MEM_ALIGN (mem), length * BITS_PER_UNIT)); ++} ++ ++/* Move LENGTH bytes from SRC to DEST using a loop that moves BYTES_PER_ITER ++ bytes at a time. LENGTH must be at least BYTES_PER_ITER. Assume that ++ the memory regions do not overlap. */ ++ ++static void ++riscv_block_move_loop (rtx dest, rtx src, HOST_WIDE_INT length, ++ HOST_WIDE_INT bytes_per_iter) ++{ ++ rtx label, src_reg, dest_reg, final_src, test; ++ HOST_WIDE_INT leftover; ++ ++ leftover = length % bytes_per_iter; ++ length -= leftover; ++ ++ /* Create registers and memory references for use within the loop. */ ++ riscv_adjust_block_mem (src, bytes_per_iter, &src_reg, &src); ++ riscv_adjust_block_mem (dest, bytes_per_iter, &dest_reg, &dest); ++ ++ /* Calculate the value that SRC_REG should have after the last iteration ++ of the loop. */ ++ final_src = expand_simple_binop (Pmode, PLUS, src_reg, GEN_INT (length), ++ 0, 0, OPTAB_WIDEN); ++ ++ /* Emit the start of the loop. */ ++ label = gen_label_rtx (); ++ emit_label (label); ++ ++ /* Emit the loop body. */ ++ riscv_block_move_straight (dest, src, bytes_per_iter); ++ ++ /* Move on to the next block. */ ++ riscv_emit_move (src_reg, plus_constant (Pmode, src_reg, bytes_per_iter)); ++ riscv_emit_move (dest_reg, plus_constant (Pmode, dest_reg, bytes_per_iter)); ++ ++ /* Emit the loop condition. */ ++ test = gen_rtx_NE (VOIDmode, src_reg, final_src); ++ if (Pmode == DImode) ++ emit_jump_insn (gen_cbranchdi4 (test, src_reg, final_src, label)); ++ else ++ emit_jump_insn (gen_cbranchsi4 (test, src_reg, final_src, label)); ++ ++ /* Mop up any left-over bytes. */ ++ if (leftover) ++ riscv_block_move_straight (dest, src, leftover); ++} ++ ++/* Expand a movmemsi instruction, which copies LENGTH bytes from ++ memory reference SRC to memory reference DEST. */ ++ ++bool ++riscv_expand_block_move (rtx dest, rtx src, rtx length) ++{ ++ if (CONST_INT_P (length)) ++ { ++ HOST_WIDE_INT factor, align; ++ ++ align = MIN (MIN (MEM_ALIGN (src), MEM_ALIGN (dest)), BITS_PER_WORD); ++ factor = BITS_PER_WORD / align; ++ ++ if (INTVAL (length) <= RISCV_MAX_MOVE_BYTES_STRAIGHT / factor) ++ { ++ riscv_block_move_straight (dest, src, INTVAL (length)); ++ return true; ++ } ++ else if (optimize && align >= BITS_PER_WORD) ++ { ++ riscv_block_move_loop (dest, src, INTVAL (length), ++ RISCV_MAX_MOVE_BYTES_PER_LOOP_ITER / factor); ++ return true; ++ } ++ } ++ return false; ++} ++ ++/* (Re-)Initialize riscv_lo_relocs and riscv_hi_relocs. */ ++ ++static void ++riscv_init_relocs (void) ++{ ++ memset (riscv_hi_relocs, '\0', sizeof (riscv_hi_relocs)); ++ memset (riscv_lo_relocs, '\0', sizeof (riscv_lo_relocs)); ++ ++ if (!flag_pic && riscv_cmodel == CM_MEDLOW) ++ { ++ riscv_hi_relocs[SYMBOL_ABSOLUTE] = "%hi("; ++ riscv_lo_relocs[SYMBOL_ABSOLUTE] = "%lo("; ++ } ++ ++ if (!flag_pic || flag_pie) ++ { ++ riscv_hi_relocs[SYMBOL_TLS_LE] = "%tprel_hi("; ++ riscv_lo_relocs[SYMBOL_TLS_LE] = "%tprel_lo("; ++ } ++} ++ ++/* Print symbolic operand OP, which is part of a HIGH or LO_SUM ++ in context CONTEXT. RELOCS is the array of relocations to use. */ ++ ++static void ++riscv_print_operand_reloc (FILE *file, rtx op, const char **relocs) ++{ ++ enum riscv_symbol_type symbol_type; ++ const char *p; ++ ++ symbol_type = riscv_classify_symbolic_expression (op); ++ gcc_assert (relocs[symbol_type]); ++ ++ fputs (relocs[symbol_type], file); ++ output_addr_const (file, riscv_strip_unspec_address (op)); ++ for (p = relocs[symbol_type]; *p != 0; p++) ++ if (*p == '(') ++ fputc (')', file); ++} ++ ++static const char * ++riscv_memory_model_suffix (enum memmodel model) ++{ ++ switch (model) ++ { ++ case MEMMODEL_ACQ_REL: ++ case MEMMODEL_SEQ_CST: ++ return ".sc"; ++ case MEMMODEL_ACQUIRE: ++ case MEMMODEL_CONSUME: ++ return ".aq"; ++ case MEMMODEL_RELEASE: ++ return ".rl"; ++ case MEMMODEL_RELAXED: ++ return ""; ++ default: gcc_unreachable(); ++ } ++} ++ ++/* Implement TARGET_PRINT_OPERAND. The RISCV-specific operand codes are: ++ ++ 'h' Print the high-part relocation associated with OP, after stripping ++ any outermost HIGH. ++ 'R' Print the low-part relocation associated with OP. ++ 'C' Print the integer branch condition for comparison OP. ++ 'A' Print the atomic operation suffix for memory model OP. ++ 'z' Print $0 if OP is zero, otherwise print OP normally. */ ++ ++static void ++riscv_print_operand (FILE *file, rtx op, int letter) ++{ ++ enum rtx_code code; ++ ++ gcc_assert (op); ++ code = GET_CODE (op); ++ ++ switch (letter) ++ { ++ case 'h': ++ if (code == HIGH) ++ op = XEXP (op, 0); ++ riscv_print_operand_reloc (file, op, riscv_hi_relocs); ++ break; ++ ++ case 'R': ++ riscv_print_operand_reloc (file, op, riscv_lo_relocs); ++ break; ++ ++ case 'C': ++ /* The RTL names match the instruction names. */ ++ fputs (GET_RTX_NAME (code), file); ++ break; ++ ++ case 'A': ++ fputs (riscv_memory_model_suffix ((enum memmodel)INTVAL (op)), file); ++ break; ++ ++ default: ++ switch (code) ++ { ++ case REG: ++ if (letter && letter != 'z') ++ output_operand_lossage ("invalid use of '%%%c'", letter); ++ fprintf (file, "%s", reg_names[REGNO (op)]); ++ break; ++ ++ case MEM: ++ if (letter == 'y') ++ fprintf (file, "%s", reg_names[REGNO(XEXP(op, 0))]); ++ else if (letter && letter != 'z') ++ output_operand_lossage ("invalid use of '%%%c'", letter); ++ else ++ output_address (XEXP (op, 0)); ++ break; ++ ++ default: ++ if (letter == 'z' && op == CONST0_RTX (GET_MODE (op))) ++ fputs (reg_names[GP_REG_FIRST], file); ++ else if (letter && letter != 'z') ++ output_operand_lossage ("invalid use of '%%%c'", letter); ++ else ++ output_addr_const (file, riscv_strip_unspec_address (op)); ++ break; ++ } ++ } ++} ++ ++/* Implement TARGET_PRINT_OPERAND_ADDRESS. */ ++ ++static void ++riscv_print_operand_address (FILE *file, rtx x) ++{ ++ struct riscv_address_info addr; ++ ++ if (riscv_classify_address (&addr, x, word_mode, true)) ++ switch (addr.type) ++ { ++ case ADDRESS_REG: ++ riscv_print_operand (file, addr.offset, 0); ++ fprintf (file, "(%s)", reg_names[REGNO (addr.reg)]); ++ return; ++ ++ case ADDRESS_LO_SUM: ++ riscv_print_operand_reloc (file, addr.offset, riscv_lo_relocs); ++ fprintf (file, "(%s)", reg_names[REGNO (addr.reg)]); ++ return; ++ ++ case ADDRESS_CONST_INT: ++ output_addr_const (file, x); ++ fprintf (file, "(%s)", reg_names[GP_REG_FIRST]); ++ return; ++ ++ case ADDRESS_SYMBOLIC: ++ output_addr_const (file, riscv_strip_unspec_address (x)); ++ return; ++ } ++ gcc_unreachable (); ++} ++ ++static bool ++riscv_size_ok_for_small_data_p (int size) ++{ ++ return g_switch_value && IN_RANGE (size, 1, g_switch_value); ++} ++ ++/* Return true if EXP should be placed in the small data section. */ ++ ++static bool ++riscv_in_small_data_p (const_tree x) ++{ ++ if (TREE_CODE (x) == STRING_CST || TREE_CODE (x) == FUNCTION_DECL) ++ return false; ++ ++ if (TREE_CODE (x) == VAR_DECL && DECL_SECTION_NAME (x)) ++ { ++ const char *sec = DECL_SECTION_NAME (x); ++ return strcmp (sec, ".sdata") == 0 || strcmp (sec, ".sbss") == 0; ++ } ++ ++ return riscv_size_ok_for_small_data_p (int_size_in_bytes (TREE_TYPE (x))); ++} ++ ++/* Return a section for X, handling small data. */ ++ ++static section * ++riscv_elf_select_rtx_section (enum machine_mode mode, rtx x, ++ unsigned HOST_WIDE_INT align) ++{ ++ section *s = default_elf_select_rtx_section (mode, x, align); ++ ++ if (riscv_size_ok_for_small_data_p (GET_MODE_SIZE (mode))) ++ { ++ if (strncmp (s->named.name, ".rodata.cst", strlen (".rodata.cst")) == 0) ++ { ++ /* Rename .rodata.cst* to .srodata.cst*. */ ++ char name[32]; ++ sprintf (name, ".s%s", s->named.name + 1); ++ return get_section (name, s->named.common.flags, NULL); ++ } ++ ++ if (s == data_section) ++ return sdata_section; ++ } ++ ++ return s; ++} ++ ++/* Implement TARGET_ASM_OUTPUT_DWARF_DTPREL. */ ++ ++static void ATTRIBUTE_UNUSED ++riscv_output_dwarf_dtprel (FILE *file, int size, rtx x) ++{ ++ switch (size) ++ { ++ case 4: ++ fputs ("\t.dtprelword\t", file); ++ break; ++ ++ case 8: ++ fputs ("\t.dtpreldword\t", file); ++ break; ++ ++ default: ++ gcc_unreachable (); ++ } ++ output_addr_const (file, x); ++ fputs ("+0x800", file); ++} ++ ++/* Make the last instruction frame-related and note that it performs ++ the operation described by FRAME_PATTERN. */ ++ ++static void ++riscv_set_frame_expr (rtx frame_pattern) ++{ ++ rtx insn; ++ ++ insn = get_last_insn (); ++ RTX_FRAME_RELATED_P (insn) = 1; ++ REG_NOTES (insn) = alloc_EXPR_LIST (REG_FRAME_RELATED_EXPR, ++ frame_pattern, ++ REG_NOTES (insn)); ++} ++ ++/* Return a frame-related rtx that stores REG at MEM. ++ REG must be a single register. */ ++ ++static rtx ++riscv_frame_set (rtx mem, rtx reg) ++{ ++ rtx set; ++ ++ set = gen_rtx_SET (VOIDmode, mem, reg); ++ RTX_FRAME_RELATED_P (set) = 1; ++ ++ return set; ++} ++ ++/* Return true if the current function must save register REGNO. */ ++ ++static bool ++riscv_save_reg_p (unsigned int regno) ++{ ++ bool call_saved = !global_regs[regno] && !call_really_used_regs[regno]; ++ bool might_clobber = crtl->saves_all_registers ++ || df_regs_ever_live_p (regno) ++ || (regno == HARD_FRAME_POINTER_REGNUM ++ && frame_pointer_needed); ++ ++ return (call_saved && might_clobber) ++ || (regno == RETURN_ADDR_REGNUM && crtl->calls_eh_return); ++} ++ ++/* Determine whether to call GPR save/restore routines. */ ++static bool ++riscv_use_save_libcall (const struct riscv_frame_info *frame) ++{ ++ if (!TARGET_SAVE_RESTORE || crtl->calls_eh_return || frame_pointer_needed) ++ return false; ++ ++ return frame->save_libcall_adjustment != 0; ++} ++ ++/* Determine which GPR save/restore routine to call. */ ++ ++static unsigned ++riscv_save_libcall_count (unsigned mask) ++{ ++ for (unsigned n = GP_REG_LAST; n > GP_REG_FIRST; n--) ++ if (BITSET_P (mask, n)) ++ return CALLEE_SAVED_REG_NUMBER (n) + 1; ++ abort (); ++} ++ ++/* Populate the current function's riscv_frame_info structure. ++ ++ RISC-V stack frames grown downward. High addresses are at the top. ++ ++ +-------------------------------+ ++ | | ++ | incoming stack arguments | ++ | | ++ +-------------------------------+ <-- incoming stack pointer ++ | | ++ | callee-allocated save area | ++ | for arguments that are | ++ | split between registers and | ++ | the stack | ++ | | ++ +-------------------------------+ <-- arg_pointer_rtx ++ | | ++ | callee-allocated save area | ++ | for register varargs | ++ | | ++ +-------------------------------+ <-- hard_frame_pointer_rtx; ++ | | stack_pointer_rtx + gp_sp_offset ++ | GPR save area | + UNITS_PER_WORD ++ | | ++ +-------------------------------+ <-- stack_pointer_rtx + fp_sp_offset ++ | | + UNITS_PER_HWVALUE ++ | FPR save area | ++ | | ++ +-------------------------------+ <-- frame_pointer_rtx (virtual) ++ | | ++ | local variables | ++ | | ++ P +-------------------------------+ ++ | | ++ | outgoing stack arguments | ++ | | ++ +-------------------------------+ <-- stack_pointer_rtx ++ ++ Dynamic stack allocations such as alloca insert data at point P. ++ They decrease stack_pointer_rtx but leave frame_pointer_rtx and ++ hard_frame_pointer_rtx unchanged. */ ++ ++static void ++riscv_compute_frame_info (void) ++{ ++ struct riscv_frame_info *frame; ++ HOST_WIDE_INT offset; ++ unsigned int regno, i, num_x_saved = 0, num_f_saved = 0; ++ ++ frame = &cfun->machine->frame; ++ memset (frame, 0, sizeof (*frame)); ++ ++ /* Find out which GPRs we need to save. */ ++ for (regno = GP_REG_FIRST; regno <= GP_REG_LAST; regno++) ++ if (riscv_save_reg_p (regno)) ++ frame->mask |= 1 << (regno - GP_REG_FIRST), num_x_saved++; ++ ++ /* If this function calls eh_return, we must also save and restore the ++ EH data registers. */ ++ if (crtl->calls_eh_return) ++ for (i = 0; (regno = EH_RETURN_DATA_REGNO (i)) != INVALID_REGNUM; i++) ++ frame->mask |= 1 << (regno - GP_REG_FIRST), num_x_saved++; ++ ++ /* Find out which FPRs we need to save. This loop must iterate over ++ the same space as its companion in riscv_for_each_saved_gpr_and_fpr. */ ++ if (TARGET_HARD_FLOAT) ++ for (regno = FP_REG_FIRST; regno <= FP_REG_LAST; regno++) ++ if (riscv_save_reg_p (regno)) ++ frame->fmask |= 1 << (regno - FP_REG_FIRST), num_f_saved++; ++ ++ /* At the bottom of the frame are any outgoing stack arguments. */ ++ offset = crtl->outgoing_args_size; ++ /* Next are local stack variables. */ ++ offset += RISCV_STACK_ALIGN (get_frame_size ()); ++ /* The virtual frame pointer points above the local variables. */ ++ frame->frame_pointer_offset = offset; ++ /* Next are the callee-saved FPRs. */ ++ if (frame->fmask) ++ { ++ offset += RISCV_STACK_ALIGN (num_f_saved * UNITS_PER_FPREG); ++ frame->fp_sp_offset = offset - UNITS_PER_HWFPVALUE; ++ } ++ /* Next are the callee-saved GPRs. */ ++ if (frame->mask) ++ { ++ unsigned x_save_size = RISCV_STACK_ALIGN (num_x_saved * UNITS_PER_WORD); ++ unsigned num_save_restore = 1 + riscv_save_libcall_count (frame->mask); ++ ++ /* Only use save/restore routines if they don't alter the stack size. */ ++ if (RISCV_STACK_ALIGN (num_save_restore * UNITS_PER_WORD) == x_save_size) ++ frame->save_libcall_adjustment = x_save_size; ++ ++ offset += x_save_size; ++ frame->gp_sp_offset = offset - UNITS_PER_WORD; ++ } ++ /* The hard frame pointer points above the callee-saved GPRs. */ ++ frame->hard_frame_pointer_offset = offset; ++ /* Above the hard frame pointer is the callee-allocated varags save area. */ ++ offset += RISCV_STACK_ALIGN (cfun->machine->varargs_size); ++ frame->arg_pointer_offset = offset; ++ /* Next is the callee-allocated area for pretend stack arguments. */ ++ offset += crtl->args.pretend_args_size; ++ frame->total_size = offset; ++ /* Next points the incoming stack pointer and any incoming arguments. */ ++ ++ /* Only use save/restore routines when the GPRs are atop the frame. */ ++ if (frame->hard_frame_pointer_offset != frame->total_size) ++ frame->save_libcall_adjustment = 0; ++} ++ ++/* Make sure that we're not trying to eliminate to the wrong hard frame ++ pointer. */ ++ ++static bool ++riscv_can_eliminate (const int from ATTRIBUTE_UNUSED, const int to) ++{ ++ return (to == HARD_FRAME_POINTER_REGNUM || to == STACK_POINTER_REGNUM); ++} ++ ++/* Implement INITIAL_ELIMINATION_OFFSET. FROM is either the frame pointer ++ or argument pointer. TO is either the stack pointer or hard frame ++ pointer. */ ++ ++HOST_WIDE_INT ++riscv_initial_elimination_offset (int from, int to) ++{ ++ HOST_WIDE_INT src, dest; ++ ++ riscv_compute_frame_info (); ++ ++ if (to == HARD_FRAME_POINTER_REGNUM) ++ dest = cfun->machine->frame.hard_frame_pointer_offset; ++ else if (to == STACK_POINTER_REGNUM) ++ dest = 0; /* this is the base of all offsets */ ++ else ++ gcc_unreachable (); ++ ++ if (from == FRAME_POINTER_REGNUM) ++ src = cfun->machine->frame.frame_pointer_offset; ++ else if (from == ARG_POINTER_REGNUM) ++ src = cfun->machine->frame.arg_pointer_offset; ++ else ++ gcc_unreachable (); ++ ++ return src - dest; ++} ++ ++/* Implement RETURN_ADDR_RTX. We do not support moving back to a ++ previous frame. */ ++ ++rtx ++riscv_return_addr (int count, rtx frame ATTRIBUTE_UNUSED) ++{ ++ if (count != 0) ++ return const0_rtx; ++ ++ return get_hard_reg_initial_val (Pmode, RETURN_ADDR_REGNUM); ++} ++ ++/* Emit code to change the current function's return address to ++ ADDRESS. SCRATCH is available as a scratch register, if needed. ++ ADDRESS and SCRATCH are both word-mode GPRs. */ ++ ++void ++riscv_set_return_address (rtx address, rtx scratch) ++{ ++ rtx slot_address; ++ ++ gcc_assert (BITSET_P (cfun->machine->frame.mask, RETURN_ADDR_REGNUM)); ++ slot_address = riscv_add_offset (scratch, stack_pointer_rtx, ++ cfun->machine->frame.gp_sp_offset); ++ riscv_emit_move (gen_frame_mem (GET_MODE (address), slot_address), address); ++} ++ ++/* A function to save or store a register. The first argument is the ++ register and the second is the stack slot. */ ++typedef void (*riscv_save_restore_fn) (rtx, rtx); ++ ++/* Use FN to save or restore register REGNO. MODE is the register's ++ mode and OFFSET is the offset of its save slot from the current ++ stack pointer. */ ++ ++static void ++riscv_save_restore_reg (enum machine_mode mode, int regno, ++ HOST_WIDE_INT offset, riscv_save_restore_fn fn) ++{ ++ rtx mem; ++ ++ mem = gen_frame_mem (mode, plus_constant (Pmode, stack_pointer_rtx, offset)); ++ fn (gen_rtx_REG (mode, regno), mem); ++} ++ ++/* Call FN for each register that is saved by the current function. ++ SP_OFFSET is the offset of the current stack pointer from the start ++ of the frame. */ ++ ++static void ++riscv_for_each_saved_gpr_and_fpr (HOST_WIDE_INT sp_offset, ++ riscv_save_restore_fn fn) ++{ ++ HOST_WIDE_INT offset; ++ int regno; ++ ++ /* Save the link register and s-registers. */ ++ offset = cfun->machine->frame.gp_sp_offset - sp_offset; ++ for (regno = GP_REG_FIRST; regno <= GP_REG_LAST-1; regno++) ++ if (BITSET_P (cfun->machine->frame.mask, regno - GP_REG_FIRST)) ++ { ++ riscv_save_restore_reg (word_mode, regno, offset, fn); ++ offset -= UNITS_PER_WORD; ++ } ++ ++ /* This loop must iterate over the same space as its companion in ++ riscv_compute_frame_info. */ ++ offset = cfun->machine->frame.fp_sp_offset - sp_offset; ++ for (regno = FP_REG_FIRST; regno <= FP_REG_LAST; regno++) ++ if (BITSET_P (cfun->machine->frame.fmask, regno - FP_REG_FIRST)) ++ { ++ riscv_save_restore_reg (DFmode, regno, offset, fn); ++ offset -= GET_MODE_SIZE (DFmode); ++ } ++} ++ ++/* Emit a move from SRC to DEST, given that one of them is a register ++ save slot and that the other is a register. TEMP is a temporary ++ GPR of the same mode that is available if need be. */ ++ ++static void ++riscv_emit_save_slot_move (rtx dest, rtx src, rtx temp) ++{ ++ unsigned int regno; ++ rtx mem; ++ enum reg_class rclass; ++ ++ if (REG_P (src)) ++ { ++ regno = REGNO (src); ++ mem = dest; ++ } ++ else ++ { ++ regno = REGNO (dest); ++ mem = src; ++ } ++ ++ rclass = riscv_secondary_reload_class (REGNO_REG_CLASS (regno), ++ GET_MODE (mem), mem, mem == src); ++ ++ if (rclass == NO_REGS) ++ riscv_emit_move (dest, src); ++ else ++ { ++ gcc_assert (!reg_overlap_mentioned_p (dest, temp)); ++ riscv_emit_move (temp, src); ++ riscv_emit_move (dest, temp); ++ } ++ if (MEM_P (dest)) ++ riscv_set_frame_expr (riscv_frame_set (dest, src)); ++} ++ ++/* Save register REG to MEM. Make the instruction frame-related. */ ++ ++static void ++riscv_save_reg (rtx reg, rtx mem) ++{ ++ riscv_emit_save_slot_move (mem, reg, RISCV_PROLOGUE_TEMP (GET_MODE (reg))); ++} ++ ++/* Return the code to invoke the GPR save routine. */ ++ ++const char * ++riscv_output_gpr_save (unsigned mask) ++{ ++ static char buf[GP_REG_NUM * 32]; ++ size_t len = 0; ++ unsigned n = riscv_save_libcall_count (mask), i; ++ unsigned frame_size = RISCV_STACK_ALIGN ((n + 1) * UNITS_PER_WORD); ++ ++ len += sprintf (buf + len, "call\tt0,__riscv_save_%u", n); ++ ++#ifdef DWARF2_UNWIND_INFO ++ /* Describe the effect of the call to __riscv_save_X. */ ++ if (dwarf2out_do_cfi_asm ()) ++ { ++ len += sprintf (buf + len, "\n\t.cfi_def_cfa_offset %u", frame_size); ++ ++ for (i = GP_REG_FIRST; i <= GP_REG_LAST; i++) ++ if (BITSET_P (cfun->machine->frame.mask, i)) ++ len += sprintf (buf + len, "\n\t.cfi_offset %u,%d", i, ++ (CALLEE_SAVED_REG_NUMBER (i) + 2) * -UNITS_PER_WORD); ++ } ++#endif ++ ++ return buf; ++} ++ ++/* Expand the "prologue" pattern. */ ++ ++void ++riscv_expand_prologue (void) ++{ ++ struct riscv_frame_info *frame = &cfun->machine->frame; ++ HOST_WIDE_INT size = frame->total_size; ++ unsigned mask = frame->mask; ++ rtx insn; ++ ++ if (flag_stack_usage_info) ++ current_function_static_stack_size = size; ++ ++ /* When optimizing for size, call a subroutine to save the registers. */ ++ if (riscv_use_save_libcall (frame)) ++ { ++ frame->mask = 0; /* Temporarily fib that we need not save GPRs. */ ++ size -= frame->save_libcall_adjustment; ++ emit_insn (gen_gpr_save (GEN_INT (mask))); ++ } ++ ++ /* Save the registers. Allocate up to RISCV_MAX_FIRST_STACK_STEP ++ bytes beforehand; this is enough to cover the register save area ++ without going out of range. */ ++ if ((frame->mask | frame->fmask) != 0) ++ { ++ HOST_WIDE_INT step1; ++ ++ step1 = MIN (size, RISCV_MAX_FIRST_STACK_STEP); ++ insn = gen_add3_insn (stack_pointer_rtx, ++ stack_pointer_rtx, ++ GEN_INT (-step1)); ++ RTX_FRAME_RELATED_P (emit_insn (insn)) = 1; ++ size -= step1; ++ riscv_for_each_saved_gpr_and_fpr (size, riscv_save_reg); ++ } ++ ++ frame->mask = mask; /* Undo the above fib. */ ++ ++ /* Set up the frame pointer, if we're using one. */ ++ if (frame_pointer_needed) ++ { ++ insn = gen_add3_insn (hard_frame_pointer_rtx, stack_pointer_rtx, ++ GEN_INT (frame->hard_frame_pointer_offset - size)); ++ RTX_FRAME_RELATED_P (emit_insn (insn)) = 1; ++ } ++ ++ /* Allocate the rest of the frame. */ ++ if (size > 0) ++ { ++ if (SMALL_OPERAND (-size)) ++ emit_insn (gen_add3_insn (stack_pointer_rtx, stack_pointer_rtx, ++ GEN_INT (-size))); ++ else ++ { ++ riscv_emit_move (RISCV_PROLOGUE_TEMP (Pmode), GEN_INT (-size)); ++ emit_insn (gen_add3_insn (stack_pointer_rtx, ++ stack_pointer_rtx, ++ RISCV_PROLOGUE_TEMP (Pmode))); ++ } ++ } ++ ++ if (frame->total_size > 0) ++ { ++ /* Describe the effect of the instructions that adjusted sp. */ ++ insn = plus_constant (Pmode, stack_pointer_rtx, -frame->total_size); ++ insn = gen_rtx_SET (VOIDmode, stack_pointer_rtx, insn); ++ riscv_set_frame_expr (insn); ++ } ++} ++ ++/* Emit instructions to restore register REG from slot MEM. */ ++ ++static void ++riscv_restore_reg (rtx reg, rtx mem) ++{ ++ riscv_emit_save_slot_move (reg, mem, RISCV_EPILOGUE_TEMP (GET_MODE (reg))); ++} ++ ++/* Expand an "epilogue" or "sibcall_epilogue" pattern; SIBCALL_P ++ says which. */ ++ ++void ++riscv_expand_epilogue (bool sibcall_p) ++{ ++ /* Split the frame into two. STEP1 is the amount of stack we should ++ deallocate before restoring the registers. STEP2 is the amount we ++ should deallocate afterwards. ++ ++ Start off by assuming that no registers need to be restored. */ ++ struct riscv_frame_info *frame = &cfun->machine->frame; ++ unsigned mask = frame->mask; ++ HOST_WIDE_INT step1 = frame->total_size; ++ HOST_WIDE_INT step2 = 0; ++ bool use_restore_libcall = !sibcall_p && riscv_use_save_libcall (frame); ++ rtx ra = gen_rtx_REG (Pmode, RETURN_ADDR_REGNUM); ++ ++ if (!sibcall_p && riscv_can_use_return_insn ()) ++ { ++ emit_jump_insn (gen_return ()); ++ return; ++ } ++ ++ /* Move past any dynamic stack allocations. */ ++ if (cfun->calls_alloca) ++ { ++ rtx adjust = GEN_INT (-frame->hard_frame_pointer_offset); ++ if (!SMALL_INT (adjust)) ++ { ++ riscv_emit_move (RISCV_EPILOGUE_TEMP (Pmode), adjust); ++ adjust = RISCV_EPILOGUE_TEMP (Pmode); ++ } ++ ++ emit_insn (gen_add3_insn (stack_pointer_rtx, hard_frame_pointer_rtx, adjust)); ++ } ++ ++ /* If we need to restore registers, deallocate as much stack as ++ possible in the second step without going out of range. */ ++ if ((frame->mask | frame->fmask) != 0) ++ { ++ step2 = MIN (step1, RISCV_MAX_FIRST_STACK_STEP); ++ step1 -= step2; ++ } ++ ++ /* Set TARGET to BASE + STEP1. */ ++ if (step1 > 0) ++ { ++ /* Get an rtx for STEP1 that we can add to BASE. */ ++ rtx adjust = GEN_INT (step1); ++ if (!SMALL_OPERAND (step1)) ++ { ++ riscv_emit_move (RISCV_EPILOGUE_TEMP (Pmode), adjust); ++ adjust = RISCV_EPILOGUE_TEMP (Pmode); ++ } ++ ++ emit_insn (gen_add3_insn (stack_pointer_rtx, stack_pointer_rtx, adjust)); ++ } ++ ++ if (use_restore_libcall) ++ frame->mask = 0; /* Temporarily fib that we need not save GPRs. */ ++ ++ /* Restore the registers. */ ++ riscv_for_each_saved_gpr_and_fpr (frame->total_size - step2, ++ riscv_restore_reg); ++ ++ if (use_restore_libcall) ++ { ++ frame->mask = mask; /* Undo the above fib. */ ++ gcc_assert (step2 >= frame->save_libcall_adjustment); ++ step2 -= frame->save_libcall_adjustment; ++ } ++ ++ /* Deallocate the final bit of the frame. */ ++ if (step2 > 0) ++ emit_insn (gen_add3_insn (stack_pointer_rtx, stack_pointer_rtx, ++ GEN_INT (step2))); ++ ++ if (use_restore_libcall) ++ { ++ emit_insn (gen_gpr_restore (GEN_INT (riscv_save_libcall_count (mask)))); ++ emit_jump_insn (gen_gpr_restore_return (ra)); ++ return; ++ } ++ ++ /* Add in the __builtin_eh_return stack adjustment. */ ++ if (crtl->calls_eh_return) ++ emit_insn (gen_add3_insn (stack_pointer_rtx, stack_pointer_rtx, ++ EH_RETURN_STACKADJ_RTX)); ++ ++ if (!sibcall_p) ++ emit_jump_insn (gen_simple_return_internal (ra)); ++} ++ ++/* Return nonzero if this function is known to have a null epilogue. ++ This allows the optimizer to omit jumps to jumps if no stack ++ was created. */ ++ ++bool ++riscv_can_use_return_insn (void) ++{ ++ return reload_completed && cfun->machine->frame.total_size == 0; ++} ++ ++/* Return true if register REGNO can store a value of mode MODE. ++ The result of this function is cached in riscv_hard_regno_mode_ok. */ ++ ++static bool ++riscv_hard_regno_mode_ok_p (unsigned int regno, enum machine_mode mode) ++{ ++ unsigned int size = GET_MODE_SIZE (mode); ++ enum mode_class mclass = GET_MODE_CLASS (mode); ++ ++ /* This is hella bogus but ira_build segfaults on RV32 without it. */ ++ if (VECTOR_MODE_P (mode)) ++ return true; ++ ++ if (GP_REG_P (regno)) ++ { ++ if (size <= UNITS_PER_WORD) ++ return true; ++ ++ /* Double-word values must be even-register-aligned. */ ++ if (size <= 2 * UNITS_PER_WORD) ++ return regno % 2 == 0; ++ } ++ ++ if (FP_REG_P (regno)) ++ { ++ if (mclass == MODE_FLOAT ++ || mclass == MODE_COMPLEX_FLOAT ++ || mclass == MODE_VECTOR_FLOAT) ++ return size <= UNITS_PER_FPVALUE; ++ } ++ ++ return false; ++} ++ ++/* Implement HARD_REGNO_NREGS. */ ++ ++unsigned int ++riscv_hard_regno_nregs (int regno, enum machine_mode mode) ++{ ++ if (FP_REG_P (regno)) ++ return (GET_MODE_SIZE (mode) + UNITS_PER_FPREG - 1) / UNITS_PER_FPREG; ++ ++ /* All other registers are word-sized. */ ++ return (GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD; ++} ++ ++/* Implement CLASS_MAX_NREGS, taking the maximum of the cases ++ in riscv_hard_regno_nregs. */ ++ ++int ++riscv_class_max_nregs (enum reg_class rclass, enum machine_mode mode) ++{ ++ int size; ++ HARD_REG_SET left; ++ ++ size = 0x8000; ++ COPY_HARD_REG_SET (left, reg_class_contents[(int) rclass]); ++ if (hard_reg_set_intersect_p (left, reg_class_contents[(int) FP_REGS])) ++ { ++ size = MIN (size, UNITS_PER_FPREG); ++ AND_COMPL_HARD_REG_SET (left, reg_class_contents[(int) FP_REGS]); ++ } ++ if (!hard_reg_set_empty_p (left)) ++ size = MIN (size, UNITS_PER_WORD); ++ return (GET_MODE_SIZE (mode) + size - 1) / size; ++} ++ ++/* Implement TARGET_PREFERRED_RELOAD_CLASS. */ ++ ++static reg_class_t ++riscv_preferred_reload_class (rtx x ATTRIBUTE_UNUSED, reg_class_t rclass) ++{ ++ return reg_class_subset_p (FP_REGS, rclass) ? FP_REGS : ++ reg_class_subset_p (GR_REGS, rclass) ? GR_REGS : ++ rclass; ++} ++ ++/* RCLASS is a class involved in a REGISTER_MOVE_COST calculation. ++ Return a "canonical" class to represent it in later calculations. */ ++ ++static reg_class_t ++riscv_canonicalize_move_class (reg_class_t rclass) ++{ ++ if (reg_class_subset_p (rclass, GENERAL_REGS)) ++ rclass = GENERAL_REGS; ++ ++ return rclass; ++} ++ ++/* Implement TARGET_REGISTER_MOVE_COST. Return 0 for classes that are the ++ maximum of the move costs for subclasses; regclass will work out ++ the maximum for us. */ ++ ++static int ++riscv_register_move_cost (enum machine_mode mode ATTRIBUTE_UNUSED, ++ reg_class_t from, reg_class_t to) ++{ ++ from = riscv_canonicalize_move_class (from); ++ to = riscv_canonicalize_move_class (to); ++ ++ if ((from == GENERAL_REGS && to == GENERAL_REGS) ++ || (from == GENERAL_REGS && to == FP_REGS) ++ || (from == FP_REGS && to == FP_REGS)) ++ return COSTS_N_INSNS (1); ++ ++ if (from == FP_REGS && to == GENERAL_REGS) ++ return tune_info->fp_to_int_cost; ++ ++ return 0; ++} ++ ++/* Implement TARGET_MEMORY_MOVE_COST. */ ++ ++static int ++riscv_memory_move_cost (enum machine_mode mode, reg_class_t rclass, bool in) ++{ ++ return (tune_info->memory_cost ++ + memory_move_secondary_cost (mode, rclass, in)); ++} ++ ++/* Return the register class required for a secondary register when ++ copying between one of the registers in RCLASS and value X, which ++ has mode MODE. X is the source of the move if IN_P, otherwise it ++ is the destination. Return NO_REGS if no secondary register is ++ needed. */ ++ ++enum reg_class ++riscv_secondary_reload_class (enum reg_class rclass, ++ enum machine_mode mode, rtx x, ++ bool in_p ATTRIBUTE_UNUSED) ++{ ++ int regno; ++ ++ regno = true_regnum (x); ++ ++ if (reg_class_subset_p (rclass, FP_REGS)) ++ { ++ if (MEM_P (x) && (GET_MODE_SIZE (mode) == 4 || GET_MODE_SIZE (mode) == 8)) ++ /* We can use flw/fld/fsw/fsd. */ ++ return NO_REGS; ++ ++ if (GP_REG_P (regno) || x == CONST0_RTX (mode)) ++ /* We can use fmv or go through memory when mode > Pmode. */ ++ return NO_REGS; ++ ++ if (CONSTANT_P (x) && !targetm.cannot_force_const_mem (mode, x)) ++ /* We can force the constant to memory and use flw/fld. */ ++ return NO_REGS; ++ ++ if (FP_REG_P (regno)) ++ /* We can use fmv.fmt. */ ++ return NO_REGS; ++ ++ /* Otherwise, we need to reload through an integer register. */ ++ return GR_REGS; ++ } ++ if (FP_REG_P (regno)) ++ return reg_class_subset_p (rclass, GR_REGS) ? NO_REGS : GR_REGS; ++ ++ return NO_REGS; ++} ++ ++/* Implement TARGET_MODE_REP_EXTENDED. */ ++ ++static int ++riscv_mode_rep_extended (enum machine_mode mode, enum machine_mode mode_rep) ++{ ++ /* On 64-bit targets, SImode register values are sign-extended to DImode. */ ++ if (TARGET_64BIT && mode == SImode && mode_rep == DImode) ++ return SIGN_EXTEND; ++ ++ return UNKNOWN; ++} ++ ++/* Implement TARGET_SCALAR_MODE_SUPPORTED_P. */ ++ ++static bool ++riscv_scalar_mode_supported_p (enum machine_mode mode) ++{ ++ if (ALL_FIXED_POINT_MODE_P (mode) ++ && GET_MODE_PRECISION (mode) <= 2 * BITS_PER_WORD) ++ return true; ++ ++ return default_scalar_mode_supported_p (mode); ++} ++ ++/* Implement TARGET_SCHED_ADJUST_COST. We assume that anti and output ++ dependencies have no cost. */ ++ ++static int ++riscv_adjust_cost (rtx_insn *insn ATTRIBUTE_UNUSED, rtx link, ++ rtx_insn *dep ATTRIBUTE_UNUSED, int cost) ++{ ++ if (REG_NOTE_KIND (link) != 0) ++ return 0; ++ return cost; ++} ++ ++/* Return the number of instructions that can be issued per cycle. */ ++ ++static int ++riscv_issue_rate (void) ++{ ++ return tune_info->issue_rate; ++} ++ ++/* This structure describes a single built-in function. */ ++struct riscv_builtin_description { ++ /* The code of the main .md file instruction. See riscv_builtin_type ++ for more information. */ ++ enum insn_code icode; ++ ++ /* The name of the built-in function. */ ++ const char *name; ++ ++ /* Specifies how the function should be expanded. */ ++ enum riscv_builtin_type builtin_type; ++ ++ /* The function's prototype. */ ++ enum riscv_function_type function_type; ++ ++ /* Whether the function is available. */ ++ unsigned int (*avail) (void); ++}; ++ ++static unsigned int ++riscv_builtin_avail_riscv (void) ++{ ++ return 1; ++} ++ ++/* Construct a riscv_builtin_description from the given arguments. ++ ++ INSN is the name of the associated instruction pattern, without the ++ leading CODE_FOR_riscv_. ++ ++ CODE is the floating-point condition code associated with the ++ function. It can be 'f' if the field is not applicable. ++ ++ NAME is the name of the function itself, without the leading ++ "__builtin_riscv_". ++ ++ BUILTIN_TYPE and FUNCTION_TYPE are riscv_builtin_description fields. ++ ++ AVAIL is the name of the availability predicate, without the leading ++ riscv_builtin_avail_. */ ++#define RISCV_BUILTIN(INSN, NAME, BUILTIN_TYPE, FUNCTION_TYPE, AVAIL) \ ++ { CODE_FOR_ ## INSN, "__builtin_riscv_" NAME, \ ++ BUILTIN_TYPE, FUNCTION_TYPE, riscv_builtin_avail_ ## AVAIL } ++ ++/* Define __builtin_riscv_<INSN>, which is a RISCV_BUILTIN_DIRECT function ++ mapped to instruction CODE_FOR_<INSN>, FUNCTION_TYPE and AVAIL ++ are as for RISCV_BUILTIN. */ ++#define DIRECT_BUILTIN(INSN, FUNCTION_TYPE, AVAIL) \ ++ RISCV_BUILTIN (INSN, #INSN, RISCV_BUILTIN_DIRECT, FUNCTION_TYPE, AVAIL) ++ ++/* Define __builtin_riscv_<INSN>, which is a RISCV_BUILTIN_DIRECT_NO_TARGET ++ function mapped to instruction CODE_FOR_<INSN>, FUNCTION_TYPE ++ and AVAIL are as for RISCV_BUILTIN. */ ++#define DIRECT_NO_TARGET_BUILTIN(INSN, FUNCTION_TYPE, AVAIL) \ ++ RISCV_BUILTIN (INSN, #INSN, RISCV_BUILTIN_DIRECT_NO_TARGET, \ ++ FUNCTION_TYPE, AVAIL) ++ ++static const struct riscv_builtin_description riscv_builtins[] = { ++ DIRECT_NO_TARGET_BUILTIN (nop, RISCV_VOID_FTYPE_VOID, riscv), ++}; ++ ++/* Index I is the function declaration for riscv_builtins[I], or null if the ++ function isn't defined on this target. */ ++static GTY(()) tree riscv_builtin_decls[ARRAY_SIZE (riscv_builtins)]; ++ ++ ++/* Source-level argument types. */ ++#define RISCV_ATYPE_VOID void_type_node ++#define RISCV_ATYPE_INT integer_type_node ++#define RISCV_ATYPE_POINTER ptr_type_node ++#define RISCV_ATYPE_CPOINTER const_ptr_type_node ++ ++/* Standard mode-based argument types. */ ++#define RISCV_ATYPE_UQI unsigned_intQI_type_node ++#define RISCV_ATYPE_SI intSI_type_node ++#define RISCV_ATYPE_USI unsigned_intSI_type_node ++#define RISCV_ATYPE_DI intDI_type_node ++#define RISCV_ATYPE_UDI unsigned_intDI_type_node ++#define RISCV_ATYPE_SF float_type_node ++#define RISCV_ATYPE_DF double_type_node ++ ++/* RISCV_FTYPE_ATYPESN takes N RISCV_FTYPES-like type codes and lists ++ their associated RISCV_ATYPEs. */ ++#define RISCV_FTYPE_ATYPES1(A, B) \ ++ RISCV_ATYPE_##A, RISCV_ATYPE_##B ++ ++#define RISCV_FTYPE_ATYPES2(A, B, C) \ ++ RISCV_ATYPE_##A, RISCV_ATYPE_##B, RISCV_ATYPE_##C ++ ++#define RISCV_FTYPE_ATYPES3(A, B, C, D) \ ++ RISCV_ATYPE_##A, RISCV_ATYPE_##B, RISCV_ATYPE_##C, RISCV_ATYPE_##D ++ ++#define RISCV_FTYPE_ATYPES4(A, B, C, D, E) \ ++ RISCV_ATYPE_##A, RISCV_ATYPE_##B, RISCV_ATYPE_##C, RISCV_ATYPE_##D, \ ++ RISCV_ATYPE_##E ++ ++/* Return the function type associated with function prototype TYPE. */ ++ ++static tree ++riscv_build_function_type (enum riscv_function_type type) ++{ ++ static tree types[(int) RISCV_MAX_FTYPE_MAX]; ++ ++ if (types[(int) type] == NULL_TREE) ++ switch (type) ++ { ++#define DEF_RISCV_FTYPE(NUM, ARGS) \ ++ case RISCV_FTYPE_NAME##NUM ARGS: \ ++ types[(int) type] \ ++ = build_function_type_list (RISCV_FTYPE_ATYPES##NUM ARGS, \ ++ NULL_TREE); \ ++ break; ++#include "config/riscv/riscv-ftypes.def" ++#undef DEF_RISCV_FTYPE ++ default: ++ gcc_unreachable (); ++ } ++ ++ return types[(int) type]; ++} ++ ++/* Implement TARGET_INIT_BUILTINS. */ ++ ++static void ++riscv_init_builtins (void) ++{ ++ const struct riscv_builtin_description *d; ++ unsigned int i; ++ ++ /* Iterate through all of the bdesc arrays, initializing all of the ++ builtin functions. */ ++ for (i = 0; i < ARRAY_SIZE (riscv_builtins); i++) ++ { ++ d = &riscv_builtins[i]; ++ if (d->avail ()) ++ riscv_builtin_decls[i] ++ = add_builtin_function (d->name, ++ riscv_build_function_type (d->function_type), ++ i, BUILT_IN_MD, NULL, NULL); ++ } ++} ++ ++/* Implement TARGET_BUILTIN_DECL. */ ++ ++static tree ++riscv_builtin_decl (unsigned int code, bool initialize_p ATTRIBUTE_UNUSED) ++{ ++ if (code >= ARRAY_SIZE (riscv_builtins)) ++ return error_mark_node; ++ return riscv_builtin_decls[code]; ++} ++ ++/* Take argument ARGNO from EXP's argument list and convert it into a ++ form suitable for input operand OPNO of instruction ICODE. Return the ++ value. */ ++ ++static rtx ++riscv_prepare_builtin_arg (enum insn_code icode, ++ unsigned int opno, tree exp, unsigned int argno) ++{ ++ tree arg; ++ rtx value; ++ enum machine_mode mode; ++ ++ arg = CALL_EXPR_ARG (exp, argno); ++ value = expand_normal (arg); ++ mode = insn_data[icode].operand[opno].mode; ++ if (!insn_data[icode].operand[opno].predicate (value, mode)) ++ { ++ /* We need to get the mode from ARG for two reasons: ++ ++ - to cope with address operands, where MODE is the mode of the ++ memory, rather than of VALUE itself. ++ ++ - to cope with special predicates like pmode_register_operand, ++ where MODE is VOIDmode. */ ++ value = copy_to_mode_reg (TYPE_MODE (TREE_TYPE (arg)), value); ++ ++ /* Check the predicate again. */ ++ if (!insn_data[icode].operand[opno].predicate (value, mode)) ++ { ++ error ("invalid argument to built-in function"); ++ return const0_rtx; ++ } ++ } ++ ++ return value; ++} ++ ++/* Return an rtx suitable for output operand OP of instruction ICODE. ++ If TARGET is non-null, try to use it where possible. */ ++ ++static rtx ++riscv_prepare_builtin_target (enum insn_code icode, unsigned int op, rtx target) ++{ ++ enum machine_mode mode; ++ ++ mode = insn_data[icode].operand[op].mode; ++ if (target == 0 || !insn_data[icode].operand[op].predicate (target, mode)) ++ target = gen_reg_rtx (mode); ++ ++ return target; ++} ++ ++/* Expand a RISCV_BUILTIN_DIRECT or RISCV_BUILTIN_DIRECT_NO_TARGET function; ++ HAS_TARGET_P says which. EXP is the CALL_EXPR that calls the function ++ and ICODE is the code of the associated .md pattern. TARGET, if nonnull, ++ suggests a good place to put the result. */ ++ ++static rtx ++riscv_expand_builtin_direct (enum insn_code icode, rtx target, tree exp, ++ bool has_target_p) ++{ ++ rtx ops[MAX_RECOG_OPERANDS]; ++ int opno, argno; ++ ++ /* Map any target to operand 0. */ ++ opno = 0; ++ if (has_target_p) ++ { ++ target = riscv_prepare_builtin_target (icode, opno, target); ++ ops[opno] = target; ++ opno++; ++ } ++ ++ /* Map the arguments to the other operands. The n_operands value ++ for an expander includes match_dups and match_scratches as well as ++ match_operands, so n_operands is only an upper bound on the number ++ of arguments to the expander function. */ ++ gcc_assert (opno + call_expr_nargs (exp) <= insn_data[icode].n_operands); ++ for (argno = 0; argno < call_expr_nargs (exp); argno++, opno++) ++ ops[opno] = riscv_prepare_builtin_arg (icode, opno, exp, argno); ++ ++ switch (opno) ++ { ++ case 2: ++ emit_insn (GEN_FCN (icode) (ops[0], ops[1])); ++ break; ++ ++ case 3: ++ emit_insn (GEN_FCN (icode) (ops[0], ops[1], ops[2])); ++ break; ++ ++ case 4: ++ emit_insn (GEN_FCN (icode) (ops[0], ops[1], ops[2], ops[3])); ++ break; ++ ++ default: ++ gcc_unreachable (); ++ } ++ return target; ++} ++ ++/* Implement TARGET_EXPAND_BUILTIN. */ ++ ++static rtx ++riscv_expand_builtin (tree exp, rtx target, rtx subtarget ATTRIBUTE_UNUSED, ++ enum machine_mode mode ATTRIBUTE_UNUSED, ++ int ignore ATTRIBUTE_UNUSED) ++{ ++ tree fndecl; ++ unsigned int fcode, avail; ++ const struct riscv_builtin_description *d; ++ ++ fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0); ++ fcode = DECL_FUNCTION_CODE (fndecl); ++ gcc_assert (fcode < ARRAY_SIZE (riscv_builtins)); ++ d = &riscv_builtins[fcode]; ++ avail = d->avail (); ++ gcc_assert (avail != 0); ++ switch (d->builtin_type) ++ { ++ case RISCV_BUILTIN_DIRECT: ++ return riscv_expand_builtin_direct (d->icode, target, exp, true); ++ ++ case RISCV_BUILTIN_DIRECT_NO_TARGET: ++ return riscv_expand_builtin_direct (d->icode, target, exp, false); ++ } ++ gcc_unreachable (); ++} ++ ++/* Implement TARGET_ASM_OUTPUT_MI_THUNK. Generate rtl rather than asm text ++ in order to avoid duplicating too much logic from elsewhere. */ ++ ++static void ++riscv_output_mi_thunk (FILE *file, tree thunk_fndecl ATTRIBUTE_UNUSED, ++ HOST_WIDE_INT delta, HOST_WIDE_INT vcall_offset, ++ tree function) ++{ ++ rtx this_rtx, temp1, temp2, fnaddr; ++ rtx_insn *insn; ++ bool use_sibcall_p; ++ ++ /* Pretend to be a post-reload pass while generating rtl. */ ++ reload_completed = 1; ++ ++ /* Mark the end of the (empty) prologue. */ ++ emit_note (NOTE_INSN_PROLOGUE_END); ++ ++ /* Determine if we can use a sibcall to call FUNCTION directly. */ ++ fnaddr = XEXP (DECL_RTL (function), 0); ++ use_sibcall_p = absolute_symbolic_operand (fnaddr, Pmode); ++ ++ /* We need two temporary registers in some cases. */ ++ temp1 = gen_rtx_REG (Pmode, GP_TEMP_FIRST); ++ temp2 = gen_rtx_REG (Pmode, GP_TEMP_FIRST + 1); ++ ++ /* Find out which register contains the "this" pointer. */ ++ if (aggregate_value_p (TREE_TYPE (TREE_TYPE (function)), function)) ++ this_rtx = gen_rtx_REG (Pmode, GP_ARG_FIRST + 1); ++ else ++ this_rtx = gen_rtx_REG (Pmode, GP_ARG_FIRST); ++ ++ /* Add DELTA to THIS_RTX. */ ++ if (delta != 0) ++ { ++ rtx offset = GEN_INT (delta); ++ if (!SMALL_OPERAND (delta)) ++ { ++ riscv_emit_move (temp1, offset); ++ offset = temp1; ++ } ++ emit_insn (gen_add3_insn (this_rtx, this_rtx, offset)); ++ } ++ ++ /* If needed, add *(*THIS_RTX + VCALL_OFFSET) to THIS_RTX. */ ++ if (vcall_offset != 0) ++ { ++ rtx addr; ++ ++ /* Set TEMP1 to *THIS_RTX. */ ++ riscv_emit_move (temp1, gen_rtx_MEM (Pmode, this_rtx)); ++ ++ /* Set ADDR to a legitimate address for *THIS_RTX + VCALL_OFFSET. */ ++ addr = riscv_add_offset (temp2, temp1, vcall_offset); ++ ++ /* Load the offset and add it to THIS_RTX. */ ++ riscv_emit_move (temp1, gen_rtx_MEM (Pmode, addr)); ++ emit_insn (gen_add3_insn (this_rtx, this_rtx, temp1)); ++ } ++ ++ /* Jump to the target function. Use a sibcall if direct jumps are ++ allowed, otherwise load the address into a register first. */ ++ if (use_sibcall_p) ++ { ++ insn = emit_call_insn (gen_sibcall_internal (fnaddr, const0_rtx)); ++ SIBLING_CALL_P (insn) = 1; ++ } ++ else ++ { ++ riscv_emit_move(temp1, fnaddr); ++ emit_jump_insn (gen_indirect_jump (temp1)); ++ } ++ ++ /* Run just enough of rest_of_compilation. This sequence was ++ "borrowed" from alpha.c. */ ++ insn = get_insns (); ++ split_all_insns_noflow (); ++ shorten_branches (insn); ++ final_start_function (insn, file, 1); ++ final (insn, file, 1); ++ final_end_function (); ++ ++ /* Clean up the vars set above. Note that final_end_function resets ++ the global pointer for us. */ ++ reload_completed = 0; ++} ++ ++/* Allocate a chunk of memory for per-function machine-dependent data. */ ++ ++static struct machine_function * ++riscv_init_machine_status (void) ++{ ++ return ggc_cleared_alloc<machine_function> (); ++} ++ ++/* Implement TARGET_OPTION_OVERRIDE. */ ++ ++static void ++riscv_option_override (void) ++{ ++ int regno, mode; ++ const struct riscv_cpu_info *cpu; ++ ++#ifdef SUBTARGET_OVERRIDE_OPTIONS ++ SUBTARGET_OVERRIDE_OPTIONS; ++#endif ++ ++ flag_pcc_struct_return = 0; ++ ++ if (flag_pic) ++ g_switch_value = 0; ++ ++ /* Prefer a call to memcpy over inline code when optimizing for size, ++ though see MOVE_RATIO in riscv.h. */ ++ if (optimize_size && (target_flags_explicit & MASK_MEMCPY) == 0) ++ target_flags |= MASK_MEMCPY; ++ ++ /* Handle -mtune. */ ++ cpu = riscv_parse_cpu (riscv_tune_string ? riscv_tune_string : ++ RISCV_TUNE_STRING_DEFAULT); ++ tune_info = optimize_size ? &optimize_size_tune_info : cpu->tune_info; ++ ++ /* If the user hasn't specified a branch cost, use the processor's ++ default. */ ++ if (riscv_branch_cost == 0) ++ riscv_branch_cost = tune_info->branch_cost; ++ ++ /* Set up riscv_hard_regno_mode_ok. */ ++ for (mode = 0; mode < MAX_MACHINE_MODE; mode++) ++ for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) ++ riscv_hard_regno_mode_ok[mode][regno] ++ = riscv_hard_regno_mode_ok_p (regno, (enum machine_mode) mode); ++ ++ /* Function to allocate machine-dependent function status. */ ++ init_machine_status = &riscv_init_machine_status; ++ ++ if (riscv_cmodel_string) ++ { ++ if (strcmp (riscv_cmodel_string, "medlow") == 0) ++ riscv_cmodel = CM_MEDLOW; ++ else if (strcmp (riscv_cmodel_string, "medany") == 0) ++ riscv_cmodel = CM_MEDANY; ++ else ++ error ("unsupported code model: %s", riscv_cmodel_string); ++ } ++ ++ if (flag_pic) ++ riscv_cmodel = CM_PIC; ++ ++ riscv_init_relocs (); ++} ++ ++/* Implement TARGET_CONDITIONAL_REGISTER_USAGE. */ ++ ++static void ++riscv_conditional_register_usage (void) ++{ ++ int regno; ++ ++ if (!TARGET_HARD_FLOAT) ++ { ++ for (regno = FP_REG_FIRST; regno <= FP_REG_LAST; regno++) ++ fixed_regs[regno] = call_used_regs[regno] = 1; ++ } ++} ++ ++/* Implement TARGET_TRAMPOLINE_INIT. */ ++ ++static void ++riscv_trampoline_init (rtx m_tramp, tree fndecl, rtx chain_value) ++{ ++ rtx addr, end_addr, mem; ++ rtx trampoline[4]; ++ unsigned int i; ++ HOST_WIDE_INT static_chain_offset, target_function_offset; ++ ++ /* Work out the offsets of the pointers from the start of the ++ trampoline code. */ ++ gcc_assert (ARRAY_SIZE (trampoline) * 4 == TRAMPOLINE_CODE_SIZE); ++ static_chain_offset = TRAMPOLINE_CODE_SIZE; ++ target_function_offset = static_chain_offset + GET_MODE_SIZE (ptr_mode); ++ ++ /* Get pointers to the beginning and end of the code block. */ ++ addr = force_reg (Pmode, XEXP (m_tramp, 0)); ++ end_addr = riscv_force_binary (Pmode, PLUS, addr, GEN_INT (TRAMPOLINE_CODE_SIZE)); ++ ++#define OP(X) gen_int_mode (X, SImode) ++#define MATCH_LREG ((Pmode) == DImode ? MATCH_LD : MATCH_LW) ++ ++ /* auipc t0, 0 ++ l[wd] t1, target_function_offset(t0) ++ l[wd] $static_chain, static_chain_offset(t0) ++ jr t1 ++ */ ++ ++ trampoline[0] = OP (RISCV_UTYPE (AUIPC, STATIC_CHAIN_REGNUM, 0)); ++ trampoline[1] = OP (RISCV_ITYPE (LREG, RISCV_PROLOGUE_TEMP_REGNUM, ++ STATIC_CHAIN_REGNUM, target_function_offset)); ++ trampoline[2] = OP (RISCV_ITYPE (LREG, STATIC_CHAIN_REGNUM, ++ STATIC_CHAIN_REGNUM, static_chain_offset)); ++ trampoline[3] = OP (RISCV_ITYPE (JALR, 0, RISCV_PROLOGUE_TEMP_REGNUM, 0)); ++ ++#undef MATCH_LREG ++#undef OP ++ ++ /* Copy the trampoline code. Leave any padding uninitialized. */ ++ for (i = 0; i < ARRAY_SIZE (trampoline); i++) ++ { ++ mem = adjust_address (m_tramp, SImode, i * GET_MODE_SIZE (SImode)); ++ riscv_emit_move (mem, trampoline[i]); ++ } ++ ++ /* Set up the static chain pointer field. */ ++ mem = adjust_address (m_tramp, ptr_mode, static_chain_offset); ++ riscv_emit_move (mem, chain_value); ++ ++ /* Set up the target function field. */ ++ mem = adjust_address (m_tramp, ptr_mode, target_function_offset); ++ riscv_emit_move (mem, XEXP (DECL_RTL (fndecl), 0)); ++ ++ /* Flush the code part of the trampoline. */ ++ emit_insn (gen_add3_insn (end_addr, addr, GEN_INT (TRAMPOLINE_SIZE))); ++ emit_insn (gen_clear_cache (addr, end_addr)); ++} ++ ++/* Implement TARGET_FUNCTION_OK_FOR_SIBCALL. */ ++ ++static bool ++riscv_function_ok_for_sibcall (tree decl, tree exp ATTRIBUTE_UNUSED) ++{ ++ if (TARGET_SAVE_RESTORE) ++ { ++ /* When optimzing for size, don't use sibcalls in non-leaf routines */ ++ if (cfun->machine->is_leaf == 0) ++ cfun->machine->is_leaf = leaf_function_p () ? 1 : -1; ++ ++ return cfun->machine->is_leaf > 0; ++ } ++ ++ return true; ++} ++ ++static bool ++riscv_lra_p (void) ++{ ++ return riscv_lra_flag; ++} ++ ++/* Initialize the GCC target structure. */ ++#undef TARGET_ASM_ALIGNED_HI_OP ++#define TARGET_ASM_ALIGNED_HI_OP "\t.half\t" ++#undef TARGET_ASM_ALIGNED_SI_OP ++#define TARGET_ASM_ALIGNED_SI_OP "\t.word\t" ++#undef TARGET_ASM_ALIGNED_DI_OP ++#define TARGET_ASM_ALIGNED_DI_OP "\t.dword\t" ++ ++#undef TARGET_OPTION_OVERRIDE ++#define TARGET_OPTION_OVERRIDE riscv_option_override ++ ++#undef TARGET_LEGITIMIZE_ADDRESS ++#define TARGET_LEGITIMIZE_ADDRESS riscv_legitimize_address ++ ++#undef TARGET_SCHED_ADJUST_COST ++#define TARGET_SCHED_ADJUST_COST riscv_adjust_cost ++#undef TARGET_SCHED_ISSUE_RATE ++#define TARGET_SCHED_ISSUE_RATE riscv_issue_rate ++ ++#undef TARGET_FUNCTION_OK_FOR_SIBCALL ++#define TARGET_FUNCTION_OK_FOR_SIBCALL riscv_function_ok_for_sibcall ++ ++#undef TARGET_REGISTER_MOVE_COST ++#define TARGET_REGISTER_MOVE_COST riscv_register_move_cost ++#undef TARGET_MEMORY_MOVE_COST ++#define TARGET_MEMORY_MOVE_COST riscv_memory_move_cost ++#undef TARGET_RTX_COSTS ++#define TARGET_RTX_COSTS riscv_rtx_costs ++#undef TARGET_ADDRESS_COST ++#define TARGET_ADDRESS_COST riscv_address_cost ++ ++#undef TARGET_PREFERRED_RELOAD_CLASS ++#define TARGET_PREFERRED_RELOAD_CLASS riscv_preferred_reload_class ++ ++#undef TARGET_ASM_FILE_START_FILE_DIRECTIVE ++#define TARGET_ASM_FILE_START_FILE_DIRECTIVE true ++ ++#undef TARGET_EXPAND_BUILTIN_VA_START ++#define TARGET_EXPAND_BUILTIN_VA_START riscv_va_start ++ ++#undef TARGET_PROMOTE_FUNCTION_MODE ++#define TARGET_PROMOTE_FUNCTION_MODE default_promote_function_mode_always_promote ++ ++#undef TARGET_RETURN_IN_MEMORY ++#define TARGET_RETURN_IN_MEMORY riscv_return_in_memory ++ ++#undef TARGET_ASM_OUTPUT_MI_THUNK ++#define TARGET_ASM_OUTPUT_MI_THUNK riscv_output_mi_thunk ++#undef TARGET_ASM_CAN_OUTPUT_MI_THUNK ++#define TARGET_ASM_CAN_OUTPUT_MI_THUNK hook_bool_const_tree_hwi_hwi_const_tree_true ++ ++#undef TARGET_PRINT_OPERAND ++#define TARGET_PRINT_OPERAND riscv_print_operand ++#undef TARGET_PRINT_OPERAND_ADDRESS ++#define TARGET_PRINT_OPERAND_ADDRESS riscv_print_operand_address ++ ++#undef TARGET_SETUP_INCOMING_VARARGS ++#define TARGET_SETUP_INCOMING_VARARGS riscv_setup_incoming_varargs ++#undef TARGET_STRICT_ARGUMENT_NAMING ++#define TARGET_STRICT_ARGUMENT_NAMING hook_bool_CUMULATIVE_ARGS_true ++#undef TARGET_MUST_PASS_IN_STACK ++#define TARGET_MUST_PASS_IN_STACK must_pass_in_stack_var_size ++#undef TARGET_PASS_BY_REFERENCE ++#define TARGET_PASS_BY_REFERENCE riscv_pass_by_reference ++#undef TARGET_ARG_PARTIAL_BYTES ++#define TARGET_ARG_PARTIAL_BYTES riscv_arg_partial_bytes ++#undef TARGET_FUNCTION_ARG ++#define TARGET_FUNCTION_ARG riscv_function_arg ++#undef TARGET_FUNCTION_ARG_ADVANCE ++#define TARGET_FUNCTION_ARG_ADVANCE riscv_function_arg_advance ++#undef TARGET_FUNCTION_ARG_BOUNDARY ++#define TARGET_FUNCTION_ARG_BOUNDARY riscv_function_arg_boundary ++ ++#undef TARGET_MODE_REP_EXTENDED ++#define TARGET_MODE_REP_EXTENDED riscv_mode_rep_extended ++ ++#undef TARGET_SCALAR_MODE_SUPPORTED_P ++#define TARGET_SCALAR_MODE_SUPPORTED_P riscv_scalar_mode_supported_p ++ ++#undef TARGET_INIT_BUILTINS ++#define TARGET_INIT_BUILTINS riscv_init_builtins ++#undef TARGET_BUILTIN_DECL ++#define TARGET_BUILTIN_DECL riscv_builtin_decl ++#undef TARGET_EXPAND_BUILTIN ++#define TARGET_EXPAND_BUILTIN riscv_expand_builtin ++ ++#undef TARGET_HAVE_TLS ++#define TARGET_HAVE_TLS HAVE_AS_TLS ++ ++#undef TARGET_CANNOT_FORCE_CONST_MEM ++#define TARGET_CANNOT_FORCE_CONST_MEM riscv_cannot_force_const_mem ++ ++#undef TARGET_LEGITIMATE_CONSTANT_P ++#define TARGET_LEGITIMATE_CONSTANT_P riscv_legitimate_constant_p ++ ++#undef TARGET_USE_BLOCKS_FOR_CONSTANT_P ++#define TARGET_USE_BLOCKS_FOR_CONSTANT_P hook_bool_mode_const_rtx_true ++ ++#ifdef HAVE_AS_DTPRELWORD ++#undef TARGET_ASM_OUTPUT_DWARF_DTPREL ++#define TARGET_ASM_OUTPUT_DWARF_DTPREL riscv_output_dwarf_dtprel ++#endif ++ ++#undef TARGET_LEGITIMATE_ADDRESS_P ++#define TARGET_LEGITIMATE_ADDRESS_P riscv_legitimate_address_p ++ ++#undef TARGET_CAN_ELIMINATE ++#define TARGET_CAN_ELIMINATE riscv_can_eliminate ++ ++#undef TARGET_CONDITIONAL_REGISTER_USAGE ++#define TARGET_CONDITIONAL_REGISTER_USAGE riscv_conditional_register_usage ++ ++#undef TARGET_TRAMPOLINE_INIT ++#define TARGET_TRAMPOLINE_INIT riscv_trampoline_init ++ ++#undef TARGET_IN_SMALL_DATA_P ++#define TARGET_IN_SMALL_DATA_P riscv_in_small_data_p ++ ++#undef TARGET_ASM_SELECT_RTX_SECTION ++#define TARGET_ASM_SELECT_RTX_SECTION riscv_elf_select_rtx_section ++ ++#undef TARGET_MIN_ANCHOR_OFFSET ++#define TARGET_MIN_ANCHOR_OFFSET (-RISCV_IMM_REACH/2) ++ ++#undef TARGET_MAX_ANCHOR_OFFSET ++#define TARGET_MAX_ANCHOR_OFFSET (RISCV_IMM_REACH/2-1) ++ ++#undef TARGET_LRA_P ++#define TARGET_LRA_P riscv_lra_p ++ ++struct gcc_target targetm = TARGET_INITIALIZER; ++ ++#include "gt-riscv.h" +diff -urN empty/gcc/config/riscv/riscv.h gcc-5.2.0/gcc/config/riscv/riscv.h +--- empty/gcc/config/riscv/riscv.h 1970-01-01 01:00:00.000000000 +0100 ++++ gcc-5.2.0/gcc/config/riscv/riscv.h 2015-07-17 22:36:52.319705931 +0200 +@@ -0,0 +1,1109 @@ ++/* Definition of RISC-V target for GNU compiler. ++ Copyright (C) 2011-2014 Free Software Foundation, Inc. ++ Contributed by Andrew Waterman (waterman@cs.berkeley.edu) at UC Berkeley. ++ Based on MIPS target for GNU compiler. ++ ++This file is part of GCC. ++ ++GCC is free software; you can redistribute it and/or modify ++it under the terms of the GNU General Public License as published by ++the Free Software Foundation; either version 3, or (at your option) ++any later version. ++ ++GCC is distributed in the hope that it will be useful, ++but WITHOUT ANY WARRANTY; without even the implied warranty of ++MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++GNU General Public License for more details. ++ ++You should have received a copy of the GNU General Public License ++along with GCC; see the file COPYING3. If not see ++<http://www.gnu.org/licenses/>. */ ++ ++/* TARGET_HARD_FLOAT and TARGET_SOFT_FLOAT reflect whether the FPU is ++ directly accessible, while the command-line options select ++ TARGET_HARD_FLOAT_ABI and TARGET_SOFT_FLOAT_ABI to reflect the ABI ++ in use. */ ++#define TARGET_HARD_FLOAT TARGET_HARD_FLOAT_ABI ++#define TARGET_SOFT_FLOAT TARGET_SOFT_FLOAT_ABI ++ ++/* Target CPU builtins. */ ++#define TARGET_CPU_CPP_BUILTINS() \ ++ do \ ++ { \ ++ builtin_assert ("machine=riscv"); \ ++ \ ++ builtin_assert ("cpu=riscv"); \ ++ builtin_define ("__riscv__"); \ ++ builtin_define ("__riscv"); \ ++ builtin_define ("_riscv"); \ ++ \ ++ if (TARGET_64BIT) \ ++ { \ ++ builtin_define ("__riscv64"); \ ++ builtin_define ("_RISCV_SIM=_ABI64"); \ ++ } \ ++ else \ ++ builtin_define ("_RISCV_SIM=_ABI32"); \ ++ \ ++ builtin_define ("_ABI32=1"); \ ++ builtin_define ("_ABI64=3"); \ ++ \ ++ \ ++ builtin_define_with_int_value ("_RISCV_SZINT", INT_TYPE_SIZE); \ ++ builtin_define_with_int_value ("_RISCV_SZLONG", LONG_TYPE_SIZE); \ ++ builtin_define_with_int_value ("_RISCV_SZPTR", POINTER_SIZE); \ ++ builtin_define_with_int_value ("_RISCV_FPSET", 32); \ ++ \ ++ if (TARGET_ATOMIC) { \ ++ builtin_define ("__riscv_atomic"); \ ++ } \ ++ \ ++ /* These defines reflect the ABI in use, not whether the \ ++ FPU is directly accessible. */ \ ++ if (TARGET_HARD_FLOAT_ABI) { \ ++ builtin_define ("__riscv_hard_float"); \ ++ if (TARGET_FDIV) { \ ++ builtin_define ("__riscv_fdiv"); \ ++ builtin_define ("__riscv_fsqrt"); \ ++ } \ ++ } else \ ++ builtin_define ("__riscv_soft_float"); \ ++ \ ++ /* The base RISC-V ISA is always little-endian. */ \ ++ builtin_define_std ("RISCVEL"); \ ++ builtin_define ("_RISCVEL"); \ ++ \ ++ /* Macros dependent on the C dialect. */ \ ++ if (preprocessing_asm_p ()) \ ++ { \ ++ builtin_define_std ("LANGUAGE_ASSEMBLY"); \ ++ builtin_define ("_LANGUAGE_ASSEMBLY"); \ ++ } \ ++ else if (c_dialect_cxx ()) \ ++ { \ ++ builtin_define ("_LANGUAGE_C_PLUS_PLUS"); \ ++ builtin_define ("__LANGUAGE_C_PLUS_PLUS"); \ ++ builtin_define ("__LANGUAGE_C_PLUS_PLUS__"); \ ++ } \ ++ else \ ++ { \ ++ builtin_define_std ("LANGUAGE_C"); \ ++ builtin_define ("_LANGUAGE_C"); \ ++ } \ ++ if (c_dialect_objc ()) \ ++ { \ ++ builtin_define ("_LANGUAGE_OBJECTIVE_C"); \ ++ builtin_define ("__LANGUAGE_OBJECTIVE_C"); \ ++ /* Bizarre, but needed at least for Irix. */ \ ++ builtin_define_std ("LANGUAGE_C"); \ ++ builtin_define ("_LANGUAGE_C"); \ ++ } \ ++ if (riscv_cmodel == CM_MEDANY) \ ++ builtin_define ("_RISCV_CMODEL_MEDANY"); \ ++ } \ ++ while (0) ++ ++/* Default target_flags if no switches are specified */ ++ ++#ifndef TARGET_DEFAULT ++#define TARGET_DEFAULT 0 ++#endif ++ ++#ifndef RISCV_ARCH_STRING_DEFAULT ++#define RISCV_ARCH_STRING_DEFAULT "IMAFD" ++#endif ++ ++#ifndef RISCV_TUNE_STRING_DEFAULT ++#define RISCV_TUNE_STRING_DEFAULT "rocket" ++#endif ++ ++#ifndef TARGET_64BIT_DEFAULT ++#define TARGET_64BIT_DEFAULT 1 ++#endif ++ ++#if TARGET_64BIT_DEFAULT ++# define MULTILIB_ARCH_DEFAULT "m64" ++# define OPT_ARCH64 "!m32" ++# define OPT_ARCH32 "m32" ++#else ++# define MULTILIB_ARCH_DEFAULT "m32" ++# define OPT_ARCH64 "m64" ++# define OPT_ARCH32 "!m64" ++#endif ++ ++#ifndef MULTILIB_DEFAULTS ++#define MULTILIB_DEFAULTS \ ++ { MULTILIB_ARCH_DEFAULT } ++#endif ++ ++ ++/* Support for a compile-time default CPU, et cetera. The rules are: ++ --with-arch is ignored if -march is specified. ++ --with-tune is ignored if -mtune is specified. ++ --with-float is ignored if -mhard-float or -msoft-float are specified. */ ++#define OPTION_DEFAULT_SPECS \ ++ {"arch", "%{!march=*:-march=%(VALUE)}"}, \ ++ {"arch_32", "%{" OPT_ARCH32 ":%{m32}}" }, \ ++ {"arch_64", "%{" OPT_ARCH64 ":%{m64}}" }, \ ++ {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }, \ ++ {"float", "%{!msoft-float:%{!mhard-float:-m%(VALUE)-float}}" }, \ ++ ++#define DRIVER_SELF_SPECS "" ++ ++#ifdef IN_LIBGCC2 ++#undef TARGET_64BIT ++/* Make this compile time constant for libgcc2 */ ++#ifdef __riscv64 ++#define TARGET_64BIT 1 ++#else ++#define TARGET_64BIT 0 ++#endif ++#endif /* IN_LIBGCC2 */ ++ ++/* Tell collect what flags to pass to nm. */ ++#ifndef NM_FLAGS ++#define NM_FLAGS "-Bn" ++#endif ++ ++#undef ASM_SPEC ++#define ASM_SPEC "\ ++%(subtarget_asm_debugging_spec) \ ++%{m32} %{m64} %{!m32:%{!m64: %(asm_abi_default_spec)}} \ ++%{mrvc} \ ++%{fPIC|fpic|fPIE|fpie:-fpic} \ ++%{march=*} \ ++%(subtarget_asm_spec)" ++ ++/* Extra switches sometimes passed to the linker. */ ++ ++#ifndef LINK_SPEC ++#define LINK_SPEC "\ ++%{!T:-dT riscv.ld} \ ++%{m64:-melf64lriscv} \ ++%{m32:-melf32lriscv} \ ++%{shared}" ++#endif /* LINK_SPEC defined */ ++ ++/* This macro defines names of additional specifications to put in the specs ++ that can be used in various specifications like CC1_SPEC. Its definition ++ is an initializer with a subgrouping for each command option. ++ ++ Each subgrouping contains a string constant, that defines the ++ specification name, and a string constant that used by the GCC driver ++ program. ++ ++ Do not define this macro if it does not need to do anything. */ ++ ++#define EXTRA_SPECS \ ++ { "asm_abi_default_spec", "-" MULTILIB_ARCH_DEFAULT }, \ ++ SUBTARGET_EXTRA_SPECS ++ ++#ifndef SUBTARGET_EXTRA_SPECS ++#define SUBTARGET_EXTRA_SPECS ++#endif ++ ++#define TARGET_DEFAULT_CMODEL CM_MEDLOW ++ ++/* By default, turn on GDB extensions. */ ++#define DEFAULT_GDB_EXTENSIONS 1 ++ ++#define LOCAL_LABEL_PREFIX "." ++#define USER_LABEL_PREFIX "" ++ ++#define DWARF2_DEBUGGING_INFO 1 ++#define DWARF2_ASM_LINE_DEBUG_INFO 0 ++ ++/* The mapping from gcc register number to DWARF 2 CFA column number. */ ++#define DWARF_FRAME_REGNUM(REGNO) \ ++ (GP_REG_P (REGNO) || FP_REG_P (REGNO) ? REGNO : INVALID_REGNUM) ++ ++/* The DWARF 2 CFA column which tracks the return address. */ ++#define DWARF_FRAME_RETURN_COLUMN RETURN_ADDR_REGNUM ++ ++/* Don't emit .cfi_sections, as it does not work */ ++#undef HAVE_GAS_CFI_SECTIONS_DIRECTIVE ++#define HAVE_GAS_CFI_SECTIONS_DIRECTIVE 0 ++ ++/* Before the prologue, RA lives in r31. */ ++#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (VOIDmode, RETURN_ADDR_REGNUM) ++ ++/* Describe how we implement __builtin_eh_return. */ ++#define EH_RETURN_DATA_REGNO(N) \ ++ ((N) < 4 ? (N) + GP_ARG_FIRST : INVALID_REGNUM) ++ ++#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, GP_ARG_FIRST + 4) ++ ++/* Target machine storage layout */ ++ ++#define BITS_BIG_ENDIAN 0 ++#define BYTES_BIG_ENDIAN 0 ++#define WORDS_BIG_ENDIAN 0 ++ ++#define MAX_BITS_PER_WORD 64 ++ ++/* Width of a word, in units (bytes). */ ++#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4) ++#ifndef IN_LIBGCC2 ++#define MIN_UNITS_PER_WORD 4 ++#endif ++ ++/* We currently require both or neither of the `F' and `D' extensions. */ ++#define UNITS_PER_FPREG 8 ++ ++/* If FP regs aren't wide enough for a given FP argument, it is passed in ++ integer registers. */ ++#define MIN_FPRS_PER_FMT 1 ++ ++/* The largest size of value that can be held in floating-point ++ registers and moved with a single instruction. */ ++#define UNITS_PER_HWFPVALUE \ ++ (TARGET_SOFT_FLOAT_ABI ? 0 : UNITS_PER_FPREG) ++ ++/* The largest size of value that can be held in floating-point ++ registers. */ ++#define UNITS_PER_FPVALUE \ ++ (TARGET_SOFT_FLOAT_ABI ? 0 \ ++ : LONG_DOUBLE_TYPE_SIZE / BITS_PER_UNIT) ++ ++/* The number of bytes in a double. */ ++#define UNITS_PER_DOUBLE (TYPE_PRECISION (double_type_node) / BITS_PER_UNIT) ++ ++/* Set the sizes of the core types. */ ++#define SHORT_TYPE_SIZE 16 ++#define INT_TYPE_SIZE 32 ++#define LONG_TYPE_SIZE (TARGET_64BIT ? 64 : 32) ++#define LONG_LONG_TYPE_SIZE 64 ++ ++#define FLOAT_TYPE_SIZE 32 ++#define DOUBLE_TYPE_SIZE 64 ++/* XXX The ABI says long doubles are IEEE-754-2008 float128s. */ ++#define LONG_DOUBLE_TYPE_SIZE 64 ++ ++#ifdef IN_LIBGCC2 ++# define LIBGCC2_LONG_DOUBLE_TYPE_SIZE LONG_DOUBLE_TYPE_SIZE ++#endif ++ ++/* Allocation boundary (in *bits*) for storing arguments in argument list. */ ++#define PARM_BOUNDARY BITS_PER_WORD ++ ++/* Allocation boundary (in *bits*) for the code of a function. */ ++#define FUNCTION_BOUNDARY (TARGET_RVC ? 16 : 32) ++ ++/* There is no point aligning anything to a rounder boundary than this. */ ++#define BIGGEST_ALIGNMENT 128 ++ ++/* All accesses must be aligned. */ ++#define STRICT_ALIGNMENT 1 ++ ++/* Define this if you wish to imitate the way many other C compilers ++ handle alignment of bitfields and the structures that contain ++ them. ++ ++ The behavior is that the type written for a bit-field (`int', ++ `short', or other integer type) imposes an alignment for the ++ entire structure, as if the structure really did contain an ++ ordinary field of that type. In addition, the bit-field is placed ++ within the structure so that it would fit within such a field, ++ not crossing a boundary for it. ++ ++ Thus, on most machines, a bit-field whose type is written as `int' ++ would not cross a four-byte boundary, and would force four-byte ++ alignment for the whole structure. (The alignment used may not ++ be four bytes; it is controlled by the other alignment ++ parameters.) ++ ++ If the macro is defined, its definition should be a C expression; ++ a nonzero value for the expression enables this behavior. */ ++ ++#define PCC_BITFIELD_TYPE_MATTERS 1 ++ ++/* If defined, a C expression to compute the alignment given to a ++ constant that is being placed in memory. CONSTANT is the constant ++ and ALIGN is the alignment that the object would ordinarily have. ++ The value of this macro is used instead of that alignment to align ++ the object. ++ ++ If this macro is not defined, then ALIGN is used. ++ ++ The typical use of this macro is to increase alignment for string ++ constants to be word aligned so that `strcpy' calls that copy ++ constants can be done inline. */ ++ ++#define CONSTANT_ALIGNMENT(EXP, ALIGN) \ ++ ((TREE_CODE (EXP) == STRING_CST || TREE_CODE (EXP) == CONSTRUCTOR) \ ++ && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN)) ++ ++/* If defined, a C expression to compute the alignment for a static ++ variable. TYPE is the data type, and ALIGN is the alignment that ++ the object would ordinarily have. The value of this macro is used ++ instead of that alignment to align the object. ++ ++ If this macro is not defined, then ALIGN is used. ++ ++ One use of this macro is to increase alignment of medium-size ++ data to make it all fit in fewer cache lines. Another is to ++ cause character arrays to be word-aligned so that `strcpy' calls ++ that copy constants to character arrays can be done inline. */ ++ ++#undef DATA_ALIGNMENT ++#define DATA_ALIGNMENT(TYPE, ALIGN) \ ++ ((((ALIGN) < BITS_PER_WORD) \ ++ && (TREE_CODE (TYPE) == ARRAY_TYPE \ ++ || TREE_CODE (TYPE) == UNION_TYPE \ ++ || TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN)) ++ ++/* We need this for the same reason as DATA_ALIGNMENT, namely to cause ++ character arrays to be word-aligned so that `strcpy' calls that copy ++ constants to character arrays can be done inline, and 'strcmp' can be ++ optimised to use word loads. */ ++#define LOCAL_ALIGNMENT(TYPE, ALIGN) \ ++ DATA_ALIGNMENT (TYPE, ALIGN) ++ ++/* Define if operations between registers always perform the operation ++ on the full register even if a narrower mode is specified. */ ++#define WORD_REGISTER_OPERATIONS ++ ++/* When in 64-bit mode, move insns will sign extend SImode and CCmode ++ moves. All other references are zero extended. */ ++#define LOAD_EXTEND_OP(MODE) \ ++ (TARGET_64BIT && ((MODE) == SImode || (MODE) == CCmode) \ ++ ? SIGN_EXTEND : ZERO_EXTEND) ++ ++/* Define this macro if it is advisable to hold scalars in registers ++ in a wider mode than that declared by the program. In such cases, ++ the value is constrained to be within the bounds of the declared ++ type, but kept valid in the wider mode. The signedness of the ++ extension may differ from that of the type. */ ++ ++#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \ ++ if (GET_MODE_CLASS (MODE) == MODE_INT \ ++ && GET_MODE_SIZE (MODE) < 4) \ ++ { \ ++ (MODE) = Pmode; \ ++ } ++ ++/* Pmode is always the same as ptr_mode, but not always the same as word_mode. ++ Extensions of pointers to word_mode must be signed. */ ++#define POINTERS_EXTEND_UNSIGNED false ++ ++/* RV32 double-precision FP <-> integer moves go through memory */ ++#define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \ ++ (!TARGET_64BIT && GET_MODE_SIZE (MODE) == 8 && \ ++ (((CLASS1) == FP_REGS && (CLASS2) != FP_REGS) \ ++ || ((CLASS2) == FP_REGS && (CLASS1) != FP_REGS))) ++ ++/* Define if loading short immediate values into registers sign extends. */ ++#define SHORT_IMMEDIATES_SIGN_EXTEND ++ ++/* Standard register usage. */ ++ ++/* Number of hardware registers. We have: ++ ++ - 32 integer registers ++ - 32 floating point registers ++ - 32 vector integer registers ++ - 32 vector floating point registers ++ - 2 fake registers: ++ - ARG_POINTER_REGNUM ++ - FRAME_POINTER_REGNUM */ ++ ++#define FIRST_PSEUDO_REGISTER 66 ++ ++/* x0, sp, gp, and tp are fixed. */ ++ ++#define FIXED_REGISTERS \ ++{ /* General registers. */ \ ++ 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ ++ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ ++ /* Floating-point registers. */ \ ++ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ ++ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ ++ /* Others. */ \ ++ 1, 1 \ ++} ++ ++ ++/* a0-a7, t0-a6, fa0-fa7, and ft0-ft11 are volatile across calls. ++ The call RTLs themselves clobber ra. */ ++ ++#define CALL_USED_REGISTERS \ ++{ /* General registers. */ \ ++ 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, \ ++ 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, \ ++ /* Floating-point registers. */ \ ++ 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, \ ++ 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, \ ++ /* Others. */ \ ++ 1, 1 \ ++} ++ ++#define CALL_REALLY_USED_REGISTERS \ ++{ /* General registers. */ \ ++ 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, \ ++ 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, \ ++ /* Floating-point registers. */ \ ++ 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, \ ++ 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, \ ++ /* Others. */ \ ++ 1, 1 \ ++} ++ ++/* Internal macros to classify an ISA register's type. */ ++ ++#define GP_REG_FIRST 0 ++#define GP_REG_LAST 31 ++#define GP_REG_NUM (GP_REG_LAST - GP_REG_FIRST + 1) ++ ++#define FP_REG_FIRST 32 ++#define FP_REG_LAST 63 ++#define FP_REG_NUM (FP_REG_LAST - FP_REG_FIRST + 1) ++ ++/* The DWARF 2 CFA column which tracks the return address from a ++ signal handler context. This means that to maintain backwards ++ compatibility, no hard register can be assigned this column if it ++ would need to be handled by the DWARF unwinder. */ ++#define DWARF_ALT_FRAME_RETURN_COLUMN 64 ++ ++#define GP_REG_P(REGNO) \ ++ ((unsigned int) ((int) (REGNO) - GP_REG_FIRST) < GP_REG_NUM) ++#define FP_REG_P(REGNO) \ ++ ((unsigned int) ((int) (REGNO) - FP_REG_FIRST) < FP_REG_NUM) ++ ++#define FP_REG_RTX_P(X) (REG_P (X) && FP_REG_P (REGNO (X))) ++ ++/* Return coprocessor number from register number. */ ++ ++#define COPNUM_AS_CHAR_FROM_REGNUM(REGNO) \ ++ (COP0_REG_P (REGNO) ? '0' : COP2_REG_P (REGNO) ? '2' \ ++ : COP3_REG_P (REGNO) ? '3' : '?') ++ ++ ++#define HARD_REGNO_NREGS(REGNO, MODE) riscv_hard_regno_nregs (REGNO, MODE) ++ ++#define HARD_REGNO_MODE_OK(REGNO, MODE) \ ++ riscv_hard_regno_mode_ok[ (int)(MODE) ][ (REGNO) ] ++ ++#define MODES_TIEABLE_P(MODE1, MODE2) \ ++ ((MODE1) == (MODE2) || (GET_MODE_CLASS (MODE1) == MODE_INT \ ++ && GET_MODE_CLASS (MODE2) == MODE_INT)) ++ ++/* Use s0 as the frame pointer if it is so requested. */ ++#define HARD_FRAME_POINTER_REGNUM 8 ++#define STACK_POINTER_REGNUM 2 ++#define THREAD_POINTER_REGNUM 4 ++ ++/* These two registers don't really exist: they get eliminated to either ++ the stack or hard frame pointer. */ ++#define ARG_POINTER_REGNUM 64 ++#define FRAME_POINTER_REGNUM 65 ++ ++#define HARD_FRAME_POINTER_IS_FRAME_POINTER 0 ++#define HARD_FRAME_POINTER_IS_ARG_POINTER 0 ++ ++/* Register in which static-chain is passed to a function. */ ++#define STATIC_CHAIN_REGNUM GP_TEMP_FIRST ++ ++/* Registers used as temporaries in prologue/epilogue code. ++ ++ The prologue registers mustn't conflict with any ++ incoming arguments, the static chain pointer, or the frame pointer. ++ The epilogue temporary mustn't conflict with the return registers, ++ the frame pointer, the EH stack adjustment, or the EH data registers. */ ++ ++#define RISCV_PROLOGUE_TEMP_REGNUM (GP_TEMP_FIRST + 1) ++#define RISCV_EPILOGUE_TEMP_REGNUM RISCV_PROLOGUE_TEMP_REGNUM ++ ++#define RISCV_PROLOGUE_TEMP(MODE) gen_rtx_REG (MODE, RISCV_PROLOGUE_TEMP_REGNUM) ++#define RISCV_EPILOGUE_TEMP(MODE) gen_rtx_REG (MODE, RISCV_EPILOGUE_TEMP_REGNUM) ++ ++#define FUNCTION_PROFILER(STREAM, LABELNO) \ ++{ \ ++ sorry ("profiler support for RISC-V"); \ ++} ++ ++/* Define this macro if it is as good or better to call a constant ++ function address than to call an address kept in a register. */ ++#define NO_FUNCTION_CSE 1 ++ ++/* Define the classes of registers for register constraints in the ++ machine description. Also define ranges of constants. ++ ++ One of the classes must always be named ALL_REGS and include all hard regs. ++ If there is more than one class, another class must be named NO_REGS ++ and contain no registers. ++ ++ The name GENERAL_REGS must be the name of a class (or an alias for ++ another name such as ALL_REGS). This is the class of registers ++ that is allowed by "g" or "r" in a register constraint. ++ Also, registers outside this class are allocated only when ++ instructions express preferences for them. ++ ++ The classes must be numbered in nondecreasing order; that is, ++ a larger-numbered class must never be contained completely ++ in a smaller-numbered class. ++ ++ For any two classes, it is very desirable that there be another ++ class that represents their union. */ ++ ++enum reg_class ++{ ++ NO_REGS, /* no registers in set */ ++ T_REGS, /* registers used by indirect sibcalls */ ++ GR_REGS, /* integer registers */ ++ FP_REGS, /* floating point registers */ ++ FRAME_REGS, /* $arg and $frame */ ++ ALL_REGS, /* all registers */ ++ LIM_REG_CLASSES /* max value + 1 */ ++}; ++ ++#define N_REG_CLASSES (int) LIM_REG_CLASSES ++ ++#define GENERAL_REGS GR_REGS ++ ++/* An initializer containing the names of the register classes as C ++ string constants. These names are used in writing some of the ++ debugging dumps. */ ++ ++#define REG_CLASS_NAMES \ ++{ \ ++ "NO_REGS", \ ++ "T_REGS", \ ++ "GR_REGS", \ ++ "FP_REGS", \ ++ "FRAME_REGS", \ ++ "ALL_REGS" \ ++} ++ ++/* An initializer containing the contents of the register classes, ++ as integers which are bit masks. The Nth integer specifies the ++ contents of class N. The way the integer MASK is interpreted is ++ that register R is in the class if `MASK & (1 << R)' is 1. ++ ++ When the machine has more than 32 registers, an integer does not ++ suffice. Then the integers are replaced by sub-initializers, ++ braced groupings containing several integers. Each ++ sub-initializer must be suitable as an initializer for the type ++ `HARD_REG_SET' which is defined in `hard-reg-set.h'. */ ++ ++#define REG_CLASS_CONTENTS \ ++{ \ ++ { 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \ ++ { 0xf00000e0, 0x00000000, 0x00000000 }, /* T_REGS */ \ ++ { 0xffffffff, 0x00000000, 0x00000000 }, /* GR_REGS */ \ ++ { 0x00000000, 0xffffffff, 0x00000000 }, /* FP_REGS */ \ ++ { 0x00000000, 0x00000000, 0x00000003 }, /* FRAME_REGS */ \ ++ { 0xffffffff, 0xffffffff, 0x00000003 } /* ALL_REGS */ \ ++} ++ ++/* A C expression whose value is a register class containing hard ++ register REGNO. In general there is more that one such class; ++ choose a class which is "minimal", meaning that no smaller class ++ also contains the register. */ ++ ++#define REGNO_REG_CLASS(REGNO) riscv_regno_to_class[ (REGNO) ] ++ ++/* A macro whose definition is the name of the class to which a ++ valid base register must belong. A base register is one used in ++ an address which is the register value plus a displacement. */ ++ ++#define BASE_REG_CLASS GR_REGS ++ ++/* A macro whose definition is the name of the class to which a ++ valid index register must belong. An index register is one used ++ in an address where its value is either multiplied by a scale ++ factor or added to another register (as well as added to a ++ displacement). */ ++ ++#define INDEX_REG_CLASS NO_REGS ++ ++/* We generally want to put call-clobbered registers ahead of ++ call-saved ones. (IRA expects this.) */ ++ ++#define REG_ALLOC_ORDER \ ++{ \ ++ /* Call-clobbered GPRs. */ \ ++ 15, 14, 13, 12, 11, 10, 16, 17, 5, 6, 7, 28, 29, 30, 31, 1, \ ++ /* Call-saved GPRs. */ \ ++ 8, 9, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, \ ++ /* GPRs that can never be exposed to the register allocator. */ \ ++ 0, 2, 3, 4, \ ++ /* Call-clobbered FPRs. */ \ ++ 32, 33, 34, 35, 36, 37, 38, 39, 42, 43, 44, 45, 46, 47, 48, 49, \ ++ 60, 61, 62, 63, \ ++ /* Call-saved FPRs. */ \ ++ 40, 41, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, \ ++ /* None of the remaining classes have defined call-saved \ ++ registers. */ \ ++ 64, 65 \ ++} ++ ++/* True if VALUE is a signed 16-bit number. */ ++ ++#include "opcode-riscv.h" ++#define SMALL_OPERAND(VALUE) \ ++ ((unsigned HOST_WIDE_INT) (VALUE) + RISCV_IMM_REACH/2 < RISCV_IMM_REACH) ++ ++/* True if VALUE can be loaded into a register using LUI. */ ++ ++#define LUI_OPERAND(VALUE) \ ++ (((VALUE) | ((1UL<<31) - RISCV_IMM_REACH)) == ((1UL<<31) - RISCV_IMM_REACH) \ ++ || ((VALUE) | ((1UL<<31) - RISCV_IMM_REACH)) + RISCV_IMM_REACH == 0) ++ ++/* Return a value X with the low 16 bits clear, and such that ++ VALUE - X is a signed 16-bit value. */ ++ ++#define SMALL_INT(X) SMALL_OPERAND (INTVAL (X)) ++#define LUI_INT(X) LUI_OPERAND (INTVAL (X)) ++ ++/* The HI and LO registers can only be reloaded via the general ++ registers. Condition code registers can only be loaded to the ++ general registers, and from the floating point registers. */ ++ ++#define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \ ++ riscv_secondary_reload_class (CLASS, MODE, X, true) ++#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \ ++ riscv_secondary_reload_class (CLASS, MODE, X, false) ++ ++/* Return the maximum number of consecutive registers ++ needed to represent mode MODE in a register of class CLASS. */ ++ ++#define CLASS_MAX_NREGS(CLASS, MODE) riscv_class_max_nregs (CLASS, MODE) ++ ++/* It is undefined to interpret an FP register in a different format than ++ that which it was created to be. */ ++ ++#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \ ++ reg_classes_intersect_p (FP_REGS, CLASS) ++ ++/* Stack layout; function entry, exit and calling. */ ++ ++#define STACK_GROWS_DOWNWARD ++ ++#define FRAME_GROWS_DOWNWARD 1 ++ ++#define STARTING_FRAME_OFFSET 0 ++ ++#define RETURN_ADDR_RTX riscv_return_addr ++ ++#define ELIMINABLE_REGS \ ++{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \ ++ { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \ ++ { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \ ++ { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \ ++ ++#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \ ++ (OFFSET) = riscv_initial_elimination_offset (FROM, TO) ++ ++/* Allocate stack space for arguments at the beginning of each function. */ ++#define ACCUMULATE_OUTGOING_ARGS 1 ++ ++/* The argument pointer always points to the first argument. */ ++#define FIRST_PARM_OFFSET(FNDECL) 0 ++ ++#define REG_PARM_STACK_SPACE(FNDECL) 0 ++ ++/* Define this if it is the responsibility of the caller to ++ allocate the area reserved for arguments passed in registers. ++ If `ACCUMULATE_OUTGOING_ARGS' is also defined, the only effect ++ of this macro is to determine whether the space is included in ++ `crtl->outgoing_args_size'. */ ++#define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1 ++ ++#define STACK_BOUNDARY 128 ++ ++/* Symbolic macros for the registers used to return integer and floating ++ point values. */ ++ ++#define GP_RETURN GP_ARG_FIRST ++#define FP_RETURN ((TARGET_SOFT_FLOAT) ? GP_RETURN : FP_ARG_FIRST) ++ ++#define MAX_ARGS_IN_REGISTERS 8 ++ ++/* Symbolic macros for the first/last argument registers. */ ++ ++#define GP_ARG_FIRST (GP_REG_FIRST + 10) ++#define GP_ARG_LAST (GP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1) ++#define GP_TEMP_FIRST (GP_REG_FIRST + 5) ++#define FP_ARG_FIRST (FP_REG_FIRST + 10) ++#define FP_ARG_LAST (FP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1) ++ ++#define CALLEE_SAVED_REG_NUMBER(REGNO) \ ++ ((REGNO) >= 8 && (REGNO) <= 9 ? (REGNO) - 8 : \ ++ (REGNO) >= 18 && (REGNO) <= 27 ? (REGNO) - 16 : -1) ++ ++#define LIBCALL_VALUE(MODE) \ ++ riscv_function_value (NULL_TREE, NULL_TREE, MODE) ++ ++#define FUNCTION_VALUE(VALTYPE, FUNC) \ ++ riscv_function_value (VALTYPE, FUNC, VOIDmode) ++ ++#define FUNCTION_VALUE_REGNO_P(N) ((N) == GP_RETURN || (N) == FP_RETURN) ++ ++/* 1 if N is a possible register number for function argument passing. ++ We have no FP argument registers when soft-float. When FP registers ++ are 32 bits, we can't directly reference the odd numbered ones. */ ++ ++/* Accept arguments in a0-a7 and/or fa0-fa7. */ ++#define FUNCTION_ARG_REGNO_P(N) \ ++ (IN_RANGE((N), GP_ARG_FIRST, GP_ARG_LAST) \ ++ || IN_RANGE((N), FP_ARG_FIRST, FP_ARG_LAST)) ++ ++/* The ABI views the arguments as a structure, of which the first 8 ++ words go in registers and the rest go on the stack. If I < 8, N, the Ith ++ word might go in the Ith integer argument register or the Ith ++ floating-point argument register. */ ++ ++typedef struct { ++ /* Number of integer registers used so far, up to MAX_ARGS_IN_REGISTERS. */ ++ unsigned int num_gprs; ++ ++ /* Number of words passed on the stack. */ ++ unsigned int stack_words; ++} CUMULATIVE_ARGS; ++ ++/* Initialize a variable CUM of type CUMULATIVE_ARGS ++ for a call to a function whose data type is FNTYPE. ++ For a library call, FNTYPE is 0. */ ++ ++#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \ ++ memset (&(CUM), 0, sizeof (CUM)) ++ ++#define EPILOGUE_USES(REGNO) ((REGNO) == RETURN_ADDR_REGNUM) ++ ++/* ABI requires 16-byte alignment, even on ven on RV32. */ ++#define RISCV_STACK_ALIGN(LOC) (((LOC) + 15) & -16) ++ ++#define NO_PROFILE_COUNTERS 1 ++ ++/* Define this macro if the code for function profiling should come ++ before the function prologue. Normally, the profiling code comes ++ after. */ ++ ++/* #define PROFILE_BEFORE_PROLOGUE */ ++ ++/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function, ++ the stack pointer does not matter. The value is tested only in ++ functions that have frame pointers. ++ No definition is equivalent to always zero. */ ++ ++#define EXIT_IGNORE_STACK 1 ++ ++ ++/* Trampolines are a block of code followed by two pointers. */ ++ ++#define TRAMPOLINE_CODE_SIZE 16 ++#define TRAMPOLINE_SIZE (TRAMPOLINE_CODE_SIZE + POINTER_SIZE * 2) ++#define TRAMPOLINE_ALIGNMENT POINTER_SIZE ++ ++/* Addressing modes, and classification of registers for them. */ ++ ++#define REGNO_OK_FOR_INDEX_P(REGNO) 0 ++#define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \ ++ riscv_regno_mode_ok_for_base_p (REGNO, MODE, 1) ++ ++/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx ++ and check its validity for a certain class. ++ We have two alternate definitions for each of them. ++ The usual definition accepts all pseudo regs; the other rejects them all. ++ The symbol REG_OK_STRICT causes the latter definition to be used. ++ ++ Most source files want to accept pseudo regs in the hope that ++ they will get allocated to the class that the insn wants them to be in. ++ Some source files that are used after register allocation ++ need to be strict. */ ++ ++#ifndef REG_OK_STRICT ++#define REG_MODE_OK_FOR_BASE_P(X, MODE) \ ++ riscv_regno_mode_ok_for_base_p (REGNO (X), MODE, 0) ++#else ++#define REG_MODE_OK_FOR_BASE_P(X, MODE) \ ++ riscv_regno_mode_ok_for_base_p (REGNO (X), MODE, 1) ++#endif ++ ++#define REG_OK_FOR_INDEX_P(X) 0 ++ ++ ++/* Maximum number of registers that can appear in a valid memory address. */ ++ ++#define MAX_REGS_PER_ADDRESS 1 ++ ++#define CONSTANT_ADDRESS_P(X) \ ++ (CONSTANT_P (X) && memory_address_p (SImode, X)) ++ ++/* This handles the magic '..CURRENT_FUNCTION' symbol, which means ++ 'the start of the function that this code is output in'. */ ++ ++#define ASM_OUTPUT_LABELREF(FILE,NAME) \ ++ if (strcmp (NAME, "..CURRENT_FUNCTION") == 0) \ ++ asm_fprintf ((FILE), "%U%s", \ ++ XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0)); \ ++ else \ ++ asm_fprintf ((FILE), "%U%s", (NAME)) ++ ++/* This flag marks functions that cannot be lazily bound. */ ++#define SYMBOL_FLAG_BIND_NOW (SYMBOL_FLAG_MACH_DEP << 1) ++#define SYMBOL_REF_BIND_NOW_P(RTX) \ ++ ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_BIND_NOW) != 0) ++ ++#define JUMP_TABLES_IN_TEXT_SECTION 0 ++#define CASE_VECTOR_MODE SImode ++#define CASE_VECTOR_PC_RELATIVE (riscv_cmodel != CM_MEDLOW) ++ ++/* Define this as 1 if `char' should by default be signed; else as 0. */ ++#define DEFAULT_SIGNED_CHAR 0 ++ ++/* Consider using fld/fsd to move 8 bytes at a time for RV32IFD. */ ++#define MOVE_MAX UNITS_PER_WORD ++#define MAX_MOVE_MAX 8 ++ ++#define SLOW_BYTE_ACCESS 0 ++ ++#define SHIFT_COUNT_TRUNCATED 1 ++ ++/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits ++ is done just by pretending it is already truncated. */ ++#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) \ ++ (TARGET_64BIT ? ((INPREC) <= 32 || (OUTPREC) < 32) : 1) ++ ++/* Specify the machine mode that pointers have. ++ After generation of rtl, the compiler makes no further distinction ++ between pointers and any other objects of this machine mode. */ ++ ++#ifndef Pmode ++#define Pmode (TARGET_64BIT ? DImode : SImode) ++#endif ++ ++/* Give call MEMs SImode since it is the "most permissive" mode ++ for both 32-bit and 64-bit targets. */ ++ ++#define FUNCTION_MODE SImode ++ ++/* A C expression for the cost of a branch instruction. A value of 2 ++ seems to minimize code size. */ ++ ++#define BRANCH_COST(speed_p, predictable_p) \ ++ ((!(speed_p) || (predictable_p)) ? 2 : riscv_branch_cost) ++ ++#define LOGICAL_OP_NON_SHORT_CIRCUIT 0 ++ ++/* Control the assembler format that we output. */ ++ ++/* Output to assembler file text saying following lines ++ may contain character constants, extra white space, comments, etc. */ ++ ++#ifndef ASM_APP_ON ++#define ASM_APP_ON " #APP\n" ++#endif ++ ++/* Output to assembler file text saying following lines ++ no longer contain unusual constructs. */ ++ ++#ifndef ASM_APP_OFF ++#define ASM_APP_OFF " #NO_APP\n" ++#endif ++ ++#define REGISTER_NAMES \ ++{ "zero","ra", "sp", "gp", "tp", "t0", "t1", "t2", \ ++ "s0", "s1", "a0", "a1", "a2", "a3", "a4", "a5", \ ++ "a6", "a7", "s2", "s3", "s4", "s5", "s6", "s7", \ ++ "s8", "s9", "s10", "s11", "t3", "t4", "t5", "t6", \ ++ "ft0", "ft1", "ft2", "ft3", "ft4", "ft5", "ft6", "ft7", \ ++ "fs0", "fs1", "fa0", "fa1", "fa2", "fa3", "fa4", "fa5", \ ++ "fa6", "fa7", "fs2", "fs3", "fs4", "fs5", "fs6", "fs7", \ ++ "fs8", "fs9", "fs10","fs11","ft8", "ft9", "ft10","ft11", \ ++ "arg", "frame", } ++ ++#define ADDITIONAL_REGISTER_NAMES \ ++{ \ ++ { "x0", 0 + GP_REG_FIRST }, \ ++ { "x1", 1 + GP_REG_FIRST }, \ ++ { "x2", 2 + GP_REG_FIRST }, \ ++ { "x3", 3 + GP_REG_FIRST }, \ ++ { "x4", 4 + GP_REG_FIRST }, \ ++ { "x5", 5 + GP_REG_FIRST }, \ ++ { "x6", 6 + GP_REG_FIRST }, \ ++ { "x7", 7 + GP_REG_FIRST }, \ ++ { "x8", 8 + GP_REG_FIRST }, \ ++ { "x9", 9 + GP_REG_FIRST }, \ ++ { "x10", 10 + GP_REG_FIRST }, \ ++ { "x11", 11 + GP_REG_FIRST }, \ ++ { "x12", 12 + GP_REG_FIRST }, \ ++ { "x13", 13 + GP_REG_FIRST }, \ ++ { "x14", 14 + GP_REG_FIRST }, \ ++ { "x15", 15 + GP_REG_FIRST }, \ ++ { "x16", 16 + GP_REG_FIRST }, \ ++ { "x17", 17 + GP_REG_FIRST }, \ ++ { "x18", 18 + GP_REG_FIRST }, \ ++ { "x19", 19 + GP_REG_FIRST }, \ ++ { "x20", 20 + GP_REG_FIRST }, \ ++ { "x21", 21 + GP_REG_FIRST }, \ ++ { "x22", 22 + GP_REG_FIRST }, \ ++ { "x23", 23 + GP_REG_FIRST }, \ ++ { "x24", 24 + GP_REG_FIRST }, \ ++ { "x25", 25 + GP_REG_FIRST }, \ ++ { "x26", 26 + GP_REG_FIRST }, \ ++ { "x27", 27 + GP_REG_FIRST }, \ ++ { "x28", 28 + GP_REG_FIRST }, \ ++ { "x29", 29 + GP_REG_FIRST }, \ ++ { "x30", 30 + GP_REG_FIRST }, \ ++ { "x31", 31 + GP_REG_FIRST }, \ ++ { "f0", 0 + FP_REG_FIRST }, \ ++ { "f1", 1 + FP_REG_FIRST }, \ ++ { "f2", 2 + FP_REG_FIRST }, \ ++ { "f3", 3 + FP_REG_FIRST }, \ ++ { "f4", 4 + FP_REG_FIRST }, \ ++ { "f5", 5 + FP_REG_FIRST }, \ ++ { "f6", 6 + FP_REG_FIRST }, \ ++ { "f7", 7 + FP_REG_FIRST }, \ ++ { "f8", 8 + FP_REG_FIRST }, \ ++ { "f9", 9 + FP_REG_FIRST }, \ ++ { "f10", 10 + FP_REG_FIRST }, \ ++ { "f11", 11 + FP_REG_FIRST }, \ ++ { "f12", 12 + FP_REG_FIRST }, \ ++ { "f13", 13 + FP_REG_FIRST }, \ ++ { "f14", 14 + FP_REG_FIRST }, \ ++ { "f15", 15 + FP_REG_FIRST }, \ ++ { "f16", 16 + FP_REG_FIRST }, \ ++ { "f17", 17 + FP_REG_FIRST }, \ ++ { "f18", 18 + FP_REG_FIRST }, \ ++ { "f19", 19 + FP_REG_FIRST }, \ ++ { "f20", 20 + FP_REG_FIRST }, \ ++ { "f21", 21 + FP_REG_FIRST }, \ ++ { "f22", 22 + FP_REG_FIRST }, \ ++ { "f23", 23 + FP_REG_FIRST }, \ ++ { "f24", 24 + FP_REG_FIRST }, \ ++ { "f25", 25 + FP_REG_FIRST }, \ ++ { "f26", 26 + FP_REG_FIRST }, \ ++ { "f27", 27 + FP_REG_FIRST }, \ ++ { "f28", 28 + FP_REG_FIRST }, \ ++ { "f29", 29 + FP_REG_FIRST }, \ ++ { "f30", 30 + FP_REG_FIRST }, \ ++ { "f31", 31 + FP_REG_FIRST }, \ ++} ++ ++/* Globalizing directive for a label. */ ++#define GLOBAL_ASM_OP "\t.globl\t" ++ ++/* This is how to store into the string LABEL ++ the symbol_ref name of an internal numbered label where ++ PREFIX is the class of label and NUM is the number within the class. ++ This is suitable for output with `assemble_name'. */ ++ ++#undef ASM_GENERATE_INTERNAL_LABEL ++#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \ ++ sprintf ((LABEL), "*%s%s%ld", (LOCAL_LABEL_PREFIX), (PREFIX), (long)(NUM)) ++ ++/* This is how to output an element of a case-vector that is absolute. */ ++ ++#define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \ ++ fprintf (STREAM, "\t.word\t%sL%d\n", LOCAL_LABEL_PREFIX, VALUE) ++ ++/* This is how to output an element of a PIC case-vector. */ ++ ++#define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \ ++ fprintf (STREAM, "\t.word\t%sL%d-%sL%d\n", \ ++ LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL) ++ ++/* This is how to output an assembler line ++ that says to advance the location counter ++ to a multiple of 2**LOG bytes. */ ++ ++#define ASM_OUTPUT_ALIGN(STREAM,LOG) \ ++ fprintf (STREAM, "\t.align\t%d\n", (LOG)) ++ ++/* Define the strings to put out for each section in the object file. */ ++#define TEXT_SECTION_ASM_OP "\t.text" /* instructions */ ++#define DATA_SECTION_ASM_OP "\t.data" /* large data */ ++#define READONLY_DATA_SECTION_ASM_OP "\t.section\t.rodata" ++#define BSS_SECTION_ASM_OP "\t.bss" ++#define SBSS_SECTION_ASM_OP "\t.section\t.sbss,\"aw\",@nobits" ++#define SDATA_SECTION_ASM_OP "\t.section\t.sdata,\"aw\",@progbits" ++ ++#define ASM_OUTPUT_REG_PUSH(STREAM,REGNO) \ ++do \ ++ { \ ++ fprintf (STREAM, "\taddi\t%s,%s,-8\n\t%s\t%s,0(%s)\n", \ ++ reg_names[STACK_POINTER_REGNUM], \ ++ reg_names[STACK_POINTER_REGNUM], \ ++ TARGET_64BIT ? "sd" : "sw", \ ++ reg_names[REGNO], \ ++ reg_names[STACK_POINTER_REGNUM]); \ ++ } \ ++while (0) ++ ++#define ASM_OUTPUT_REG_POP(STREAM,REGNO) \ ++do \ ++ { \ ++ fprintf (STREAM, "\t%s\t%s,0(%s)\n\taddi\t%s,%s,8\n", \ ++ TARGET_64BIT ? "ld" : "lw", \ ++ reg_names[REGNO], \ ++ reg_names[STACK_POINTER_REGNUM], \ ++ reg_names[STACK_POINTER_REGNUM], \ ++ reg_names[STACK_POINTER_REGNUM]); \ ++ } \ ++while (0) ++ ++#define ASM_COMMENT_START "#" ++ ++#undef SIZE_TYPE ++#define SIZE_TYPE (POINTER_SIZE == 64 ? "long unsigned int" : "unsigned int") ++ ++#undef PTRDIFF_TYPE ++#define PTRDIFF_TYPE (POINTER_SIZE == 64 ? "long int" : "int") ++ ++/* The maximum number of bytes that can be copied by one iteration of ++ a movmemsi loop; see riscv_block_move_loop. */ ++#define RISCV_MAX_MOVE_BYTES_PER_LOOP_ITER (UNITS_PER_WORD * 4) ++ ++/* The maximum number of bytes that can be copied by a straight-line ++ implementation of movmemsi; see riscv_block_move_straight. We want ++ to make sure that any loop-based implementation will iterate at ++ least twice. */ ++#define RISCV_MAX_MOVE_BYTES_STRAIGHT (RISCV_MAX_MOVE_BYTES_PER_LOOP_ITER * 2) ++ ++/* The base cost of a memcpy call, for MOVE_RATIO and friends. */ ++ ++#define RISCV_CALL_RATIO 6 ++ ++/* Any loop-based implementation of movmemsi will have at least ++ RISCV_MAX_MOVE_BYTES_STRAIGHT / UNITS_PER_WORD memory-to-memory ++ moves, so allow individual copies of fewer elements. ++ ++ When movmemsi is not available, use a value approximating ++ the length of a memcpy call sequence, so that move_by_pieces ++ will generate inline code if it is shorter than a function call. ++ Since move_by_pieces_ninsns counts memory-to-memory moves, but ++ we'll have to generate a load/store pair for each, halve the ++ value of RISCV_CALL_RATIO to take that into account. */ ++ ++#define MOVE_RATIO(speed) \ ++ (HAVE_movmemsi \ ++ ? RISCV_MAX_MOVE_BYTES_STRAIGHT / MOVE_MAX \ ++ : RISCV_CALL_RATIO / 2) ++ ++/* For CLEAR_RATIO, when optimizing for size, give a better estimate ++ of the length of a memset call, but use the default otherwise. */ ++ ++#define CLEAR_RATIO(speed)\ ++ ((speed) ? 15 : RISCV_CALL_RATIO) ++ ++/* This is similar to CLEAR_RATIO, but for a non-zero constant, so when ++ optimizing for size adjust the ratio to account for the overhead of ++ loading the constant and replicating it across the word. */ ++ ++#define SET_RATIO(speed) \ ++ ((speed) ? 15 : RISCV_CALL_RATIO - 2) ++ ++#ifndef HAVE_AS_TLS ++#define HAVE_AS_TLS 0 ++#endif ++ ++#ifndef USED_FOR_TARGET ++ ++extern const enum reg_class riscv_regno_to_class[]; ++extern bool riscv_hard_regno_mode_ok[][FIRST_PSEUDO_REGISTER]; ++extern const char* riscv_hi_relocs[]; ++#endif ++ ++#define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \ ++ (((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4) +diff -urN empty/gcc/config/riscv/riscv.md gcc-5.2.0/gcc/config/riscv/riscv.md +--- empty/gcc/config/riscv/riscv.md 1970-01-01 01:00:00.000000000 +0100 ++++ gcc-5.2.0/gcc/config/riscv/riscv.md 2015-07-17 22:36:52.319705931 +0200 +@@ -0,0 +1,2448 @@ ++;; Machine description for RISC-V for GNU compiler. ++;; Copyright (C) 2011-2014 Free Software Foundation, Inc. ++;; Contributed by Andrew Waterman (waterman@cs.berkeley.edu) at UC Berkeley. ++;; Based on MIPS target for GNU compiler. ++ ++;; This file is part of GCC. ++ ++;; GCC is free software; you can redistribute it and/or modify ++;; it under the terms of the GNU General Public License as published by ++;; the Free Software Foundation; either version 3, or (at your option) ++;; any later version. ++ ++;; GCC is distributed in the hope that it will be useful, ++;; but WITHOUT ANY WARRANTY; without even the implied warranty of ++;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++;; GNU General Public License for more details. ++ ++;; You should have received a copy of the GNU General Public License ++;; along with GCC; see the file COPYING3. If not see ++;; <http://www.gnu.org/licenses/>. ++ ++(define_c_enum "unspec" [ ++ ;; Floating-point moves. ++ UNSPEC_LOAD_LOW ++ UNSPEC_LOAD_HIGH ++ UNSPEC_STORE_WORD ++ ++ ;; GP manipulation. ++ UNSPEC_EH_RETURN ++ ++ ;; Symbolic accesses. ++ UNSPEC_ADDRESS_FIRST ++ UNSPEC_LOAD_GOT ++ UNSPEC_TLS ++ UNSPEC_TLS_LE ++ UNSPEC_TLS_IE ++ UNSPEC_TLS_GD ++ ++ ;; Register save and restore. ++ UNSPEC_GPR_SAVE ++ UNSPEC_GPR_RESTORE ++ ++ ;; Blockage and synchronisation. ++ UNSPEC_BLOCKAGE ++ UNSPEC_FENCE ++ UNSPEC_FENCE_I ++]) ++ ++(define_constants ++ [(RETURN_ADDR_REGNUM 1) ++ (T0_REGNUM 5) ++ (T1_REGNUM 6) ++]) ++ ++(include "predicates.md") ++(include "constraints.md") ++ ++;; .................... ++;; ++;; Attributes ++;; ++;; .................... ++ ++(define_attr "got" "unset,xgot_high,load" ++ (const_string "unset")) ++ ++;; For jal instructions, this attribute is DIRECT when the target address ++;; is symbolic and INDIRECT when it is a register. ++(define_attr "jal" "unset,direct,indirect" ++ (const_string "unset")) ++ ++;; Classification of moves, extensions and truncations. Most values ++;; are as for "type" (see below) but there are also the following ++;; move-specific values: ++;; ++;; andi a single ANDI instruction ++;; shift_shift a shift left followed by a shift right ++;; ++;; This attribute is used to determine the instruction's length and ++;; scheduling type. For doubleword moves, the attribute always describes ++;; the split instructions; in some cases, it is more appropriate for the ++;; scheduling type to be "multi" instead. ++(define_attr "move_type" ++ "unknown,load,fpload,store,fpstore,mtc,mfc,move,fmove, ++ const,logical,arith,andi,shift_shift" ++ (const_string "unknown")) ++ ++(define_attr "alu_type" "unknown,add,sub,and,or,xor" ++ (const_string "unknown")) ++ ++;; Main data type used by the insn ++(define_attr "mode" "unknown,none,QI,HI,SI,DI,TI,SF,DF,TF,FPSW" ++ (const_string "unknown")) ++ ++;; True if the main data type is twice the size of a word. ++(define_attr "dword_mode" "no,yes" ++ (cond [(and (eq_attr "mode" "DI,DF") ++ (eq (symbol_ref "TARGET_64BIT") (const_int 0))) ++ (const_string "yes") ++ ++ (and (eq_attr "mode" "TI,TF") ++ (ne (symbol_ref "TARGET_64BIT") (const_int 0))) ++ (const_string "yes")] ++ (const_string "no"))) ++ ++;; Classification of each insn. ++;; branch conditional branch ++;; jump unconditional jump ++;; call unconditional call ++;; load load instruction(s) ++;; fpload floating point load ++;; fpidxload floating point indexed load ++;; store store instruction(s) ++;; fpstore floating point store ++;; fpidxstore floating point indexed store ++;; mtc transfer to coprocessor ++;; mfc transfer from coprocessor ++;; const load constant ++;; arith integer arithmetic instructions ++;; logical integer logical instructions ++;; shift integer shift instructions ++;; slt set less than instructions ++;; imul integer multiply ++;; idiv integer divide ++;; move integer register move (addi rd, rs1, 0) ++;; fmove floating point register move ++;; fadd floating point add/subtract ++;; fmul floating point multiply ++;; fmadd floating point multiply-add ++;; fdiv floating point divide ++;; fcmp floating point compare ++;; fcvt floating point convert ++;; fsqrt floating point square root ++;; multi multiword sequence (or user asm statements) ++;; nop no operation ++;; ghost an instruction that produces no real code ++(define_attr "type" ++ "unknown,branch,jump,call,load,fpload,fpidxload,store,fpstore,fpidxstore, ++ mtc,mfc,const,arith,logical,shift,slt,imul,idiv,move,fmove,fadd,fmul, ++ fmadd,fdiv,fcmp,fcvt,fsqrt,multi,nop,ghost" ++ (cond [(eq_attr "jal" "!unset") (const_string "call") ++ (eq_attr "got" "load") (const_string "load") ++ ++ (eq_attr "alu_type" "add,sub") (const_string "arith") ++ ++ (eq_attr "alu_type" "and,or,xor") (const_string "logical") ++ ++ ;; If a doubleword move uses these expensive instructions, ++ ;; it is usually better to schedule them in the same way ++ ;; as the singleword form, rather than as "multi". ++ (eq_attr "move_type" "load") (const_string "load") ++ (eq_attr "move_type" "fpload") (const_string "fpload") ++ (eq_attr "move_type" "store") (const_string "store") ++ (eq_attr "move_type" "fpstore") (const_string "fpstore") ++ (eq_attr "move_type" "mtc") (const_string "mtc") ++ (eq_attr "move_type" "mfc") (const_string "mfc") ++ ++ ;; These types of move are always single insns. ++ (eq_attr "move_type" "fmove") (const_string "fmove") ++ (eq_attr "move_type" "arith") (const_string "arith") ++ (eq_attr "move_type" "logical") (const_string "logical") ++ (eq_attr "move_type" "andi") (const_string "logical") ++ ++ ;; These types of move are always split. ++ (eq_attr "move_type" "shift_shift") ++ (const_string "multi") ++ ++ ;; These types of move are split for doubleword modes only. ++ (and (eq_attr "move_type" "move,const") ++ (eq_attr "dword_mode" "yes")) ++ (const_string "multi") ++ (eq_attr "move_type" "move") (const_string "move") ++ (eq_attr "move_type" "const") (const_string "const")] ++ (const_string "unknown"))) ++ ++;; Mode for conversion types (fcvt) ++;; I2S integer to float single (SI/DI to SF) ++;; I2D integer to float double (SI/DI to DF) ++;; S2I float to integer (SF to SI/DI) ++;; D2I float to integer (DF to SI/DI) ++;; D2S double to float single ++;; S2D float single to double ++ ++(define_attr "cnv_mode" "unknown,I2S,I2D,S2I,D2I,D2S,S2D" ++ (const_string "unknown")) ++ ++;; Length of instruction in bytes. ++(define_attr "length" "" ++ (cond [ ++ ;; Direct branch instructions have a range of [-0x1000,0xffc], ++ ;; relative to the address of the delay slot. If a branch is ++ ;; outside this range, convert a branch like: ++ ;; ++ ;; bne r1,r2,target ++ ;; ++ ;; to: ++ ;; ++ ;; beq r1,r2,1f ++ ;; j target ++ ;; 1: ++ ;; ++ (eq_attr "type" "branch") ++ (if_then_else (and (le (minus (match_dup 0) (pc)) (const_int 4088)) ++ (le (minus (pc) (match_dup 0)) (const_int 4092))) ++ (const_int 4) ++ (const_int 8)) ++ ++ ;; Conservatively assume calls take two instructions, as in: ++ ;; auipc t0, %pcrel_hi(target) ++ ;; jalr ra, t0, %lo(target) ++ ;; The linker will relax these into JAL when appropriate. ++ (eq_attr "type" "call") ++ (const_int 8) ++ ++ ;; "Ghost" instructions occupy no space. ++ (eq_attr "type" "ghost") ++ (const_int 0) ++ ++ (eq_attr "got" "load") (const_int 8) ++ ++ ;; SHIFT_SHIFTs are decomposed into two separate instructions. ++ (eq_attr "move_type" "shift_shift") ++ (const_int 8) ++ ++ ;; Check for doubleword moves that are decomposed into two ++ ;; instructions. ++ (and (eq_attr "move_type" "mtc,mfc,move") ++ (eq_attr "dword_mode" "yes")) ++ (const_int 8) ++ ++ ;; Doubleword CONST{,N} moves are split into two word ++ ;; CONST{,N} moves. ++ (and (eq_attr "move_type" "const") ++ (eq_attr "dword_mode" "yes")) ++ (symbol_ref "riscv_split_const_insns (operands[1]) * 4") ++ ++ ;; Otherwise, constants, loads and stores are handled by external ++ ;; routines. ++ (eq_attr "move_type" "load,fpload") ++ (symbol_ref "riscv_load_store_insns (operands[1], insn) * 4") ++ (eq_attr "move_type" "store,fpstore") ++ (symbol_ref "riscv_load_store_insns (operands[0], insn) * 4") ++ ] (const_int 4))) ++ ++;; Describe a user's asm statement. ++(define_asm_attributes ++ [(set_attr "type" "multi")]) ++ ++;; This mode iterator allows 32-bit and 64-bit GPR patterns to be generated ++;; from the same template. ++(define_mode_iterator GPR [SI (DI "TARGET_64BIT")]) ++(define_mode_iterator SUPERQI [HI SI (DI "TARGET_64BIT")]) ++ ++;; A copy of GPR that can be used when a pattern has two independent ++;; modes. ++(define_mode_iterator GPR2 [SI (DI "TARGET_64BIT")]) ++ ++;; This mode iterator allows :P to be used for patterns that operate on ++;; pointer-sized quantities. Exactly one of the two alternatives will match. ++(define_mode_iterator P [(SI "Pmode == SImode") (DI "Pmode == DImode")]) ++ ++;; 32-bit integer moves for which we provide move patterns. ++(define_mode_iterator IMOVE32 [SI]) ++ ++;; 64-bit modes for which we provide move patterns. ++(define_mode_iterator MOVE64 [DI DF]) ++ ++;; 128-bit modes for which we provide move patterns on 64-bit targets. ++(define_mode_iterator MOVE128 [TI TF]) ++ ++;; This mode iterator allows the QI and HI extension patterns to be ++;; defined from the same template. ++(define_mode_iterator SHORT [QI HI]) ++ ++;; Likewise the 64-bit truncate-and-shift patterns. ++(define_mode_iterator SUBDI [QI HI SI]) ++(define_mode_iterator HISI [HI SI]) ++(define_mode_iterator ANYI [QI HI SI (DI "TARGET_64BIT")]) ++ ++;; This mode iterator allows :ANYF to be used wherever a scalar or vector ++;; floating-point mode is allowed. ++(define_mode_iterator ANYF [(SF "TARGET_HARD_FLOAT") ++ (DF "TARGET_HARD_FLOAT")]) ++(define_mode_iterator ANYIF [QI HI SI (DI "TARGET_64BIT") ++ (SF "TARGET_HARD_FLOAT") ++ (DF "TARGET_HARD_FLOAT")]) ++ ++;; Like ANYF, but only applies to scalar modes. ++(define_mode_iterator SCALARF [(SF "TARGET_HARD_FLOAT") ++ (DF "TARGET_HARD_FLOAT")]) ++ ++;; A floating-point mode for which moves involving FPRs may need to be split. ++(define_mode_iterator SPLITF ++ [(DF "!TARGET_64BIT") ++ (DI "!TARGET_64BIT") ++ (TF "TARGET_64BIT")]) ++ ++;; This attribute gives the length suffix for a sign- or zero-extension ++;; instruction. ++(define_mode_attr size [(QI "b") (HI "h")]) ++ ++;; Mode attributes for loads. ++(define_mode_attr load [(QI "lb") (HI "lh") (SI "lw") (DI "ld") (SF "flw") (DF "fld")]) ++ ++;; Instruction names for stores. ++(define_mode_attr store [(QI "sb") (HI "sh") (SI "sw") (DI "sd") (SF "fsw") (DF "fsd")]) ++ ++;; This attribute gives the best constraint to use for registers of ++;; a given mode. ++(define_mode_attr reg [(SI "d") (DI "d") (CC "d")]) ++ ++;; This attribute gives the format suffix for floating-point operations. ++(define_mode_attr fmt [(SF "s") (DF "d")]) ++ ++;; This attribute gives the format suffix for atomic memory operations. ++(define_mode_attr amo [(SI "w") (DI "d")]) ++ ++;; This attribute gives the upper-case mode name for one unit of a ++;; floating-point mode. ++(define_mode_attr UNITMODE [(SF "SF") (DF "DF")]) ++ ++;; This attribute gives the integer mode that has half the size of ++;; the controlling mode. ++(define_mode_attr HALFMODE [(DF "SI") (DI "SI") (TF "DI")]) ++ ++;; This code iterator allows signed and unsigned widening multiplications ++;; to use the same template. ++(define_code_iterator any_extend [sign_extend zero_extend]) ++ ++;; This code iterator allows the two right shift instructions to be ++;; generated from the same template. ++(define_code_iterator any_shiftrt [ashiftrt lshiftrt]) ++ ++;; This code iterator allows the three shift instructions to be generated ++;; from the same template. ++(define_code_iterator any_shift [ashift ashiftrt lshiftrt]) ++ ++;; This code iterator allows unsigned and signed division to be generated ++;; from the same template. ++(define_code_iterator any_div [div udiv]) ++ ++;; This code iterator allows unsigned and signed modulus to be generated ++;; from the same template. ++(define_code_iterator any_mod [mod umod]) ++ ++;; These code iterators allow the signed and unsigned scc operations to use ++;; the same template. ++(define_code_iterator any_gt [gt gtu]) ++(define_code_iterator any_ge [ge geu]) ++(define_code_iterator any_lt [lt ltu]) ++(define_code_iterator any_le [le leu]) ++ ++;; <u> expands to an empty string when doing a signed operation and ++;; "u" when doing an unsigned operation. ++(define_code_attr u [(sign_extend "") (zero_extend "u") ++ (div "") (udiv "u") ++ (mod "") (umod "u") ++ (gt "") (gtu "u") ++ (ge "") (geu "u") ++ (lt "") (ltu "u") ++ (le "") (leu "u")]) ++ ++;; <su> is like <u>, but the signed form expands to "s" rather than "". ++(define_code_attr su [(sign_extend "s") (zero_extend "u")]) ++ ++;; <optab> expands to the name of the optab for a particular code. ++(define_code_attr optab [(ashift "ashl") ++ (ashiftrt "ashr") ++ (lshiftrt "lshr") ++ (ior "ior") ++ (xor "xor") ++ (and "and") ++ (plus "add") ++ (minus "sub")]) ++ ++;; <insn> expands to the name of the insn that implements a particular code. ++(define_code_attr insn [(ashift "sll") ++ (ashiftrt "sra") ++ (lshiftrt "srl") ++ (ior "or") ++ (xor "xor") ++ (and "and") ++ (plus "add") ++ (minus "sub")]) ++ ++;; Pipeline descriptions. ++;; ++;; generic.md provides a fallback for processors without a specific ++;; pipeline description. It is derived from the old define_function_unit ++;; version and uses the "alu" and "imuldiv" units declared below. ++;; ++;; Some of the processor-specific files are also derived from old ++;; define_function_unit descriptions and simply override the parts of ++;; generic.md that don't apply. The other processor-specific files ++;; are self-contained. ++(define_automaton "alu,imuldiv") ++ ++(define_cpu_unit "alu" "alu") ++(define_cpu_unit "imuldiv" "imuldiv") ++ ++;; Ghost instructions produce no real code and introduce no hazards. ++;; They exist purely to express an effect on dataflow. ++(define_insn_reservation "ghost" 0 ++ (eq_attr "type" "ghost") ++ "nothing") ++ ++(include "generic.md") ++ ++;; ++;; .................... ++;; ++;; ADDITION ++;; ++;; .................... ++;; ++ ++(define_insn "add<mode>3" ++ [(set (match_operand:ANYF 0 "register_operand" "=f") ++ (plus:ANYF (match_operand:ANYF 1 "register_operand" "f") ++ (match_operand:ANYF 2 "register_operand" "f")))] ++ "" ++ "fadd.<fmt>\t%0,%1,%2" ++ [(set_attr "type" "fadd") ++ (set_attr "mode" "<UNITMODE>")]) ++ ++(define_expand "add<mode>3" ++ [(set (match_operand:GPR 0 "register_operand") ++ (plus:GPR (match_operand:GPR 1 "register_operand") ++ (match_operand:GPR 2 "arith_operand")))] ++ "") ++ ++(define_insn "*addsi3" ++ [(set (match_operand:SI 0 "register_operand" "=r,r") ++ (plus:SI (match_operand:GPR 1 "register_operand" "r,r") ++ (match_operand:GPR2 2 "arith_operand" "r,Q")))] ++ "" ++ { return TARGET_64BIT ? "addw\t%0,%1,%2" : "add\t%0,%1,%2"; } ++ [(set_attr "type" "arith") ++ (set_attr "mode" "SI")]) ++ ++(define_insn "*adddi3" ++ [(set (match_operand:DI 0 "register_operand" "=r,r") ++ (plus:DI (match_operand:DI 1 "register_operand" "r,r") ++ (match_operand:DI 2 "arith_operand" "r,Q")))] ++ "TARGET_64BIT" ++ "add\t%0,%1,%2" ++ [(set_attr "type" "arith") ++ (set_attr "mode" "DI")]) ++ ++(define_insn "*addsi3_extended" ++ [(set (match_operand:DI 0 "register_operand" "=r,r") ++ (sign_extend:DI ++ (plus:SI (match_operand:SI 1 "register_operand" "r,r") ++ (match_operand:SI 2 "arith_operand" "r,Q"))))] ++ "TARGET_64BIT" ++ "addw\t%0,%1,%2" ++ [(set_attr "type" "arith") ++ (set_attr "mode" "SI")]) ++ ++(define_insn "*adddisi3" ++ [(set (match_operand:SI 0 "register_operand" "=r,r") ++ (plus:SI (truncate:SI (match_operand:DI 1 "register_operand" "r,r")) ++ (truncate:SI (match_operand:DI 2 "arith_operand" "r,Q"))))] ++ "TARGET_64BIT" ++ "addw\t%0,%1,%2" ++ [(set_attr "type" "arith") ++ (set_attr "mode" "SI")]) ++ ++(define_insn "*adddisisi3" ++ [(set (match_operand:SI 0 "register_operand" "=r,r") ++ (plus:SI (truncate:SI (match_operand:DI 1 "register_operand" "r,r")) ++ (match_operand:SI 2 "arith_operand" "r,Q")))] ++ "TARGET_64BIT" ++ "addw\t%0,%1,%2" ++ [(set_attr "type" "arith") ++ (set_attr "mode" "SI")]) ++ ++(define_insn "*adddi3_truncsi" ++ [(set (match_operand:SI 0 "register_operand" "=r,r") ++ (truncate:SI ++ (plus:DI (match_operand:DI 1 "register_operand" "r,r") ++ (match_operand:DI 2 "arith_operand" "r,Q"))))] ++ "TARGET_64BIT" ++ "addw\t%0,%1,%2" ++ [(set_attr "type" "arith") ++ (set_attr "mode" "SI")]) ++ ++;; ++;; .................... ++;; ++;; SUBTRACTION ++;; ++;; .................... ++;; ++ ++(define_insn "sub<mode>3" ++ [(set (match_operand:ANYF 0 "register_operand" "=f") ++ (minus:ANYF (match_operand:ANYF 1 "register_operand" "f") ++ (match_operand:ANYF 2 "register_operand" "f")))] ++ "" ++ "fsub.<fmt>\t%0,%1,%2" ++ [(set_attr "type" "fadd") ++ (set_attr "mode" "<UNITMODE>")]) ++ ++(define_expand "sub<mode>3" ++ [(set (match_operand:GPR 0 "register_operand") ++ (minus:GPR (match_operand:GPR 1 "reg_or_0_operand") ++ (match_operand:GPR 2 "register_operand")))] ++ "") ++ ++(define_insn "*subdi3" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (minus:DI (match_operand:DI 1 "reg_or_0_operand" "rJ") ++ (match_operand:DI 2 "register_operand" "r")))] ++ "TARGET_64BIT" ++ "sub\t%0,%z1,%2" ++ [(set_attr "type" "arith") ++ (set_attr "mode" "DI")]) ++ ++(define_insn "*subsi3" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (minus:SI (match_operand:GPR 1 "reg_or_0_operand" "rJ") ++ (match_operand:GPR2 2 "register_operand" "r")))] ++ "" ++ { return TARGET_64BIT ? "subw\t%0,%z1,%2" : "sub\t%0,%z1,%2"; } ++ [(set_attr "type" "arith") ++ (set_attr "mode" "SI")]) ++ ++(define_insn "*subsi3_extended" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (sign_extend:DI ++ (minus:SI (match_operand:SI 1 "reg_or_0_operand" "rJ") ++ (match_operand:SI 2 "register_operand" "r"))))] ++ "TARGET_64BIT" ++ "subw\t%0,%z1,%2" ++ [(set_attr "type" "arith") ++ (set_attr "mode" "DI")]) ++ ++(define_insn "*subdisi3" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (minus:SI (truncate:SI (match_operand:DI 1 "reg_or_0_operand" "rJ")) ++ (truncate:SI (match_operand:DI 2 "register_operand" "r"))))] ++ "TARGET_64BIT" ++ "subw\t%0,%z1,%2" ++ [(set_attr "type" "arith") ++ (set_attr "mode" "SI")]) ++ ++(define_insn "*subdisisi3" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (minus:SI (truncate:SI (match_operand:DI 1 "reg_or_0_operand" "rJ")) ++ (match_operand:SI 2 "register_operand" "r")))] ++ "TARGET_64BIT" ++ "subw\t%0,%z1,%2" ++ [(set_attr "type" "arith") ++ (set_attr "mode" "SI")]) ++ ++(define_insn "*subsidisi3" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (minus:SI (match_operand:SI 1 "reg_or_0_operand" "rJ") ++ (truncate:SI (match_operand:DI 2 "register_operand" "r"))))] ++ "TARGET_64BIT" ++ "subw\t%0,%z1,%2" ++ [(set_attr "type" "arith") ++ (set_attr "mode" "SI")]) ++ ++(define_insn "*subdi3_truncsi" ++ [(set (match_operand:SI 0 "register_operand" "=r,r") ++ (truncate:SI ++ (minus:DI (match_operand:DI 1 "reg_or_0_operand" "rJ,r") ++ (match_operand:DI 2 "arith_operand" "r,Q"))))] ++ "TARGET_64BIT" ++ "subw\t%0,%z1,%2" ++ [(set_attr "type" "arith") ++ (set_attr "mode" "SI")]) ++ ++;; ++;; .................... ++;; ++;; MULTIPLICATION ++;; ++;; .................... ++;; ++ ++(define_insn "mul<mode>3" ++ [(set (match_operand:SCALARF 0 "register_operand" "=f") ++ (mult:SCALARF (match_operand:SCALARF 1 "register_operand" "f") ++ (match_operand:SCALARF 2 "register_operand" "f")))] ++ "" ++ "fmul.<fmt>\t%0,%1,%2" ++ [(set_attr "type" "fmul") ++ (set_attr "mode" "<UNITMODE>")]) ++ ++(define_expand "mul<mode>3" ++ [(set (match_operand:GPR 0 "register_operand") ++ (mult:GPR (match_operand:GPR 1 "reg_or_0_operand") ++ (match_operand:GPR 2 "register_operand")))] ++ "TARGET_MULDIV") ++ ++(define_insn "*mulsi3" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (mult:SI (match_operand:GPR 1 "register_operand" "r") ++ (match_operand:GPR2 2 "register_operand" "r")))] ++ "TARGET_MULDIV" ++ { return TARGET_64BIT ? "mulw\t%0,%1,%2" : "mul\t%0,%1,%2"; } ++ [(set_attr "type" "imul") ++ (set_attr "mode" "SI")]) ++ ++(define_insn "*muldisi3" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (mult:SI (truncate:SI (match_operand:DI 1 "register_operand" "r")) ++ (truncate:SI (match_operand:DI 2 "register_operand" "r"))))] ++ "TARGET_MULDIV && TARGET_64BIT" ++ "mulw\t%0,%1,%2" ++ [(set_attr "type" "imul") ++ (set_attr "mode" "SI")]) ++ ++(define_insn "*muldi3_truncsi" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (truncate:SI ++ (mult:DI (match_operand:DI 1 "register_operand" "r") ++ (match_operand:DI 2 "register_operand" "r"))))] ++ "TARGET_MULDIV && TARGET_64BIT" ++ "mulw\t%0,%1,%2" ++ [(set_attr "type" "imul") ++ (set_attr "mode" "SI")]) ++ ++(define_insn "*muldi3" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (mult:DI (match_operand:DI 1 "register_operand" "r") ++ (match_operand:DI 2 "register_operand" "r")))] ++ "TARGET_MULDIV && TARGET_64BIT" ++ "mul\t%0,%1,%2" ++ [(set_attr "type" "imul") ++ (set_attr "mode" "DI")]) ++ ++;; ++;; ........................ ++;; ++;; MULTIPLICATION HIGH-PART ++;; ++;; ........................ ++;; ++ ++ ++;; Using a clobber here is ghetto, but I'm not smart enough to do better. ' ++(define_insn_and_split "<u>mulditi3" ++ [(set (match_operand:TI 0 "register_operand" "=r") ++ (mult:TI (any_extend:TI ++ (match_operand:DI 1 "register_operand" "r")) ++ (any_extend:TI ++ (match_operand:DI 2 "register_operand" "r")))) ++ (clobber (match_scratch:DI 3 "=r"))] ++ "TARGET_MULDIV && TARGET_64BIT" ++ "#" ++ "reload_completed" ++ [ ++ (set (match_dup 3) (mult:DI (match_dup 1) (match_dup 2))) ++ (set (match_dup 4) (truncate:DI ++ (lshiftrt:TI ++ (mult:TI (any_extend:TI (match_dup 1)) ++ (any_extend:TI (match_dup 2))) ++ (const_int 64)))) ++ (set (match_dup 5) (match_dup 3)) ++ ] ++{ ++ operands[4] = riscv_subword (operands[0], true); ++ operands[5] = riscv_subword (operands[0], false); ++} ++ ) ++ ++(define_insn "<u>muldi3_highpart" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (truncate:DI ++ (lshiftrt:TI ++ (mult:TI (any_extend:TI ++ (match_operand:DI 1 "register_operand" "r")) ++ (any_extend:TI ++ (match_operand:DI 2 "register_operand" "r"))) ++ (const_int 64))))] ++ "TARGET_MULDIV && TARGET_64BIT" ++ "mulh<u>\t%0,%1,%2" ++ [(set_attr "type" "imul") ++ (set_attr "mode" "DI")]) ++ ++ ++(define_insn_and_split "usmulditi3" ++ [(set (match_operand:TI 0 "register_operand" "=r") ++ (mult:TI (zero_extend:TI ++ (match_operand:DI 1 "register_operand" "r")) ++ (sign_extend:TI ++ (match_operand:DI 2 "register_operand" "r")))) ++ (clobber (match_scratch:DI 3 "=r"))] ++ "TARGET_MULDIV && TARGET_64BIT" ++ "#" ++ "reload_completed" ++ [ ++ (set (match_dup 3) (mult:DI (match_dup 1) (match_dup 2))) ++ (set (match_dup 4) (truncate:DI ++ (lshiftrt:TI ++ (mult:TI (zero_extend:TI (match_dup 1)) ++ (sign_extend:TI (match_dup 2))) ++ (const_int 64)))) ++ (set (match_dup 5) (match_dup 3)) ++ ] ++{ ++ operands[4] = riscv_subword (operands[0], true); ++ operands[5] = riscv_subword (operands[0], false); ++} ++ ) ++ ++(define_insn "usmuldi3_highpart" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (truncate:DI ++ (lshiftrt:TI ++ (mult:TI (zero_extend:TI ++ (match_operand:DI 1 "register_operand" "r")) ++ (sign_extend:TI ++ (match_operand:DI 2 "register_operand" "r"))) ++ (const_int 64))))] ++ "TARGET_MULDIV && TARGET_64BIT" ++ "mulhsu\t%0,%2,%1" ++ [(set_attr "type" "imul") ++ (set_attr "mode" "DI")]) ++ ++(define_expand "<u>mulsidi3" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (mult:DI (any_extend:DI ++ (match_operand:SI 1 "register_operand" "r")) ++ (any_extend:DI ++ (match_operand:SI 2 "register_operand" "r")))) ++ (clobber (match_scratch:SI 3 "=r"))] ++ "TARGET_MULDIV && !TARGET_64BIT" ++{ ++ rtx temp = gen_reg_rtx (SImode); ++ emit_insn (gen_mulsi3 (temp, operands[1], operands[2])); ++ emit_insn (gen_<u>mulsi3_highpart (riscv_subword (operands[0], true), ++ operands[1], operands[2])); ++ emit_insn (gen_movsi (riscv_subword (operands[0], false), temp)); ++ DONE; ++} ++ ) ++ ++(define_insn "<u>mulsi3_highpart" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (truncate:SI ++ (lshiftrt:DI ++ (mult:DI (any_extend:DI ++ (match_operand:SI 1 "register_operand" "r")) ++ (any_extend:DI ++ (match_operand:SI 2 "register_operand" "r"))) ++ (const_int 32))))] ++ "TARGET_MULDIV && !TARGET_64BIT" ++ "mulh<u>\t%0,%1,%2" ++ [(set_attr "type" "imul") ++ (set_attr "mode" "SI")]) ++ ++ ++(define_expand "usmulsidi3" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (mult:DI (zero_extend:DI ++ (match_operand:SI 1 "register_operand" "r")) ++ (sign_extend:DI ++ (match_operand:SI 2 "register_operand" "r")))) ++ (clobber (match_scratch:SI 3 "=r"))] ++ "TARGET_MULDIV && !TARGET_64BIT" ++{ ++ rtx temp = gen_reg_rtx (SImode); ++ emit_insn (gen_mulsi3 (temp, operands[1], operands[2])); ++ emit_insn (gen_usmulsi3_highpart (riscv_subword (operands[0], true), ++ operands[1], operands[2])); ++ emit_insn (gen_movsi (riscv_subword (operands[0], false), temp)); ++ DONE; ++} ++ ) ++ ++(define_insn "usmulsi3_highpart" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (truncate:SI ++ (lshiftrt:DI ++ (mult:DI (zero_extend:DI ++ (match_operand:SI 1 "register_operand" "r")) ++ (sign_extend:DI ++ (match_operand:SI 2 "register_operand" "r"))) ++ (const_int 32))))] ++ "TARGET_MULDIV && !TARGET_64BIT" ++ "mulhsu\t%0,%2,%1" ++ [(set_attr "type" "imul") ++ (set_attr "mode" "SI")]) ++ ++;; ++;; .................... ++;; ++;; DIVISION and REMAINDER ++;; ++;; .................... ++;; ++ ++(define_insn "<u>divsi3" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (any_div:SI (match_operand:SI 1 "register_operand" "r") ++ (match_operand:SI 2 "register_operand" "r")))] ++ "TARGET_MULDIV" ++ { return TARGET_64BIT ? "div<u>w\t%0,%1,%2" : "div<u>\t%0,%1,%2"; } ++ [(set_attr "type" "idiv") ++ (set_attr "mode" "SI")]) ++ ++(define_insn "<u>divdi3" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (any_div:DI (match_operand:DI 1 "register_operand" "r") ++ (match_operand:DI 2 "register_operand" "r")))] ++ "TARGET_MULDIV && TARGET_64BIT" ++ "div<u>\t%0,%1,%2" ++ [(set_attr "type" "idiv") ++ (set_attr "mode" "DI")]) ++ ++(define_insn "<u>modsi3" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (any_mod:SI (match_operand:SI 1 "register_operand" "r") ++ (match_operand:SI 2 "register_operand" "r")))] ++ "TARGET_MULDIV" ++ { return TARGET_64BIT ? "rem<u>w\t%0,%1,%2" : "rem<u>\t%0,%1,%2"; } ++ [(set_attr "type" "idiv") ++ (set_attr "mode" "SI")]) ++ ++(define_insn "<u>moddi3" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (any_mod:DI (match_operand:DI 1 "register_operand" "r") ++ (match_operand:DI 2 "register_operand" "r")))] ++ "TARGET_MULDIV && TARGET_64BIT" ++ "rem<u>\t%0,%1,%2" ++ [(set_attr "type" "idiv") ++ (set_attr "mode" "DI")]) ++ ++(define_insn "div<mode>3" ++ [(set (match_operand:ANYF 0 "register_operand" "=f") ++ (div:ANYF (match_operand:ANYF 1 "register_operand" "f") ++ (match_operand:ANYF 2 "register_operand" "f")))] ++ "TARGET_HARD_FLOAT && TARGET_FDIV" ++ "fdiv.<fmt>\t%0,%1,%2" ++ [(set_attr "type" "fdiv") ++ (set_attr "mode" "<UNITMODE>")]) ++ ++;; ++;; .................... ++;; ++;; SQUARE ROOT ++;; ++;; .................... ++ ++(define_insn "sqrt<mode>2" ++ [(set (match_operand:ANYF 0 "register_operand" "=f") ++ (sqrt:ANYF (match_operand:ANYF 1 "register_operand" "f")))] ++ "TARGET_HARD_FLOAT && TARGET_FDIV" ++{ ++ return "fsqrt.<fmt>\t%0,%1"; ++} ++ [(set_attr "type" "fsqrt") ++ (set_attr "mode" "<UNITMODE>")]) ++ ++;; Floating point multiply accumulate instructions. ++ ++(define_insn "fma<mode>4" ++ [(set (match_operand:ANYF 0 "register_operand" "=f") ++ (fma:ANYF ++ (match_operand:ANYF 1 "register_operand" "f") ++ (match_operand:ANYF 2 "register_operand" "f") ++ (match_operand:ANYF 3 "register_operand" "f")))] ++ "TARGET_HARD_FLOAT" ++ "fmadd.<fmt>\t%0,%1,%2,%3" ++ [(set_attr "type" "fmadd") ++ (set_attr "mode" "<UNITMODE>")]) ++ ++(define_insn "fms<mode>4" ++ [(set (match_operand:ANYF 0 "register_operand" "=f") ++ (fma:ANYF ++ (match_operand:ANYF 1 "register_operand" "f") ++ (match_operand:ANYF 2 "register_operand" "f") ++ (neg:ANYF (match_operand:ANYF 3 "register_operand" "f"))))] ++ "TARGET_HARD_FLOAT" ++ "fmsub.<fmt>\t%0,%1,%2,%3" ++ [(set_attr "type" "fmadd") ++ (set_attr "mode" "<UNITMODE>")]) ++ ++(define_insn "nfma<mode>4" ++ [(set (match_operand:ANYF 0 "register_operand" "=f") ++ (neg:ANYF ++ (fma:ANYF ++ (match_operand:ANYF 1 "register_operand" "f") ++ (match_operand:ANYF 2 "register_operand" "f") ++ (match_operand:ANYF 3 "register_operand" "f"))))] ++ "TARGET_HARD_FLOAT" ++ "fnmadd.<fmt>\t%0,%1,%2,%3" ++ [(set_attr "type" "fmadd") ++ (set_attr "mode" "<UNITMODE>")]) ++ ++(define_insn "nfms<mode>4" ++ [(set (match_operand:ANYF 0 "register_operand" "=f") ++ (neg:ANYF ++ (fma:ANYF ++ (match_operand:ANYF 1 "register_operand" "f") ++ (match_operand:ANYF 2 "register_operand" "f") ++ (neg:ANYF (match_operand:ANYF 3 "register_operand" "f")))))] ++ "TARGET_HARD_FLOAT" ++ "fnmsub.<fmt>\t%0,%1,%2,%3" ++ [(set_attr "type" "fmadd") ++ (set_attr "mode" "<UNITMODE>")]) ++ ++;; modulo signed zeros, -(a*b+c) == -c-a*b ++(define_insn "*nfma<mode>4_fastmath" ++ [(set (match_operand:ANYF 0 "register_operand" "=f") ++ (minus:ANYF ++ (match_operand:ANYF 3 "register_operand" "f") ++ (mult:ANYF ++ (neg:ANYF (match_operand:ANYF 1 "register_operand" "f")) ++ (match_operand:ANYF 2 "register_operand" "f"))))] ++ "TARGET_HARD_FLOAT && !HONOR_SIGNED_ZEROS (<MODE>mode)" ++ "fnmadd.<fmt>\t%0,%1,%2,%3" ++ [(set_attr "type" "fmadd") ++ (set_attr "mode" "<UNITMODE>")]) ++ ++;; modulo signed zeros, -(a*b-c) == c-a*b ++(define_insn "*nfms<mode>4_fastmath" ++ [(set (match_operand:ANYF 0 "register_operand" "=f") ++ (minus:ANYF ++ (match_operand:ANYF 3 "register_operand" "f") ++ (mult:ANYF ++ (match_operand:ANYF 1 "register_operand" "f") ++ (match_operand:ANYF 2 "register_operand" "f"))))] ++ "TARGET_HARD_FLOAT && !HONOR_SIGNED_ZEROS (<MODE>mode)" ++ "fnmsub.<fmt>\t%0,%1,%2,%3" ++ [(set_attr "type" "fmadd") ++ (set_attr "mode" "<UNITMODE>")]) ++ ++;; ++;; .................... ++;; ++;; ABSOLUTE VALUE ++;; ++;; .................... ++ ++(define_insn "abs<mode>2" ++ [(set (match_operand:ANYF 0 "register_operand" "=f") ++ (abs:ANYF (match_operand:ANYF 1 "register_operand" "f")))] ++ "TARGET_HARD_FLOAT" ++ "fabs.<fmt>\t%0,%1" ++ [(set_attr "type" "fmove") ++ (set_attr "mode" "<UNITMODE>")]) ++ ++ ++;; ++;; .................... ++;; ++;; MIN/MAX ++;; ++;; .................... ++ ++(define_insn "smin<mode>3" ++ [(set (match_operand:ANYF 0 "register_operand" "=f") ++ (smin:ANYF (match_operand:ANYF 1 "register_operand" "f") ++ (match_operand:ANYF 2 "register_operand" "f")))] ++ "TARGET_HARD_FLOAT" ++ "fmin.<fmt>\t%0,%1,%2" ++ [(set_attr "type" "fmove") ++ (set_attr "mode" "<UNITMODE>")]) ++ ++(define_insn "smax<mode>3" ++ [(set (match_operand:ANYF 0 "register_operand" "=f") ++ (smax:ANYF (match_operand:ANYF 1 "register_operand" "f") ++ (match_operand:ANYF 2 "register_operand" "f")))] ++ "TARGET_HARD_FLOAT" ++ "fmax.<fmt>\t%0,%1,%2" ++ [(set_attr "type" "fmove") ++ (set_attr "mode" "<UNITMODE>")]) ++ ++ ++;; ++;; .................... ++;; ++;; NEGATION and ONE'S COMPLEMENT ' ++;; ++;; .................... ++ ++(define_insn "neg<mode>2" ++ [(set (match_operand:ANYF 0 "register_operand" "=f") ++ (neg:ANYF (match_operand:ANYF 1 "register_operand" "f")))] ++ "TARGET_HARD_FLOAT" ++ "fneg.<fmt>\t%0,%1" ++ [(set_attr "type" "fmove") ++ (set_attr "mode" "<UNITMODE>")]) ++ ++(define_insn "one_cmpl<mode>2" ++ [(set (match_operand:GPR 0 "register_operand" "=r") ++ (not:GPR (match_operand:GPR 1 "register_operand" "r")))] ++ "" ++ "not\t%0,%1" ++ [(set_attr "type" "logical") ++ (set_attr "mode" "<MODE>")]) ++ ++;; ++;; .................... ++;; ++;; LOGICAL ++;; ++;; .................... ++;; ++ ++(define_insn "and<mode>3" ++ [(set (match_operand:GPR 0 "register_operand" "=r,r") ++ (and:GPR (match_operand:GPR 1 "register_operand" "%r,r") ++ (match_operand:GPR 2 "arith_operand" "r,Q")))] ++ "" ++ "and\t%0,%1,%2" ++ [(set_attr "type" "logical") ++ (set_attr "mode" "<MODE>")]) ++ ++(define_insn "ior<mode>3" ++ [(set (match_operand:GPR 0 "register_operand" "=r,r") ++ (ior:GPR (match_operand:GPR 1 "register_operand" "%r,r") ++ (match_operand:GPR 2 "arith_operand" "r,Q")))] ++ "" ++ "or\t%0,%1,%2" ++ [(set_attr "type" "logical") ++ (set_attr "mode" "<MODE>")]) ++ ++(define_insn "xor<mode>3" ++ [(set (match_operand:GPR 0 "register_operand" "=r,r") ++ (xor:GPR (match_operand:GPR 1 "register_operand" "%r,r") ++ (match_operand:GPR 2 "arith_operand" "r,Q")))] ++ "" ++ "xor\t%0,%1,%2" ++ [(set_attr "type" "logical") ++ (set_attr "mode" "<MODE>")]) ++ ++;; ++;; .................... ++;; ++;; TRUNCATION ++;; ++;; .................... ++ ++(define_insn "truncdfsf2" ++ [(set (match_operand:SF 0 "register_operand" "=f") ++ (float_truncate:SF (match_operand:DF 1 "register_operand" "f")))] ++ "TARGET_HARD_FLOAT" ++ "fcvt.s.d\t%0,%1" ++ [(set_attr "type" "fcvt") ++ (set_attr "cnv_mode" "D2S") ++ (set_attr "mode" "SF")]) ++ ++;; Integer truncation patterns. Truncating to HImode/QImode is a no-op. ++;; Truncating from DImode to SImode is not, because we always keep SImode ++;; values sign-extended in a register so we can safely use DImode branches ++;; and comparisons on SImode values. ++ ++(define_insn "truncdisi2" ++ [(set (match_operand:SI 0 "nonimmediate_operand" "=r,m") ++ (truncate:SI (match_operand:DI 1 "register_operand" "r,r")))] ++ "TARGET_64BIT" ++ "@ ++ sext.w\t%0,%1 ++ sw\t%1,%0" ++ [(set_attr "move_type" "arith,store") ++ (set_attr "mode" "SI")]) ++ ++;; Combiner patterns to optimize shift/truncate combinations. ++ ++(define_insn "*ashr_trunc<mode>" ++ [(set (match_operand:SUBDI 0 "register_operand" "=r") ++ (truncate:SUBDI ++ (ashiftrt:DI (match_operand:DI 1 "register_operand" "r") ++ (match_operand:DI 2 "const_arith_operand" ""))))] ++ "TARGET_64BIT && IN_RANGE (INTVAL (operands[2]), 32, 63)" ++ "sra\t%0,%1,%2" ++ [(set_attr "type" "shift") ++ (set_attr "mode" "<MODE>")]) ++ ++(define_insn "*lshr32_trunc<mode>" ++ [(set (match_operand:SUBDI 0 "register_operand" "=r") ++ (truncate:SUBDI ++ (lshiftrt:DI (match_operand:DI 1 "register_operand" "r") ++ (const_int 32))))] ++ "TARGET_64BIT" ++ "sra\t%0,%1,32" ++ [(set_attr "type" "shift") ++ (set_attr "mode" "<MODE>")]) ++ ++;; ++;; .................... ++;; ++;; ZERO EXTENSION ++;; ++;; .................... ++ ++;; Extension insns. ++ ++(define_insn_and_split "zero_extendsidi2" ++ [(set (match_operand:DI 0 "register_operand" "=r,r") ++ (zero_extend:DI (match_operand:SI 1 "nonimmediate_operand" "r,W")))] ++ "TARGET_64BIT" ++ "@ ++ # ++ lwu\t%0,%1" ++ "&& reload_completed && REG_P (operands[1])" ++ [(set (match_dup 0) ++ (ashift:DI (match_dup 1) (const_int 32))) ++ (set (match_dup 0) ++ (lshiftrt:DI (match_dup 0) (const_int 32)))] ++ { operands[1] = gen_lowpart (DImode, operands[1]); } ++ [(set_attr "move_type" "shift_shift,load") ++ (set_attr "mode" "DI")]) ++ ++;; Combine is not allowed to convert this insn into a zero_extendsidi2 ++;; because of TRULY_NOOP_TRUNCATION. ++ ++(define_insn_and_split "*clear_upper32" ++ [(set (match_operand:DI 0 "register_operand" "=r,r") ++ (and:DI (match_operand:DI 1 "nonimmediate_operand" "r,W") ++ (const_int 4294967295)))] ++ "TARGET_64BIT" ++{ ++ if (which_alternative == 0) ++ return "#"; ++ ++ operands[1] = gen_lowpart (SImode, operands[1]); ++ return "lwu\t%0,%1"; ++} ++ "&& reload_completed && REG_P (operands[1])" ++ [(set (match_dup 0) ++ (ashift:DI (match_dup 1) (const_int 32))) ++ (set (match_dup 0) ++ (lshiftrt:DI (match_dup 0) (const_int 32)))] ++ "" ++ [(set_attr "move_type" "shift_shift,load") ++ (set_attr "mode" "DI")]) ++ ++(define_insn_and_split "zero_extendhi<GPR:mode>2" ++ [(set (match_operand:GPR 0 "register_operand" "=r,r") ++ (zero_extend:GPR (match_operand:HI 1 "nonimmediate_operand" "r,m")))] ++ "" ++ "@ ++ # ++ lhu\t%0,%1" ++ "&& reload_completed && REG_P (operands[1])" ++ [(set (match_dup 0) ++ (ashift:GPR (match_dup 1) (match_dup 2))) ++ (set (match_dup 0) ++ (lshiftrt:GPR (match_dup 0) (match_dup 2)))] ++ { ++ operands[1] = gen_lowpart (<GPR:MODE>mode, operands[1]); ++ operands[2] = GEN_INT(GET_MODE_BITSIZE(<GPR:MODE>mode) - 16); ++ } ++ [(set_attr "move_type" "shift_shift,load") ++ (set_attr "mode" "<GPR:MODE>")]) ++ ++(define_insn "zero_extendqi<SUPERQI:mode>2" ++ [(set (match_operand:SUPERQI 0 "register_operand" "=r,r") ++ (zero_extend:SUPERQI ++ (match_operand:QI 1 "nonimmediate_operand" "r,m")))] ++ "" ++ "@ ++ and\t%0,%1,0xff ++ lbu\t%0,%1" ++ [(set_attr "move_type" "andi,load") ++ (set_attr "mode" "<SUPERQI:MODE>")]) ++ ++;; ++;; .................... ++;; ++;; SIGN EXTENSION ++;; ++;; .................... ++ ++;; Extension insns. ++;; Those for integer source operand are ordered widest source type first. ++ ++;; When TARGET_64BIT, all SImode integer registers should already be in ++;; sign-extended form (see TRULY_NOOP_TRUNCATION and truncdisi2). We can ++;; therefore get rid of register->register instructions if we constrain ++;; the source to be in the same register as the destination. ++;; ++;; The register alternative has type "arith" so that the pre-reload ++;; scheduler will treat it as a move. This reflects what happens if ++;; the register alternative needs a reload. ++(define_insn_and_split "extendsidi2" ++ [(set (match_operand:DI 0 "register_operand" "=r,r") ++ (sign_extend:DI (match_operand:SI 1 "nonimmediate_operand" "r,m")))] ++ "TARGET_64BIT" ++ "@ ++ # ++ lw\t%0,%1" ++ "&& reload_completed && register_operand (operands[1], VOIDmode)" ++ [(set (match_dup 0) (match_dup 1))] ++{ ++ if (REGNO (operands[0]) == REGNO (operands[1])) ++ { ++ emit_note (NOTE_INSN_DELETED); ++ DONE; ++ } ++ operands[1] = gen_rtx_REG (DImode, REGNO (operands[1])); ++} ++ [(set_attr "move_type" "move,load") ++ (set_attr "mode" "DI")]) ++ ++(define_insn_and_split "extend<SHORT:mode><SUPERQI:mode>2" ++ [(set (match_operand:SUPERQI 0 "register_operand" "=r,r") ++ (sign_extend:SUPERQI ++ (match_operand:SHORT 1 "nonimmediate_operand" "r,m")))] ++ "" ++ "@ ++ # ++ l<SHORT:size>\t%0,%1" ++ "&& reload_completed && REG_P (operands[1])" ++ [(set (match_dup 0) (ashift:SI (match_dup 1) (match_dup 2))) ++ (set (match_dup 0) (ashiftrt:SI (match_dup 0) (match_dup 2)))] ++{ ++ operands[0] = gen_lowpart (SImode, operands[0]); ++ operands[1] = gen_lowpart (SImode, operands[1]); ++ operands[2] = GEN_INT (GET_MODE_BITSIZE (SImode) ++ - GET_MODE_BITSIZE (<SHORT:MODE>mode)); ++} ++ [(set_attr "move_type" "shift_shift,load") ++ (set_attr "mode" "SI")]) ++ ++(define_insn "extendsfdf2" ++ [(set (match_operand:DF 0 "register_operand" "=f") ++ (float_extend:DF (match_operand:SF 1 "register_operand" "f")))] ++ "TARGET_HARD_FLOAT" ++ "fcvt.d.s\t%0,%1" ++ [(set_attr "type" "fcvt") ++ (set_attr "cnv_mode" "S2D") ++ (set_attr "mode" "DF")]) ++ ++;; ++;; .................... ++;; ++;; CONVERSIONS ++;; ++;; .................... ++ ++(define_insn "fix_truncdfsi2" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (fix:SI (match_operand:DF 1 "register_operand" "f")))] ++ "TARGET_HARD_FLOAT" ++ "fcvt.w.d %0,%1,rtz" ++ [(set_attr "type" "fcvt") ++ (set_attr "mode" "DF") ++ (set_attr "cnv_mode" "D2I")]) ++ ++ ++(define_insn "fix_truncsfsi2" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (fix:SI (match_operand:SF 1 "register_operand" "f")))] ++ "TARGET_HARD_FLOAT" ++ "fcvt.w.s %0,%1,rtz" ++ [(set_attr "type" "fcvt") ++ (set_attr "mode" "SF") ++ (set_attr "cnv_mode" "S2I")]) ++ ++ ++(define_insn "fix_truncdfdi2" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (fix:DI (match_operand:DF 1 "register_operand" "f")))] ++ "TARGET_HARD_FLOAT && TARGET_64BIT" ++ "fcvt.l.d %0,%1,rtz" ++ [(set_attr "type" "fcvt") ++ (set_attr "mode" "DF") ++ (set_attr "cnv_mode" "D2I")]) ++ ++ ++(define_insn "fix_truncsfdi2" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (fix:DI (match_operand:SF 1 "register_operand" "f")))] ++ "TARGET_HARD_FLOAT && TARGET_64BIT" ++ "fcvt.l.s %0,%1,rtz" ++ [(set_attr "type" "fcvt") ++ (set_attr "mode" "SF") ++ (set_attr "cnv_mode" "S2I")]) ++ ++ ++(define_insn "floatsidf2" ++ [(set (match_operand:DF 0 "register_operand" "=f") ++ (float:DF (match_operand:SI 1 "reg_or_0_operand" "rJ")))] ++ "TARGET_HARD_FLOAT" ++ "fcvt.d.w\t%0,%z1" ++ [(set_attr "type" "fcvt") ++ (set_attr "mode" "DF") ++ (set_attr "cnv_mode" "I2D")]) ++ ++ ++(define_insn "floatdidf2" ++ [(set (match_operand:DF 0 "register_operand" "=f") ++ (float:DF (match_operand:DI 1 "reg_or_0_operand" "rJ")))] ++ "TARGET_HARD_FLOAT && TARGET_64BIT" ++ "fcvt.d.l\t%0,%z1" ++ [(set_attr "type" "fcvt") ++ (set_attr "mode" "DF") ++ (set_attr "cnv_mode" "I2D")]) ++ ++ ++(define_insn "floatsisf2" ++ [(set (match_operand:SF 0 "register_operand" "=f") ++ (float:SF (match_operand:SI 1 "reg_or_0_operand" "rJ")))] ++ "TARGET_HARD_FLOAT" ++ "fcvt.s.w\t%0,%z1" ++ [(set_attr "type" "fcvt") ++ (set_attr "mode" "SF") ++ (set_attr "cnv_mode" "I2S")]) ++ ++ ++(define_insn "floatdisf2" ++ [(set (match_operand:SF 0 "register_operand" "=f") ++ (float:SF (match_operand:DI 1 "reg_or_0_operand" "rJ")))] ++ "TARGET_HARD_FLOAT && TARGET_64BIT" ++ "fcvt.s.l\t%0,%z1" ++ [(set_attr "type" "fcvt") ++ (set_attr "mode" "SF") ++ (set_attr "cnv_mode" "I2S")]) ++ ++ ++(define_insn "floatunssidf2" ++ [(set (match_operand:DF 0 "register_operand" "=f") ++ (unsigned_float:DF (match_operand:SI 1 "reg_or_0_operand" "rJ")))] ++ "TARGET_HARD_FLOAT" ++ "fcvt.d.wu\t%0,%z1" ++ [(set_attr "type" "fcvt") ++ (set_attr "mode" "DF") ++ (set_attr "cnv_mode" "I2D")]) ++ ++ ++(define_insn "floatunsdidf2" ++ [(set (match_operand:DF 0 "register_operand" "=f") ++ (unsigned_float:DF (match_operand:DI 1 "reg_or_0_operand" "rJ")))] ++ "TARGET_HARD_FLOAT && TARGET_64BIT" ++ "fcvt.d.lu\t%0,%z1" ++ [(set_attr "type" "fcvt") ++ (set_attr "mode" "DF") ++ (set_attr "cnv_mode" "I2D")]) ++ ++ ++(define_insn "floatunssisf2" ++ [(set (match_operand:SF 0 "register_operand" "=f") ++ (unsigned_float:SF (match_operand:SI 1 "reg_or_0_operand" "rJ")))] ++ "TARGET_HARD_FLOAT" ++ "fcvt.s.wu\t%0,%z1" ++ [(set_attr "type" "fcvt") ++ (set_attr "mode" "SF") ++ (set_attr "cnv_mode" "I2S")]) ++ ++ ++(define_insn "floatunsdisf2" ++ [(set (match_operand:SF 0 "register_operand" "=f") ++ (unsigned_float:SF (match_operand:DI 1 "reg_or_0_operand" "rJ")))] ++ "TARGET_HARD_FLOAT && TARGET_64BIT" ++ "fcvt.s.lu\t%0,%z1" ++ [(set_attr "type" "fcvt") ++ (set_attr "mode" "SF") ++ (set_attr "cnv_mode" "I2S")]) ++ ++ ++(define_insn "fixuns_truncdfsi2" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (unsigned_fix:SI (match_operand:DF 1 "register_operand" "f")))] ++ "TARGET_HARD_FLOAT" ++ "fcvt.wu.d %0,%1,rtz" ++ [(set_attr "type" "fcvt") ++ (set_attr "mode" "DF") ++ (set_attr "cnv_mode" "D2I")]) ++ ++ ++(define_insn "fixuns_truncsfsi2" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (unsigned_fix:SI (match_operand:SF 1 "register_operand" "f")))] ++ "TARGET_HARD_FLOAT" ++ "fcvt.wu.s %0,%1,rtz" ++ [(set_attr "type" "fcvt") ++ (set_attr "mode" "SF") ++ (set_attr "cnv_mode" "S2I")]) ++ ++ ++(define_insn "fixuns_truncdfdi2" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (unsigned_fix:DI (match_operand:DF 1 "register_operand" "f")))] ++ "TARGET_HARD_FLOAT && TARGET_64BIT" ++ "fcvt.lu.d %0,%1,rtz" ++ [(set_attr "type" "fcvt") ++ (set_attr "mode" "DF") ++ (set_attr "cnv_mode" "D2I")]) ++ ++ ++(define_insn "fixuns_truncsfdi2" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (unsigned_fix:DI (match_operand:SF 1 "register_operand" "f")))] ++ "TARGET_HARD_FLOAT && TARGET_64BIT" ++ "fcvt.lu.s %0,%1,rtz" ++ [(set_attr "type" "fcvt") ++ (set_attr "mode" "SF") ++ (set_attr "cnv_mode" "S2I")]) ++ ++;; ++;; .................... ++;; ++;; DATA MOVEMENT ++;; ++;; .................... ++ ++;; Lower-level instructions for loading an address from the GOT. ++;; We could use MEMs, but an unspec gives more optimization ++;; opportunities. ++ ++(define_insn "got_load<mode>" ++ [(set (match_operand:P 0 "register_operand" "=r") ++ (unspec:P [(match_operand:P 1 "symbolic_operand" "")] ++ UNSPEC_LOAD_GOT))] ++ "flag_pic" ++ "la\t%0,%1" ++ [(set_attr "got" "load") ++ (set_attr "mode" "<MODE>")]) ++ ++(define_insn "tls_add_tp_le<mode>" ++ [(set (match_operand:P 0 "register_operand" "=r") ++ (unspec:P [(match_operand:P 1 "register_operand" "r") ++ (match_operand:P 2 "register_operand" "r") ++ (match_operand:P 3 "symbolic_operand" "")] ++ UNSPEC_TLS_LE))] ++ "!flag_pic || flag_pie" ++ "add\t%0,%1,%2,%%tprel_add(%3)" ++ [(set_attr "type" "arith") ++ (set_attr "mode" "<MODE>")]) ++ ++(define_insn "got_load_tls_gd<mode>" ++ [(set (match_operand:P 0 "register_operand" "=r") ++ (unspec:P [(match_operand:P 1 "symbolic_operand" "")] ++ UNSPEC_TLS_GD))] ++ "flag_pic" ++ "la.tls.gd\t%0,%1" ++ [(set_attr "got" "load") ++ (set_attr "mode" "<MODE>")]) ++ ++(define_insn "got_load_tls_ie<mode>" ++ [(set (match_operand:P 0 "register_operand" "=r") ++ (unspec:P [(match_operand:P 1 "symbolic_operand" "")] ++ UNSPEC_TLS_IE))] ++ "flag_pic" ++ "la.tls.ie\t%0,%1" ++ [(set_attr "got" "load") ++ (set_attr "mode" "<MODE>")]) ++ ++;; Instructions for adding the low 16 bits of an address to a register. ++;; Operand 2 is the address: riscv_print_operand works out which relocation ++;; should be applied. ++ ++(define_insn "*low<mode>" ++ [(set (match_operand:P 0 "register_operand" "=r") ++ (lo_sum:P (match_operand:P 1 "register_operand" "r") ++ (match_operand:P 2 "immediate_operand" "")))] ++ "" ++ "add\t%0,%1,%R2" ++ [(set_attr "alu_type" "add") ++ (set_attr "mode" "<MODE>")]) ++ ++;; Allow combine to split complex const_int load sequences, using operand 2 ++;; to store the intermediate results. See move_operand for details. ++(define_split ++ [(set (match_operand:GPR 0 "register_operand") ++ (match_operand:GPR 1 "splittable_const_int_operand")) ++ (clobber (match_operand:GPR 2 "register_operand"))] ++ "" ++ [(const_int 0)] ++{ ++ riscv_move_integer (operands[2], operands[0], INTVAL (operands[1])); ++ DONE; ++}) ++ ++;; Likewise, for symbolic operands. ++(define_split ++ [(set (match_operand:P 0 "register_operand") ++ (match_operand:P 1)) ++ (clobber (match_operand:P 2 "register_operand"))] ++ "riscv_split_symbol (operands[2], operands[1], MAX_MACHINE_MODE, NULL)" ++ [(set (match_dup 0) (match_dup 3))] ++{ ++ riscv_split_symbol (operands[2], operands[1], ++ MAX_MACHINE_MODE, &operands[3]); ++}) ++ ++;; 64-bit integer moves ++ ++;; Unlike most other insns, the move insns can't be split with ' ++;; different predicates, because register spilling and other parts of ++;; the compiler, have memoized the insn number already. ++ ++(define_expand "movdi" ++ [(set (match_operand:DI 0 "") ++ (match_operand:DI 1 ""))] ++ "" ++{ ++ if (riscv_legitimize_move (DImode, operands[0], operands[1])) ++ DONE; ++}) ++ ++(define_insn "*movdi_32bit" ++ [(set (match_operand:DI 0 "nonimmediate_operand" "=r,r,r,m,*f,*f,*r,*m") ++ (match_operand:DI 1 "move_operand" "r,i,m,r,*J*r,*m,*f,*f"))] ++ "!TARGET_64BIT ++ && (register_operand (operands[0], DImode) ++ || reg_or_0_operand (operands[1], DImode))" ++ { return riscv_output_move (operands[0], operands[1]); } ++ [(set_attr "move_type" "move,const,load,store,mtc,fpload,mfc,fpstore") ++ (set_attr "mode" "DI")]) ++ ++(define_insn "*movdi_64bit" ++ [(set (match_operand:DI 0 "nonimmediate_operand" "=r,r,r,m,*f,*f,*r,*m") ++ (match_operand:DI 1 "move_operand" "r,T,m,rJ,*r*J,*m,*f,*f"))] ++ "TARGET_64BIT ++ && (register_operand (operands[0], DImode) ++ || reg_or_0_operand (operands[1], DImode))" ++ { return riscv_output_move (operands[0], operands[1]); } ++ [(set_attr "move_type" "move,const,load,store,mtc,fpload,mfc,fpstore") ++ (set_attr "mode" "DI")]) ++ ++;; 32-bit Integer moves ++ ++;; Unlike most other insns, the move insns can't be split with ++;; different predicates, because register spilling and other parts of ++;; the compiler, have memoized the insn number already. ++ ++(define_expand "mov<mode>" ++ [(set (match_operand:IMOVE32 0 "") ++ (match_operand:IMOVE32 1 ""))] ++ "" ++{ ++ if (riscv_legitimize_move (<MODE>mode, operands[0], operands[1])) ++ DONE; ++}) ++ ++(define_insn "*mov<mode>_internal" ++ [(set (match_operand:IMOVE32 0 "nonimmediate_operand" "=r,r,r,m,*f,*f,*r,*m") ++ (match_operand:IMOVE32 1 "move_operand" "r,T,m,rJ,*r*J,*m,*f,*f"))] ++ "(register_operand (operands[0], <MODE>mode) ++ || reg_or_0_operand (operands[1], <MODE>mode))" ++ { return riscv_output_move (operands[0], operands[1]); } ++ [(set_attr "move_type" "move,const,load,store,mtc,fpload,mfc,fpstore") ++ (set_attr "mode" "SI")]) ++ ++;; 16-bit Integer moves ++ ++;; Unlike most other insns, the move insns can't be split with ++;; different predicates, because register spilling and other parts of ++;; the compiler, have memoized the insn number already. ++;; Unsigned loads are used because LOAD_EXTEND_OP returns ZERO_EXTEND. ++ ++(define_expand "movhi" ++ [(set (match_operand:HI 0 "") ++ (match_operand:HI 1 ""))] ++ "" ++{ ++ if (riscv_legitimize_move (HImode, operands[0], operands[1])) ++ DONE; ++}) ++ ++(define_insn "*movhi_internal" ++ [(set (match_operand:HI 0 "nonimmediate_operand" "=r,r,r,m,*f,*r") ++ (match_operand:HI 1 "move_operand" "r,T,m,rJ,*r*J,*f"))] ++ "(register_operand (operands[0], HImode) ++ || reg_or_0_operand (operands[1], HImode))" ++ { return riscv_output_move (operands[0], operands[1]); } ++ [(set_attr "move_type" "move,const,load,store,mtc,mfc") ++ (set_attr "mode" "HI")]) ++ ++;; HImode constant generation; see riscv_move_integer for details. ++;; si+si->hi without truncation is legal because of TRULY_NOOP_TRUNCATION. ++ ++(define_insn "add<mode>hi3" ++ [(set (match_operand:HI 0 "register_operand" "=r,r") ++ (plus:HI (match_operand:HISI 1 "register_operand" "r,r") ++ (match_operand:HISI 2 "arith_operand" "r,Q")))] ++ "" ++ { return TARGET_64BIT ? "addw\t%0,%1,%2" : "add\t%0,%1,%2"; } ++ [(set_attr "type" "arith") ++ (set_attr "mode" "HI")]) ++ ++(define_insn "xor<mode>hi3" ++ [(set (match_operand:HI 0 "register_operand" "=r,r") ++ (xor:HI (match_operand:HISI 1 "register_operand" "r,r") ++ (match_operand:HISI 2 "arith_operand" "r,Q")))] ++ "" ++ "xor\t%0,%1,%2" ++ [(set_attr "type" "logical") ++ (set_attr "mode" "HI")]) ++ ++;; 8-bit Integer moves ++ ++(define_expand "movqi" ++ [(set (match_operand:QI 0 "") ++ (match_operand:QI 1 ""))] ++ "" ++{ ++ if (riscv_legitimize_move (QImode, operands[0], operands[1])) ++ DONE; ++}) ++ ++(define_insn "*movqi_internal" ++ [(set (match_operand:QI 0 "nonimmediate_operand" "=r,r,r,m,*f,*r") ++ (match_operand:QI 1 "move_operand" "r,I,m,rJ,*r*J,*f"))] ++ "(register_operand (operands[0], QImode) ++ || reg_or_0_operand (operands[1], QImode))" ++ { return riscv_output_move (operands[0], operands[1]); } ++ [(set_attr "move_type" "move,const,load,store,mtc,mfc") ++ (set_attr "mode" "QI")]) ++ ++;; 32-bit floating point moves ++ ++(define_expand "movsf" ++ [(set (match_operand:SF 0 "") ++ (match_operand:SF 1 ""))] ++ "" ++{ ++ if (riscv_legitimize_move (SFmode, operands[0], operands[1])) ++ DONE; ++}) ++ ++(define_insn "*movsf_hardfloat" ++ [(set (match_operand:SF 0 "nonimmediate_operand" "=f,f,f,m,m,*f,*r,*r,*r,*m") ++ (match_operand:SF 1 "move_operand" "f,G,m,f,G,*r,*f,*G*r,*m,*r"))] ++ "TARGET_HARD_FLOAT ++ && (register_operand (operands[0], SFmode) ++ || reg_or_0_operand (operands[1], SFmode))" ++ { return riscv_output_move (operands[0], operands[1]); } ++ [(set_attr "move_type" "fmove,mtc,fpload,fpstore,store,mtc,mfc,move,load,store") ++ (set_attr "mode" "SF")]) ++ ++(define_insn "*movsf_softfloat" ++ [(set (match_operand:SF 0 "nonimmediate_operand" "=r,r,m") ++ (match_operand:SF 1 "move_operand" "Gr,m,r"))] ++ "TARGET_SOFT_FLOAT ++ && (register_operand (operands[0], SFmode) ++ || reg_or_0_operand (operands[1], SFmode))" ++ { return riscv_output_move (operands[0], operands[1]); } ++ [(set_attr "move_type" "move,load,store") ++ (set_attr "mode" "SF")]) ++ ++;; 64-bit floating point moves ++ ++(define_expand "movdf" ++ [(set (match_operand:DF 0 "") ++ (match_operand:DF 1 ""))] ++ "" ++{ ++ if (riscv_legitimize_move (DFmode, operands[0], operands[1])) ++ DONE; ++}) ++ ++;; In RV32, we lack mtf.d/mff.d. Go through memory instead. ++;; (except for moving a constant 0 to an FPR. for that we use fcvt.d.w.) ++(define_insn "*movdf_hardfloat_rv32" ++ [(set (match_operand:DF 0 "nonimmediate_operand" "=f,f,f,m,m,*r,*r,*m") ++ (match_operand:DF 1 "move_operand" "f,G,m,f,G,*r*G,*m,*r"))] ++ "!TARGET_64BIT && TARGET_HARD_FLOAT ++ && (register_operand (operands[0], DFmode) ++ || reg_or_0_operand (operands[1], DFmode))" ++ { return riscv_output_move (operands[0], operands[1]); } ++ [(set_attr "move_type" "fmove,mtc,fpload,fpstore,store,move,load,store") ++ (set_attr "mode" "DF")]) ++ ++(define_insn "*movdf_hardfloat_rv64" ++ [(set (match_operand:DF 0 "nonimmediate_operand" "=f,f,f,m,m,*f,*r,*r,*r,*m") ++ (match_operand:DF 1 "move_operand" "f,G,m,f,G,*r,*f,*r*G,*m,*r"))] ++ "TARGET_64BIT && TARGET_HARD_FLOAT ++ && (register_operand (operands[0], DFmode) ++ || reg_or_0_operand (operands[1], DFmode))" ++ { return riscv_output_move (operands[0], operands[1]); } ++ [(set_attr "move_type" "fmove,mtc,fpload,fpstore,store,mtc,mfc,move,load,store") ++ (set_attr "mode" "DF")]) ++ ++(define_insn "*movdf_softfloat" ++ [(set (match_operand:DF 0 "nonimmediate_operand" "=r,r,m") ++ (match_operand:DF 1 "move_operand" "rG,m,rG"))] ++ "TARGET_SOFT_FLOAT ++ && (register_operand (operands[0], DFmode) ++ || reg_or_0_operand (operands[1], DFmode))" ++ { return riscv_output_move (operands[0], operands[1]); } ++ [(set_attr "move_type" "move,load,store") ++ (set_attr "mode" "DF")]) ++ ++;; 128-bit integer moves ++ ++(define_expand "movti" ++ [(set (match_operand:TI 0) ++ (match_operand:TI 1))] ++ "TARGET_64BIT" ++{ ++ if (riscv_legitimize_move (TImode, operands[0], operands[1])) ++ DONE; ++}) ++ ++(define_insn "*movti" ++ [(set (match_operand:TI 0 "nonimmediate_operand" "=r,r,r,m") ++ (match_operand:TI 1 "move_operand" "r,i,m,rJ"))] ++ "TARGET_64BIT ++ && (register_operand (operands[0], TImode) ++ || reg_or_0_operand (operands[1], TImode))" ++ "#" ++ [(set_attr "move_type" "move,const,load,store") ++ (set_attr "mode" "TI")]) ++ ++(define_split ++ [(set (match_operand:MOVE64 0 "nonimmediate_operand") ++ (match_operand:MOVE64 1 "move_operand"))] ++ "reload_completed && !TARGET_64BIT ++ && riscv_split_64bit_move_p (operands[0], operands[1])" ++ [(const_int 0)] ++{ ++ riscv_split_doubleword_move (operands[0], operands[1]); ++ DONE; ++}) ++ ++(define_split ++ [(set (match_operand:MOVE128 0 "nonimmediate_operand") ++ (match_operand:MOVE128 1 "move_operand"))] ++ "TARGET_64BIT && reload_completed" ++ [(const_int 0)] ++{ ++ riscv_split_doubleword_move (operands[0], operands[1]); ++ DONE; ++}) ++ ++;; 64-bit paired-single floating point moves ++ ++;; Load the low word of operand 0 with operand 1. ++(define_insn "load_low<mode>" ++ [(set (match_operand:SPLITF 0 "register_operand" "=f,f") ++ (unspec:SPLITF [(match_operand:<HALFMODE> 1 "general_operand" "rJ,m")] ++ UNSPEC_LOAD_LOW))] ++ "TARGET_HARD_FLOAT" ++{ ++ operands[0] = riscv_subword (operands[0], 0); ++ return riscv_output_move (operands[0], operands[1]); ++} ++ [(set_attr "move_type" "mtc,fpload") ++ (set_attr "mode" "<HALFMODE>")]) ++ ++;; Load the high word of operand 0 from operand 1, preserving the value ++;; in the low word. ++(define_insn "load_high<mode>" ++ [(set (match_operand:SPLITF 0 "register_operand" "=f,f") ++ (unspec:SPLITF [(match_operand:<HALFMODE> 1 "general_operand" "rJ,m") ++ (match_operand:SPLITF 2 "register_operand" "0,0")] ++ UNSPEC_LOAD_HIGH))] ++ "TARGET_HARD_FLOAT" ++{ ++ operands[0] = riscv_subword (operands[0], 1); ++ return riscv_output_move (operands[0], operands[1]); ++} ++ [(set_attr "move_type" "mtc,fpload") ++ (set_attr "mode" "<HALFMODE>")]) ++ ++;; Store one word of operand 1 in operand 0. Operand 2 is 1 to store the ++;; high word and 0 to store the low word. ++(define_insn "store_word<mode>" ++ [(set (match_operand:<HALFMODE> 0 "nonimmediate_operand" "=r,m") ++ (unspec:<HALFMODE> [(match_operand:SPLITF 1 "register_operand" "f,f") ++ (match_operand 2 "const_int_operand")] ++ UNSPEC_STORE_WORD))] ++ "TARGET_HARD_FLOAT" ++{ ++ operands[1] = riscv_subword (operands[1], INTVAL (operands[2])); ++ return riscv_output_move (operands[0], operands[1]); ++} ++ [(set_attr "move_type" "mfc,fpstore") ++ (set_attr "mode" "<HALFMODE>")]) ++ ++;; Expand in-line code to clear the instruction cache between operand[0] and ++;; operand[1]. ++(define_expand "clear_cache" ++ [(match_operand 0 "pmode_register_operand") ++ (match_operand 1 "pmode_register_operand")] ++ "" ++ " ++{ ++ emit_insn(gen_fence_i()); ++ DONE; ++}") ++ ++(define_insn "fence" ++ [(unspec_volatile [(const_int 0)] UNSPEC_FENCE)] ++ "" ++ "%|fence%-") ++ ++(define_insn "fence_i" ++ [(unspec_volatile [(const_int 0)] UNSPEC_FENCE_I)] ++ "" ++ "fence.i") ++ ++;; Block moves, see riscv.c for more details. ++;; Argument 0 is the destination ++;; Argument 1 is the source ++;; Argument 2 is the length ++;; Argument 3 is the alignment ++ ++(define_expand "movmemsi" ++ [(parallel [(set (match_operand:BLK 0 "general_operand") ++ (match_operand:BLK 1 "general_operand")) ++ (use (match_operand:SI 2 "")) ++ (use (match_operand:SI 3 "const_int_operand"))])] ++ "!TARGET_MEMCPY" ++{ ++ if (riscv_expand_block_move (operands[0], operands[1], operands[2])) ++ DONE; ++ else ++ FAIL; ++}) ++ ++;; ++;; .................... ++;; ++;; SHIFTS ++;; ++;; .................... ++ ++(define_insn "<optab>si3" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (any_shift:SI (match_operand:SI 1 "register_operand" "r") ++ (match_operand:SI 2 "arith_operand" "rI")))] ++ "" ++{ ++ if (GET_CODE (operands[2]) == CONST_INT) ++ operands[2] = GEN_INT (INTVAL (operands[2]) ++ & (GET_MODE_BITSIZE (SImode) - 1)); ++ ++ return TARGET_64BIT ? "<insn>w\t%0,%1,%2" : "<insn>\t%0,%1,%2"; ++} ++ [(set_attr "type" "shift") ++ (set_attr "mode" "SI")]) ++ ++(define_insn "*<optab>disi3" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (any_shift:SI (truncate:SI (match_operand:DI 1 "register_operand" "r")) ++ (truncate:SI (match_operand:DI 2 "arith_operand" "rI"))))] ++ "TARGET_64BIT" ++ "<insn>w\t%0,%1,%2" ++ [(set_attr "type" "shift") ++ (set_attr "mode" "SI")]) ++ ++(define_insn "*ashldi3_truncsi" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (truncate:SI ++ (ashift:DI (match_operand:DI 1 "register_operand" "r") ++ (match_operand:DI 2 "const_arith_operand" "I"))))] ++ "TARGET_64BIT && INTVAL (operands[2]) < 32" ++ "sllw\t%0,%1,%2" ++ [(set_attr "type" "shift") ++ (set_attr "mode" "SI")]) ++ ++(define_insn "*ashldisi3" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (ashift:SI (match_operand:GPR 1 "register_operand" "r") ++ (match_operand:GPR2 2 "arith_operand" "rI")))] ++ "TARGET_64BIT && (GET_CODE (operands[2]) == CONST_INT ? INTVAL (operands[2]) < 32 : 1)" ++ "sllw\t%0,%1,%2" ++ [(set_attr "type" "shift") ++ (set_attr "mode" "SI")]) ++ ++(define_insn "<optab>di3" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (any_shift:DI (match_operand:DI 1 "register_operand" "r") ++ (match_operand:DI 2 "arith_operand" "rI")))] ++ "TARGET_64BIT" ++{ ++ if (GET_CODE (operands[2]) == CONST_INT) ++ operands[2] = GEN_INT (INTVAL (operands[2]) ++ & (GET_MODE_BITSIZE (DImode) - 1)); ++ ++ return "<insn>\t%0,%1,%2"; ++} ++ [(set_attr "type" "shift") ++ (set_attr "mode" "DI")]) ++ ++(define_insn "<optab>si3_extend" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (sign_extend:DI ++ (any_shift:SI (match_operand:SI 1 "register_operand" "r") ++ (match_operand:SI 2 "arith_operand" "rI"))))] ++ "TARGET_64BIT" ++{ ++ if (GET_CODE (operands[2]) == CONST_INT) ++ operands[2] = GEN_INT (INTVAL (operands[2]) & 0x1f); ++ ++ return "<insn>w\t%0,%1,%2"; ++} ++ [(set_attr "type" "shift") ++ (set_attr "mode" "SI")]) ++ ++;; ++;; .................... ++;; ++;; CONDITIONAL BRANCHES ++;; ++;; .................... ++ ++;; Conditional branches ++ ++(define_insn "*branch_order<mode>" ++ [(set (pc) ++ (if_then_else ++ (match_operator 1 "order_operator" ++ [(match_operand:GPR 2 "register_operand" "r") ++ (match_operand:GPR 3 "reg_or_0_operand" "rJ")]) ++ (label_ref (match_operand 0 "" "")) ++ (pc)))] ++ "" ++{ ++ if (GET_CODE (operands[3]) == CONST_INT) ++ return "b%C1z\t%2,%0"; ++ return "b%C1\t%2,%3,%0"; ++} ++ [(set_attr "type" "branch") ++ (set_attr "mode" "none")]) ++ ++;; Used to implement built-in functions. ++(define_expand "condjump" ++ [(set (pc) ++ (if_then_else (match_operand 0) ++ (label_ref (match_operand 1)) ++ (pc)))]) ++ ++(define_expand "cbranch<mode>4" ++ [(set (pc) ++ (if_then_else (match_operator 0 "comparison_operator" ++ [(match_operand:GPR 1 "register_operand") ++ (match_operand:GPR 2 "nonmemory_operand")]) ++ (label_ref (match_operand 3 "")) ++ (pc)))] ++ "" ++{ ++ riscv_expand_conditional_branch (operands); ++ DONE; ++}) ++ ++(define_expand "cbranch<mode>4" ++ [(set (pc) ++ (if_then_else (match_operator 0 "comparison_operator" ++ [(match_operand:SCALARF 1 "register_operand") ++ (match_operand:SCALARF 2 "register_operand")]) ++ (label_ref (match_operand 3 "")) ++ (pc)))] ++ "" ++{ ++ riscv_expand_conditional_branch (operands); ++ DONE; ++}) ++ ++(define_insn_and_split "*branch_on_bit<GPR:mode>" ++ [(set (pc) ++ (if_then_else ++ (match_operator 0 "equality_operator" ++ [(zero_extract:GPR (match_operand:GPR 2 "register_operand" "r") ++ (const_int 1) ++ (match_operand 3 "branch_on_bit_operand")) ++ (const_int 0)]) ++ (label_ref (match_operand 1)) ++ (pc))) ++ (clobber (match_scratch:GPR 4 "=&r"))] ++ "" ++ "#" ++ "reload_completed" ++ [(set (match_dup 4) ++ (ashift:GPR (match_dup 2) (match_dup 3))) ++ (set (pc) ++ (if_then_else ++ (match_op_dup 0 [(match_dup 4) (const_int 0)]) ++ (label_ref (match_operand 1)) ++ (pc)))] ++{ ++ int shift = GET_MODE_BITSIZE (<MODE>mode) - 1 - INTVAL (operands[3]); ++ operands[3] = GEN_INT (shift); ++ ++ if (GET_CODE (operands[0]) == EQ) ++ operands[0] = gen_rtx_GE (<MODE>mode, operands[4], const0_rtx); ++ else ++ operands[0] = gen_rtx_LT (<MODE>mode, operands[4], const0_rtx); ++}) ++ ++(define_insn_and_split "*branch_on_bit_range<GPR:mode>" ++ [(set (pc) ++ (if_then_else ++ (match_operator 0 "equality_operator" ++ [(zero_extract:GPR (match_operand:GPR 2 "register_operand" "r") ++ (match_operand 3 "branch_on_bit_operand") ++ (const_int 0)) ++ (const_int 0)]) ++ (label_ref (match_operand 1)) ++ (pc))) ++ (clobber (match_scratch:GPR 4 "=&r"))] ++ "" ++ "#" ++ "reload_completed" ++ [(set (match_dup 4) ++ (ashift:GPR (match_dup 2) (match_dup 3))) ++ (set (pc) ++ (if_then_else ++ (match_op_dup 0 [(match_dup 4) (const_int 0)]) ++ (label_ref (match_operand 1)) ++ (pc)))] ++{ ++ operands[3] = GEN_INT (GET_MODE_BITSIZE (<MODE>mode) - INTVAL (operands[3])); ++}) ++ ++;; ++;; .................... ++;; ++;; SETTING A REGISTER FROM A COMPARISON ++;; ++;; .................... ++ ++;; Destination is always set in SI mode. ++ ++(define_expand "cstore<mode>4" ++ [(set (match_operand:SI 0 "register_operand") ++ (match_operator:SI 1 "order_operator" ++ [(match_operand:GPR 2 "register_operand") ++ (match_operand:GPR 3 "nonmemory_operand")]))] ++ "" ++{ ++ riscv_expand_scc (operands); ++ DONE; ++}) ++ ++(define_insn "cstore<mode>4" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (match_operator:SI 1 "fp_order_operator" ++ [(match_operand:SCALARF 2 "register_operand" "f") ++ (match_operand:SCALARF 3 "register_operand" "f")]))] ++ "TARGET_HARD_FLOAT" ++ "f%C1.<fmt>\t%0,%2,%3" ++ [(set_attr "type" "fcmp") ++ (set_attr "mode" "<UNITMODE>")]) ++ ++(define_insn "*seq_zero_<GPR:mode><GPR2:mode>" ++ [(set (match_operand:GPR2 0 "register_operand" "=r") ++ (eq:GPR2 (match_operand:GPR 1 "register_operand" "r") ++ (const_int 0)))] ++ "" ++ "seqz\t%0,%1" ++ [(set_attr "type" "slt") ++ (set_attr "mode" "<GPR:MODE>")]) ++ ++(define_insn "*sne_zero_<GPR:mode><GPR2:mode>" ++ [(set (match_operand:GPR2 0 "register_operand" "=r") ++ (ne:GPR2 (match_operand:GPR 1 "register_operand" "r") ++ (const_int 0)))] ++ "" ++ "snez\t%0,%1" ++ [(set_attr "type" "slt") ++ (set_attr "mode" "<GPR:MODE>")]) ++ ++(define_insn "*sgt<u>_<GPR:mode><GPR2:mode>" ++ [(set (match_operand:GPR2 0 "register_operand" "=r") ++ (any_gt:GPR2 (match_operand:GPR 1 "register_operand" "r") ++ (match_operand:GPR 2 "reg_or_0_operand" "rJ")))] ++ "" ++ "slt<u>\t%0,%z2,%1" ++ [(set_attr "type" "slt") ++ (set_attr "mode" "<GPR:MODE>")]) ++ ++(define_insn "*sge<u>_<GPR:mode><GPR2:mode>" ++ [(set (match_operand:GPR2 0 "register_operand" "=r") ++ (any_ge:GPR2 (match_operand:GPR 1 "register_operand" "r") ++ (const_int 1)))] ++ "" ++ "slt<u>\t%0,zero,%1" ++ [(set_attr "type" "slt") ++ (set_attr "mode" "<GPR:MODE>")]) ++ ++(define_insn "*slt<u>_<GPR:mode><GPR2:mode>" ++ [(set (match_operand:GPR2 0 "register_operand" "=r") ++ (any_lt:GPR2 (match_operand:GPR 1 "register_operand" "r") ++ (match_operand:GPR 2 "arith_operand" "rI")))] ++ "" ++ "slt<u>\t%0,%1,%2" ++ [(set_attr "type" "slt") ++ (set_attr "mode" "<GPR:MODE>")]) ++ ++(define_insn "*sle<u>_<GPR:mode><GPR2:mode>" ++ [(set (match_operand:GPR2 0 "register_operand" "=r") ++ (any_le:GPR2 (match_operand:GPR 1 "register_operand" "r") ++ (match_operand:GPR 2 "sle_operand" "")))] ++ "" ++{ ++ operands[2] = GEN_INT (INTVAL (operands[2]) + 1); ++ return "slt<u>\t%0,%1,%2"; ++} ++ [(set_attr "type" "slt") ++ (set_attr "mode" "<GPR:MODE>")]) ++ ++;; ++;; .................... ++;; ++;; UNCONDITIONAL BRANCHES ++;; ++;; .................... ++ ++;; Unconditional branches. ++ ++(define_insn "jump" ++ [(set (pc) ++ (label_ref (match_operand 0 "" "")))] ++ "" ++ "j\t%l0" ++ [(set_attr "type" "jump") ++ (set_attr "mode" "none")]) ++ ++(define_expand "indirect_jump" ++ [(set (pc) (match_operand 0 "register_operand"))] ++ "" ++{ ++ operands[0] = force_reg (Pmode, operands[0]); ++ if (Pmode == SImode) ++ emit_jump_insn (gen_indirect_jumpsi (operands[0])); ++ else ++ emit_jump_insn (gen_indirect_jumpdi (operands[0])); ++ DONE; ++}) ++ ++(define_insn "indirect_jump<mode>" ++ [(set (pc) (match_operand:P 0 "register_operand" "r"))] ++ "" ++ "jr\t%0" ++ [(set_attr "type" "jump") ++ (set_attr "mode" "none")]) ++ ++(define_expand "tablejump" ++ [(set (pc) (match_operand 0 "register_operand" "")) ++ (use (label_ref (match_operand 1 "" "")))] ++ "" ++{ ++ if (CASE_VECTOR_PC_RELATIVE) ++ operands[0] = expand_simple_binop (Pmode, PLUS, operands[0], ++ gen_rtx_LABEL_REF (Pmode, operands[1]), ++ NULL_RTX, 0, OPTAB_DIRECT); ++ ++ if (CASE_VECTOR_PC_RELATIVE && Pmode == DImode) ++ emit_jump_insn (gen_tablejumpdi (operands[0], operands[1])); ++ else ++ emit_jump_insn (gen_tablejumpsi (operands[0], operands[1])); ++ DONE; ++}) ++ ++(define_insn "tablejump<mode>" ++ [(set (pc) (match_operand:GPR 0 "register_operand" "r")) ++ (use (label_ref (match_operand 1 "" "")))] ++ "" ++ "jr\t%0" ++ [(set_attr "type" "jump") ++ (set_attr "mode" "none")]) ++ ++;; ++;; .................... ++;; ++;; Function prologue/epilogue ++;; ++;; .................... ++;; ++ ++(define_expand "prologue" ++ [(const_int 1)] ++ "" ++{ ++ riscv_expand_prologue (); ++ DONE; ++}) ++ ++;; Block any insns from being moved before this point, since the ++;; profiling call to mcount can use various registers that aren't ++;; saved or used to pass arguments. ++ ++(define_insn "blockage" ++ [(unspec_volatile [(const_int 0)] UNSPEC_BLOCKAGE)] ++ "" ++ "" ++ [(set_attr "type" "ghost") ++ (set_attr "mode" "none")]) ++ ++(define_expand "epilogue" ++ [(const_int 2)] ++ "" ++{ ++ riscv_expand_epilogue (false); ++ DONE; ++}) ++ ++(define_expand "sibcall_epilogue" ++ [(const_int 2)] ++ "" ++{ ++ riscv_expand_epilogue (true); ++ DONE; ++}) ++ ++;; Trivial return. Make it look like a normal return insn as that ++;; allows jump optimizations to work better. ++ ++(define_expand "return" ++ [(simple_return)] ++ "riscv_can_use_return_insn ()" ++ "") ++ ++(define_insn "simple_return" ++ [(simple_return)] ++ "" ++ "ret" ++ [(set_attr "type" "jump") ++ (set_attr "mode" "none")]) ++ ++;; Normal return. ++ ++(define_insn "simple_return_internal" ++ [(simple_return) ++ (use (match_operand 0 "pmode_register_operand" ""))] ++ "" ++ "jr\t%0" ++ [(set_attr "type" "jump") ++ (set_attr "mode" "none")]) ++ ++;; This is used in compiling the unwind routines. ++(define_expand "eh_return" ++ [(use (match_operand 0 "general_operand"))] ++ "" ++{ ++ if (GET_MODE (operands[0]) != word_mode) ++ operands[0] = convert_to_mode (word_mode, operands[0], 0); ++ if (TARGET_64BIT) ++ emit_insn (gen_eh_set_lr_di (operands[0])); ++ else ++ emit_insn (gen_eh_set_lr_si (operands[0])); ++ DONE; ++}) ++ ++;; Clobber the return address on the stack. We can't expand this ++;; until we know where it will be put in the stack frame. ++ ++(define_insn "eh_set_lr_si" ++ [(unspec [(match_operand:SI 0 "register_operand" "r")] UNSPEC_EH_RETURN) ++ (clobber (match_scratch:SI 1 "=&r"))] ++ "! TARGET_64BIT" ++ "#") ++ ++(define_insn "eh_set_lr_di" ++ [(unspec [(match_operand:DI 0 "register_operand" "r")] UNSPEC_EH_RETURN) ++ (clobber (match_scratch:DI 1 "=&r"))] ++ "TARGET_64BIT" ++ "#") ++ ++(define_split ++ [(unspec [(match_operand 0 "register_operand")] UNSPEC_EH_RETURN) ++ (clobber (match_scratch 1))] ++ "reload_completed" ++ [(const_int 0)] ++{ ++ riscv_set_return_address (operands[0], operands[1]); ++ DONE; ++}) ++ ++;; ++;; .................... ++;; ++;; FUNCTION CALLS ++;; ++;; .................... ++ ++;; Sibling calls. All these patterns use jump instructions. ++ ++;; call_insn_operand will only accept constant ++;; addresses if a direct jump is acceptable. Since the 'S' constraint ++;; is defined in terms of call_insn_operand, the same is true of the ++;; constraints. ++ ++;; When we use an indirect jump, we need a register that will be ++;; preserved by the epilogue (constraint j). ++ ++(define_expand "sibcall" ++ [(parallel [(call (match_operand 0 "") ++ (match_operand 1 "")) ++ (use (match_operand 2 "")) ;; next_arg_reg ++ (use (match_operand 3 ""))])] ;; struct_value_size_rtx ++ "" ++{ ++ riscv_expand_call (true, NULL_RTX, XEXP (operands[0], 0), operands[1]); ++ DONE; ++}) ++ ++(define_insn "sibcall_internal" ++ [(call (mem:SI (match_operand 0 "call_insn_operand" "j,S")) ++ (match_operand 1 "" ""))] ++ "SIBLING_CALL_P (insn)" ++ { return REG_P (operands[0]) ? "jr\t%0" ++ : absolute_symbolic_operand (operands[0], VOIDmode) ? "tail\t%0" ++ : "tail\t%0@"; } ++ [(set_attr "type" "call")]) ++ ++(define_expand "sibcall_value" ++ [(parallel [(set (match_operand 0 "") ++ (call (match_operand 1 "") ++ (match_operand 2 ""))) ++ (use (match_operand 3 ""))])] ;; next_arg_reg ++ "" ++{ ++ riscv_expand_call (true, operands[0], XEXP (operands[1], 0), operands[2]); ++ DONE; ++}) ++ ++(define_insn "sibcall_value_internal" ++ [(set (match_operand 0 "register_operand" "") ++ (call (mem:SI (match_operand 1 "call_insn_operand" "j,S")) ++ (match_operand 2 "" "")))] ++ "SIBLING_CALL_P (insn)" ++ { return REG_P (operands[1]) ? "jr\t%1" ++ : absolute_symbolic_operand (operands[1], VOIDmode) ? "tail\t%1" ++ : "tail\t%1@"; } ++ [(set_attr "type" "call")]) ++ ++(define_insn "sibcall_value_multiple_internal" ++ [(set (match_operand 0 "register_operand" "") ++ (call (mem:SI (match_operand 1 "call_insn_operand" "j,S")) ++ (match_operand 2 "" ""))) ++ (set (match_operand 3 "register_operand" "") ++ (call (mem:SI (match_dup 1)) ++ (match_dup 2)))] ++ "SIBLING_CALL_P (insn)" ++ { return REG_P (operands[1]) ? "jr\t%1" ++ : absolute_symbolic_operand (operands[1], VOIDmode) ? "tail\t%1" ++ : "tail\t%1@"; } ++ [(set_attr "type" "call")]) ++ ++(define_expand "call" ++ [(parallel [(call (match_operand 0 "") ++ (match_operand 1 "")) ++ (use (match_operand 2 "")) ;; next_arg_reg ++ (use (match_operand 3 ""))])] ;; struct_value_size_rtx ++ "" ++{ ++ riscv_expand_call (false, NULL_RTX, XEXP (operands[0], 0), operands[1]); ++ DONE; ++}) ++ ++(define_insn "call_internal" ++ [(call (mem:SI (match_operand 0 "call_insn_operand" "r,S")) ++ (match_operand 1 "" "")) ++ (clobber (reg:SI RETURN_ADDR_REGNUM))] ++ "" ++ { return REG_P (operands[0]) ? "jalr\t%0" ++ : absolute_symbolic_operand (operands[0], VOIDmode) ? "call\t%0" ++ : "call\t%0@"; } ++ [(set_attr "jal" "indirect,direct")]) ++ ++(define_expand "call_value" ++ [(parallel [(set (match_operand 0 "") ++ (call (match_operand 1 "") ++ (match_operand 2 ""))) ++ (use (match_operand 3 ""))])] ;; next_arg_reg ++ "" ++{ ++ riscv_expand_call (false, operands[0], XEXP (operands[1], 0), operands[2]); ++ DONE; ++}) ++ ++;; See comment for call_internal. ++(define_insn "call_value_internal" ++ [(set (match_operand 0 "register_operand" "") ++ (call (mem:SI (match_operand 1 "call_insn_operand" "r,S")) ++ (match_operand 2 "" ""))) ++ (clobber (reg:SI RETURN_ADDR_REGNUM))] ++ "" ++ { return REG_P (operands[1]) ? "jalr\t%1" ++ : absolute_symbolic_operand (operands[1], VOIDmode) ? "call\t%1" ++ : "call\t%1@"; } ++ [(set_attr "jal" "indirect,direct")]) ++ ++;; See comment for call_internal. ++(define_insn "call_value_multiple_internal" ++ [(set (match_operand 0 "register_operand" "") ++ (call (mem:SI (match_operand 1 "call_insn_operand" "r,S")) ++ (match_operand 2 "" ""))) ++ (set (match_operand 3 "register_operand" "") ++ (call (mem:SI (match_dup 1)) ++ (match_dup 2))) ++ (clobber (reg:SI RETURN_ADDR_REGNUM))] ++ "" ++ { return REG_P (operands[1]) ? "jalr\t%1" ++ : absolute_symbolic_operand (operands[1], VOIDmode) ? "call\t%1" ++ : "call\t%1@"; } ++ [(set_attr "jal" "indirect,direct")]) ++ ++;; Call subroutine returning any type. ++ ++(define_expand "untyped_call" ++ [(parallel [(call (match_operand 0 "") ++ (const_int 0)) ++ (match_operand 1 "") ++ (match_operand 2 "")])] ++ "" ++{ ++ int i; ++ ++ emit_call_insn (GEN_CALL (operands[0], const0_rtx, NULL, const0_rtx)); ++ ++ for (i = 0; i < XVECLEN (operands[2], 0); i++) ++ { ++ rtx set = XVECEXP (operands[2], 0, i); ++ riscv_emit_move (SET_DEST (set), SET_SRC (set)); ++ } ++ ++ emit_insn (gen_blockage ()); ++ DONE; ++}) ++ ++(define_insn "nop" ++ [(const_int 0)] ++ "" ++ "nop" ++ [(set_attr "type" "nop") ++ (set_attr "mode" "none")]) ++ ++(define_insn "trap" ++ [(trap_if (const_int 1) (const_int 0))] ++ "" ++ "sbreak") ++ ++(define_insn "gpr_save" ++ [(unspec_volatile [(match_operand 0 "const_int_operand")] UNSPEC_GPR_SAVE) ++ (clobber (reg:SI T0_REGNUM)) ++ (clobber (reg:SI T1_REGNUM))] ++ "" ++ { return riscv_output_gpr_save (INTVAL (operands[0])); }) ++ ++(define_insn "gpr_restore" ++ [(unspec_volatile [(match_operand 0 "const_int_operand")] UNSPEC_GPR_RESTORE)] ++ "" ++ "tail\t__riscv_restore_%0") ++ ++(define_insn "gpr_restore_return" ++ [(return) ++ (use (match_operand 0 "pmode_register_operand" "")) ++ (const_int 0)] ++ "" ++ "") ++ ++(include "sync.md") ++(include "peephole.md") +diff -urN empty/gcc/config/riscv/riscv.opt gcc-5.2.0/gcc/config/riscv/riscv.opt +--- empty/gcc/config/riscv/riscv.opt 1970-01-01 01:00:00.000000000 +0100 ++++ gcc-5.2.0/gcc/config/riscv/riscv.opt 2015-07-17 22:36:52.319705931 +0200 +@@ -0,0 +1,87 @@ ++; Options for the MIPS port of the compiler ++; ++; Copyright (C) 2005, 2007, 2008, 2010, 2011 Free Software Foundation, Inc. ++; ++; This file is part of GCC. ++; ++; GCC is free software; you can redistribute it and/or modify it under ++; the terms of the GNU General Public License as published by the Free ++; Software Foundation; either version 3, or (at your option) any later ++; version. ++; ++; GCC is distributed in the hope that it will be useful, but WITHOUT ++; ANY WARRANTY; without even the implied warranty of MERCHANTABILITY ++; or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public ++; License for more details. ++; ++; You should have received a copy of the GNU General Public License ++; along with GCC; see the file COPYING3. If not see ++; <http://www.gnu.org/licenses/>. ++ ++m32 ++Target RejectNegative Mask(32BIT) ++Generate RV32 code ++ ++m64 ++Target RejectNegative InverseMask(32BIT, 64BIT) ++Generate RV64 code ++ ++mbranch-cost= ++Target RejectNegative Joined UInteger Var(riscv_branch_cost) ++-mbranch-cost=COST Set the cost of branches to roughly COST instructions ++ ++mhard-float ++Target Report RejectNegative InverseMask(SOFT_FLOAT_ABI, HARD_FLOAT_ABI) ++Allow the use of hardware floating-point ABI and instructions ++ ++mmemcpy ++Target Report Mask(MEMCPY) ++Don't optimize block moves ++ ++mplt ++Target Report Var(TARGET_PLT) Init(1) ++When generating -fpic code, allow the use of PLTs. Ignored for fno-pic. ++ ++msoft-float ++Target Report RejectNegative Mask(SOFT_FLOAT_ABI) ++Prevent the use of all hardware floating-point instructions ++ ++mfdiv ++Target Report RejectNegative Mask(FDIV) ++Use hardware floating-point divide and square root instructions ++ ++march= ++Target RejectNegative Joined Var(riscv_arch_string) ++-march= Generate code for given RISC-V ISA (e.g. RV64IM) ++ ++mtune= ++Target RejectNegative Joined Var(riscv_tune_string) ++-mtune=PROCESSOR Optimize the output for PROCESSOR ++ ++msmall-data-limit= ++Target Joined Separate UInteger Var(g_switch_value) Init(8) ++-msmall-data-limit=<number> Put global and static data smaller than <number> bytes into a special section (on some targets) ++ ++matomic ++Target Report Mask(ATOMIC) ++Use hardware atomic memory instructions. ++ ++mmuldiv ++Target Report Mask(MULDIV) ++Use hardware instructions for integer multiplication and division. ++ ++mrvc ++Target Report Mask(RVC) ++Use compressed instruction encoding ++ ++msave-restore ++Target Report Mask(SAVE_RESTORE) ++Use smaller but slower prologue and epilogue code ++ ++mlra ++Target Report Var(riscv_lra_flag) Init(0) Save ++Use LRA instead of reload ++ ++mcmodel= ++Target RejectNegative Joined Var(riscv_cmodel_string) ++Use given RISC-V code model (medlow or medany) +diff -urN empty/gcc/config/riscv/sync.md gcc-5.2.0/gcc/config/riscv/sync.md +--- empty/gcc/config/riscv/sync.md 1970-01-01 01:00:00.000000000 +0100 ++++ gcc-5.2.0/gcc/config/riscv/sync.md 2015-07-17 22:36:52.319705931 +0200 +@@ -0,0 +1,198 @@ ++;; Machine description for RISC-V atomic operations. ++;; Copyright (C) 2011-2014 Free Software Foundation, Inc. ++;; Contributed by Andrew Waterman (waterman@cs.berkeley.edu) at UC Berkeley. ++;; Based on MIPS target for GNU compiler. ++ ++;; This file is part of GCC. ++ ++;; GCC is free software; you can redistribute it and/or modify ++;; it under the terms of the GNU General Public License as published by ++;; the Free Software Foundation; either version 3, or (at your option) ++;; any later version. ++ ++;; GCC is distributed in the hope that it will be useful, ++;; but WITHOUT ANY WARRANTY; without even the implied warranty of ++;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++;; GNU General Public License for more details. ++ ++;; You should have received a copy of the GNU General Public License ++;; along with GCC; see the file COPYING3. If not see ++;; <http://www.gnu.org/licenses/>. ++ ++(define_c_enum "unspec" [ ++ UNSPEC_COMPARE_AND_SWAP ++ UNSPEC_SYNC_OLD_OP ++ UNSPEC_SYNC_EXCHANGE ++ UNSPEC_ATOMIC_STORE ++ UNSPEC_MEMORY_BARRIER ++]) ++ ++(define_code_iterator any_atomic [plus ior xor and]) ++(define_code_attr atomic_optab ++ [(plus "add") (ior "or") (xor "xor") (and "and")]) ++ ++;; Memory barriers. ++ ++(define_expand "mem_thread_fence" ++ [(match_operand:SI 0 "const_int_operand" "")] ;; model ++ "" ++{ ++ if (INTVAL (operands[0]) != MEMMODEL_RELAXED) ++ { ++ rtx mem = gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (Pmode)); ++ MEM_VOLATILE_P (mem) = 1; ++ emit_insn (gen_mem_thread_fence_1 (mem, operands[0])); ++ } ++ DONE; ++}) ++ ++(define_insn "mem_thread_fence_1" ++ [(set (match_operand:BLK 0 "" "") ++ (unspec:BLK [(match_dup 0)] UNSPEC_MEMORY_BARRIER)) ++ (match_operand:SI 1 "const_int_operand" "")] ;; model ++ "" ++{ ++ switch (INTVAL (operands[1])) ++ { ++ case MEMMODEL_SEQ_CST: ++ case MEMMODEL_ACQ_REL: ++ return "fence rw,rw"; ++ case MEMMODEL_ACQUIRE: ++ case MEMMODEL_CONSUME: ++ return "fence r,rw"; ++ case MEMMODEL_RELEASE: ++ return "fence rw,w"; ++ default: ++ gcc_unreachable(); ++ } ++}) ++ ++;; Atomic memory operations. ++ ++;; Implement atomic stores with amoswap. Fall back to fences for atomic loads. ++(define_insn "atomic_store<mode>" ++ [(set (match_operand:GPR 0 "memory_operand" "=A") ++ (unspec_volatile:GPR ++ [(match_operand:GPR 1 "reg_or_0_operand" "rJ") ++ (match_operand:SI 2 "const_int_operand")] ;; model ++ UNSPEC_ATOMIC_STORE))] ++ "TARGET_ATOMIC" ++ "amoswap.<amo>%A2 zero,%z1,%0") ++ ++(define_insn "atomic_<atomic_optab><mode>" ++ [(set (match_operand:GPR 0 "memory_operand" "+A") ++ (unspec_volatile:GPR ++ [(any_atomic:GPR (match_dup 0) ++ (match_operand:GPR 1 "reg_or_0_operand" "rJ")) ++ (match_operand:SI 2 "const_int_operand")] ;; model ++ UNSPEC_SYNC_OLD_OP))] ++ "TARGET_ATOMIC" ++ "amo<insn>.<amo>%A2 zero,%z1,%0") ++ ++(define_insn "atomic_fetch_<atomic_optab><mode>" ++ [(set (match_operand:GPR 0 "register_operand" "=&r") ++ (match_operand:GPR 1 "memory_operand" "+A")) ++ (set (match_dup 1) ++ (unspec_volatile:GPR ++ [(any_atomic:GPR (match_dup 1) ++ (match_operand:GPR 2 "reg_or_0_operand" "rJ")) ++ (match_operand:SI 3 "const_int_operand")] ;; model ++ UNSPEC_SYNC_OLD_OP))] ++ "TARGET_ATOMIC" ++ "amo<insn>.<amo>%A3 %0,%z2,%1") ++ ++(define_insn "atomic_exchange<mode>" ++ [(set (match_operand:GPR 0 "register_operand" "=&r") ++ (unspec_volatile:GPR ++ [(match_operand:GPR 1 "memory_operand" "+A") ++ (match_operand:SI 3 "const_int_operand")] ;; model ++ UNSPEC_SYNC_EXCHANGE)) ++ (set (match_dup 1) ++ (match_operand:GPR 2 "register_operand" "0"))] ++ "TARGET_ATOMIC" ++ "amoswap.<amo>%A3 %0,%z2,%1") ++ ++(define_insn "atomic_cas_value_strong<mode>" ++ [(set (match_operand:GPR 0 "register_operand" "=&r") ++ (match_operand:GPR 1 "memory_operand" "+A")) ++ (set (match_dup 1) ++ (unspec_volatile:GPR [(match_operand:GPR 2 "reg_or_0_operand" "rJ") ++ (match_operand:GPR 3 "reg_or_0_operand" "rJ") ++ (match_operand:SI 4 "const_int_operand") ;; mod_s ++ (match_operand:SI 5 "const_int_operand")] ;; mod_f ++ UNSPEC_COMPARE_AND_SWAP)) ++ (clobber (match_scratch:GPR 6 "=&r"))] ++ "TARGET_ATOMIC" ++ "1: lr.<amo>%A5 %0,%1; bne %0,%z2,1f; sc.<amo>%A4 %6,%z3,%1; bnez %6,1b; 1:" ++ [(set (attr "length") (const_int 16))]) ++ ++(define_expand "atomic_compare_and_swap<mode>" ++ [(match_operand:SI 0 "register_operand" "") ;; bool output ++ (match_operand:GPR 1 "register_operand" "") ;; val output ++ (match_operand:GPR 2 "memory_operand" "") ;; memory ++ (match_operand:GPR 3 "reg_or_0_operand" "") ;; expected value ++ (match_operand:GPR 4 "reg_or_0_operand" "") ;; desired value ++ (match_operand:SI 5 "const_int_operand" "") ;; is_weak ++ (match_operand:SI 6 "const_int_operand" "") ;; mod_s ++ (match_operand:SI 7 "const_int_operand" "")] ;; mod_f ++ "TARGET_ATOMIC" ++{ ++ emit_insn (gen_atomic_cas_value_strong<mode> (operands[1], operands[2], ++ operands[3], operands[4], ++ operands[6], operands[7])); ++ ++ rtx compare = operands[1]; ++ if (operands[3] != const0_rtx) ++ { ++ rtx difference = gen_rtx_MINUS (<MODE>mode, operands[1], operands[3]); ++ compare = gen_reg_rtx (<MODE>mode); ++ emit_insn (gen_rtx_SET (VOIDmode, compare, difference)); ++ } ++ ++ rtx eq = gen_rtx_EQ (<MODE>mode, compare, const0_rtx); ++ rtx result = gen_reg_rtx (<MODE>mode); ++ emit_insn (gen_rtx_SET (VOIDmode, result, eq)); ++ emit_insn (gen_rtx_SET (VOIDmode, operands[0], gen_lowpart (SImode, result))); ++ DONE; ++}) ++ ++(define_expand "atomic_test_and_set" ++ [(match_operand:QI 0 "register_operand" "") ;; bool output ++ (match_operand:QI 1 "memory_operand" "+A") ;; memory ++ (match_operand:SI 2 "const_int_operand" "")] ;; model ++ "TARGET_ATOMIC" ++{ ++ /* We have no QImode atomics, so use the address LSBs to form a mask, ++ then use an aligned SImode atomic. */ ++ rtx result = operands[0]; ++ rtx mem = operands[1]; ++ rtx model = operands[2]; ++ rtx addr = force_reg (Pmode, XEXP (mem, 0)); ++ ++ rtx aligned_addr = gen_reg_rtx (Pmode); ++ emit_move_insn (aligned_addr, gen_rtx_AND (Pmode, addr, GEN_INT (-4))); ++ ++ rtx aligned_mem = change_address (mem, SImode, aligned_addr); ++ set_mem_alias_set (aligned_mem, 0); ++ ++ rtx offset = gen_reg_rtx (SImode); ++ emit_move_insn (offset, gen_rtx_AND (SImode, gen_lowpart (SImode, addr), ++ GEN_INT (3))); ++ ++ rtx tmp = gen_reg_rtx (SImode); ++ emit_move_insn (tmp, GEN_INT (1)); ++ ++ rtx shmt = gen_reg_rtx (SImode); ++ emit_move_insn (shmt, gen_rtx_ASHIFT (SImode, offset, GEN_INT (3))); ++ ++ rtx word = gen_reg_rtx (SImode); ++ emit_move_insn (word, gen_rtx_ASHIFT (SImode, tmp, shmt)); ++ ++ tmp = gen_reg_rtx (SImode); ++ emit_insn (gen_atomic_fetch_orsi (tmp, aligned_mem, word, model)); ++ ++ emit_move_insn (gen_lowpart (SImode, result), ++ gen_rtx_LSHIFTRT (SImode, tmp, ++ gen_lowpart (SImode, shmt))); ++ DONE; ++}) +diff -urN empty/gcc/config/riscv/t-elf gcc-5.2.0/gcc/config/riscv/t-elf +--- empty/gcc/config/riscv/t-elf 1970-01-01 01:00:00.000000000 +0100 ++++ gcc-5.2.0/gcc/config/riscv/t-elf 2015-07-17 22:36:52.319705931 +0200 +@@ -0,0 +1,4 @@ ++# Build the libraries for both hard and soft floating point ++ ++MULTILIB_OPTIONS = msoft-float m64/m32 mno-atomic ++MULTILIB_DIRNAMES = soft-float 64 32 no-atomic +diff -urN empty/gcc/config/riscv/t-linux64 gcc-5.2.0/gcc/config/riscv/t-linux64 +--- empty/gcc/config/riscv/t-linux64 1970-01-01 01:00:00.000000000 +0100 ++++ gcc-5.2.0/gcc/config/riscv/t-linux64 2015-07-17 22:36:52.319705931 +0200 +@@ -0,0 +1,5 @@ ++# Build the libraries for both hard and soft floating point ++ ++MULTILIB_OPTIONS = m64/m32 msoft-float mno-atomic ++MULTILIB_DIRNAMES = 64 32 soft-float no-atomic ++MULTILIB_OSDIRNAMES = ../lib ../lib32 +diff -urN empty/libgcc/config/riscv/crti.S gcc-5.2.0/libgcc/config/riscv/crti.S +--- empty/libgcc/config/riscv/crti.S 1970-01-01 01:00:00.000000000 +0100 ++++ gcc-5.2.0/libgcc/config/riscv/crti.S 2015-07-17 22:36:52.319705931 +0200 +@@ -0,0 +1 @@ ++/* crti.S is empty because .init_array/.fini_array are used exclusively. */ +diff -urN empty/libgcc/config/riscv/crtn.S gcc-5.2.0/libgcc/config/riscv/crtn.S +--- empty/libgcc/config/riscv/crtn.S 1970-01-01 01:00:00.000000000 +0100 ++++ gcc-5.2.0/libgcc/config/riscv/crtn.S 2015-07-17 22:36:52.319705931 +0200 +@@ -0,0 +1 @@ ++/* crtn.S is empty because .init_array/.fini_array are used exclusively. */ +diff -urN empty/libgcc/config/riscv/div.S gcc-5.2.0/libgcc/config/riscv/div.S +--- empty/libgcc/config/riscv/div.S 1970-01-01 01:00:00.000000000 +0100 ++++ gcc-5.2.0/libgcc/config/riscv/div.S 2015-07-17 22:36:52.319705931 +0200 +@@ -0,0 +1,121 @@ ++ .text ++ .align 2 ++ ++#ifndef __riscv64 ++/* Our RV64 64-bit routines are equivalent to our RV32 32-bit routines. */ ++# define __udivdi3 __udivsi3 ++# define __umoddi3 __umodsi3 ++# define __divdi3 __divsi3 ++# define __moddi3 __modsi3 ++#else ++ .globl __udivsi3 ++__udivsi3: ++ /* Compute __udivdi3(a0 << 32, a1 << 32); cast result to uint32_t. */ ++ sll a0, a0, 32 ++ sll a1, a1, 32 ++ move t0, ra ++ jal __udivdi3 ++ sext.w a0, a0 ++ jr t0 ++ ++ .globl __umodsi3 ++__umodsi3: ++ /* Compute __udivdi3((uint32_t)a0, (uint32_t)a1); cast a1 to uint32_t. */ ++ sll a0, a0, 32 ++ sll a1, a1, 32 ++ srl a0, a0, 32 ++ srl a1, a1, 32 ++ move t0, ra ++ jal __udivdi3 ++ sext.w a0, a1 ++ jr t0 ++ ++ .globl __modsi3 ++ __modsi3 = __moddi3 ++ ++ .globl __divsi3 ++__divsi3: ++ /* Check for special case of INT_MIN/-1. Otherwise, fall into __divdi3. */ ++ li t0, -1 ++ beq a1, t0, .L20 ++#endif ++ ++ .globl __divdi3 ++__divdi3: ++ bltz a0, .L10 ++ bltz a1, .L11 ++ /* Since the quotient is positive, fall into __udivdi3. */ ++ ++ .globl __udivdi3 ++__udivdi3: ++ mv a2, a1 ++ mv a1, a0 ++ li a0, -1 ++ beqz a2, .L5 ++ li a3, 1 ++ bgeu a2, a1, .L2 ++.L1: ++ blez a2, .L2 ++ slli a2, a2, 1 ++ slli a3, a3, 1 ++ bgtu a1, a2, .L1 ++.L2: ++ li a0, 0 ++.L3: ++ bltu a1, a2, .L4 ++ sub a1, a1, a2 ++ or a0, a0, a3 ++.L4: ++ srli a3, a3, 1 ++ srli a2, a2, 1 ++ bnez a3, .L3 ++.L5: ++ ret ++ ++ .globl __umoddi3 ++__umoddi3: ++ /* Call __udivdi3(a0, a1), then return the remainder, which is in a1. */ ++ move t0, ra ++ jal __udivdi3 ++ move a0, a1 ++ jr t0 ++ ++ /* Handle negative arguments to __divdi3. */ ++.L10: ++ neg a0, a0 ++ bgez a1, .L12 /* Compute __udivdi3(-a0, a1), then negate the result. */ ++ neg a1, a1 ++ j __divdi3 /* Compute __udivdi3(-a0, -a1). */ ++.L11: /* Compute __udivdi3(a0, -a1), then negate the result. */ ++ neg a1, a1 ++.L12: ++ move t0, ra ++ jal __divdi3 ++ neg a0, a0 ++ jr t0 ++ ++ .globl __moddi3 ++__moddi3: ++ move t0, ra ++ bltz a1, .L31 ++ bltz a0, .L32 ++.L30: ++ jal __udivdi3 /* The dividend is not negative. */ ++ move a0, a1 ++ jr t0 ++.L31: ++ neg a1, a1 ++ bgez a0, .L30 ++.L32: ++ neg a0, a0 ++ jal __udivdi3 /* The dividend is hella negative. */ ++ neg a0, a1 ++ jr t0 ++ ++#ifdef __riscv64 ++ /* continuation of __divsi3 */ ++.L20: ++ sll t0, t0, 31 ++ bne a0, t0, __divdi3 ++ ret ++#endif +diff -urN empty/libgcc/config/riscv/mul.S gcc-5.2.0/libgcc/config/riscv/mul.S +--- empty/libgcc/config/riscv/mul.S 1970-01-01 01:00:00.000000000 +0100 ++++ gcc-5.2.0/libgcc/config/riscv/mul.S 2015-07-17 22:36:52.319705931 +0200 +@@ -0,0 +1,21 @@ ++ .text ++ .align 2 ++ ++#ifndef __riscv64 ++/* Our RV64 64-bit routine is equivalent to our RV32 32-bit routine. */ ++# define __muldi3 __mulsi3 ++#endif ++ ++ .globl __muldi3 ++__muldi3: ++ mv a2, a0 ++ li a0, 0 ++.L1: ++ slli a3, a1, _RISCV_SZPTR-1 ++ bgez a3, .L2 ++ add a0, a0, a2 ++.L2: ++ srli a1, a1, 1 ++ slli a2, a2, 1 ++ bnez a1, .L1 ++ ret +diff -urN empty/libgcc/config/riscv/riscv-fp.c gcc-5.2.0/libgcc/config/riscv/riscv-fp.c +--- empty/libgcc/config/riscv/riscv-fp.c 1970-01-01 01:00:00.000000000 +0100 ++++ gcc-5.2.0/libgcc/config/riscv/riscv-fp.c 2015-07-17 22:36:52.319705931 +0200 +@@ -0,0 +1,178 @@ ++/* Functions needed for soft-float on riscv-linux. Based on ++ rs6000/ppc64-fp.c with TF types removed. ++ ++ Copyright (C) 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, ++ 2000, 2001, 2002, 2003, 2004, 2006, 2009 Free Software Foundation, ++ Inc. ++ ++This file is part of GCC. ++ ++GCC is free software; you can redistribute it and/or modify it under ++the terms of the GNU General Public License as published by the Free ++Software Foundation; either version 3, or (at your option) any later ++version. ++ ++GCC is distributed in the hope that it will be useful, but WITHOUT ANY ++WARRANTY; without even the implied warranty of MERCHANTABILITY or ++FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License ++for more details. ++ ++Under Section 7 of GPL version 3, you are granted additional ++permissions described in the GCC Runtime Library Exception, version ++3.1, as published by the Free Software Foundation. ++ ++You should have received a copy of the GNU General Public License and ++a copy of the GCC Runtime Library Exception along with this program; ++see the files COPYING3 and COPYING.RUNTIME respectively. If not, see ++<http://www.gnu.org/licenses/>. */ ++ ++#if defined(__riscv64) ++#include "fp-bit.h" ++ ++extern DItype __fixdfdi (DFtype); ++extern DItype __fixsfdi (SFtype); ++extern USItype __fixunsdfsi (DFtype); ++extern USItype __fixunssfsi (SFtype); ++extern DFtype __floatdidf (DItype); ++extern DFtype __floatundidf (UDItype); ++extern SFtype __floatdisf (DItype); ++extern SFtype __floatundisf (UDItype); ++ ++static DItype local_fixunssfdi (SFtype); ++static DItype local_fixunsdfdi (DFtype); ++ ++DItype ++__fixdfdi (DFtype a) ++{ ++ if (a < 0) ++ return - local_fixunsdfdi (-a); ++ return local_fixunsdfdi (a); ++} ++ ++DItype ++__fixsfdi (SFtype a) ++{ ++ if (a < 0) ++ return - local_fixunssfdi (-a); ++ return local_fixunssfdi (a); ++} ++ ++USItype ++__fixunsdfsi (DFtype a) ++{ ++ if (a >= - (DFtype) (- ((SItype)(((USItype)1 << ((4 * 8) - 1)) - 1)) - 1)) ++ return (SItype) (a + (- ((SItype)(((USItype)1 << ((4 * 8) - 1)) - 1)) - 1)) ++ - (- ((SItype)(((USItype)1 << ((4 * 8) - 1)) - 1)) - 1); ++ return (SItype) a; ++} ++ ++USItype ++__fixunssfsi (SFtype a) ++{ ++ if (a >= - (SFtype) (- ((SItype)(((USItype)1 << ((4 * 8) - 1)) - 1)) - 1)) ++ return (SItype) (a + (- ((SItype)(((USItype)1 << ((4 * 8) - 1)) - 1)) - 1)) ++ - (- ((SItype)(((USItype)1 << ((4 * 8) - 1)) - 1)) - 1); ++ return (SItype) a; ++} ++ ++DFtype ++__floatdidf (DItype u) ++{ ++ DFtype d; ++ ++ d = (SItype) (u >> (sizeof (SItype) * 8)); ++ d *= 2.0 * (((UDItype) 1) << ((sizeof (SItype) * 8) - 1)); ++ d += (USItype) (u & ((((UDItype) 1) << (sizeof (SItype) * 8)) - 1)); ++ ++ return d; ++} ++ ++DFtype ++__floatundidf (UDItype u) ++{ ++ DFtype d; ++ ++ d = (USItype) (u >> (sizeof (SItype) * 8)); ++ d *= 2.0 * (((UDItype) 1) << ((sizeof (SItype) * 8) - 1)); ++ d += (USItype) (u & ((((UDItype) 1) << (sizeof (SItype) * 8)) - 1)); ++ ++ return d; ++} ++ ++SFtype ++__floatdisf (DItype u) ++{ ++ DFtype f; ++ ++ if (53 < (sizeof (DItype) * 8) ++ && 53 > ((sizeof (DItype) * 8) - 53 + 24)) ++ { ++ if (! (- ((DItype) 1 << 53) < u ++ && u < ((DItype) 1 << 53))) ++ { ++ if ((UDItype) u & (((UDItype) 1 << ((sizeof (DItype) * 8) - 53)) - 1)) ++ { ++ u &= ~ (((UDItype) 1 << ((sizeof (DItype) * 8) - 53)) - 1); ++ u |= ((UDItype) 1 << ((sizeof (DItype) * 8) - 53)); ++ } ++ } ++ } ++ f = (SItype) (u >> (sizeof (SItype) * 8)); ++ f *= 2.0 * (((UDItype) 1) << ((sizeof (SItype) * 8) - 1)); ++ f += (USItype) (u & ((((UDItype) 1) << (sizeof (SItype) * 8)) - 1)); ++ ++ return (SFtype) f; ++} ++ ++SFtype ++__floatundisf (UDItype u) ++{ ++ DFtype f; ++ ++ if (53 < (sizeof (DItype) * 8) ++ && 53 > ((sizeof (DItype) * 8) - 53 + 24)) ++ { ++ if (u >= ((UDItype) 1 << 53)) ++ { ++ if ((UDItype) u & (((UDItype) 1 << ((sizeof (DItype) * 8) - 53)) - 1)) ++ { ++ u &= ~ (((UDItype) 1 << ((sizeof (DItype) * 8) - 53)) - 1); ++ u |= ((UDItype) 1 << ((sizeof (DItype) * 8) - 53)); ++ } ++ } ++ } ++ f = (USItype) (u >> (sizeof (SItype) * 8)); ++ f *= 2.0 * (((UDItype) 1) << ((sizeof (SItype) * 8) - 1)); ++ f += (USItype) (u & ((((UDItype) 1) << (sizeof (SItype) * 8)) - 1)); ++ ++ return (SFtype) f; ++} ++ ++/* This version is needed to prevent recursion; fixunsdfdi in libgcc ++ calls fixdfdi, which in turn calls calls fixunsdfdi. */ ++ ++static DItype ++local_fixunsdfdi (DFtype a) ++{ ++ USItype hi, lo; ++ ++ hi = a / (((UDItype) 1) << (sizeof (SItype) * 8)); ++ lo = (a - ((DFtype) hi) * (((UDItype) 1) << (sizeof (SItype) * 8))); ++ return ((UDItype) hi << (sizeof (SItype) * 8)) | lo; ++} ++ ++/* This version is needed to prevent recursion; fixunssfdi in libgcc ++ calls fixsfdi, which in turn calls calls fixunssfdi. */ ++ ++static DItype ++local_fixunssfdi (SFtype original_a) ++{ ++ DFtype a = original_a; ++ USItype hi, lo; ++ ++ hi = a / (((UDItype) 1) << (sizeof (SItype) * 8)); ++ lo = (a - ((DFtype) hi) * (((UDItype) 1) << (sizeof (SItype) * 8))); ++ return ((UDItype) hi << (sizeof (SItype) * 8)) | lo; ++} ++ ++#endif +diff -urN empty/libgcc/config/riscv/save-restore.S gcc-5.2.0/libgcc/config/riscv/save-restore.S +--- empty/libgcc/config/riscv/save-restore.S 1970-01-01 01:00:00.000000000 +0100 ++++ gcc-5.2.0/libgcc/config/riscv/save-restore.S 2015-07-17 22:36:52.319705931 +0200 +@@ -0,0 +1,220 @@ ++ .text ++ ++ .globl __riscv_save_12 ++ .globl __riscv_save_11 ++ .globl __riscv_save_10 ++ .globl __riscv_save_9 ++ .globl __riscv_save_8 ++ .globl __riscv_save_7 ++ .globl __riscv_save_6 ++ .globl __riscv_save_5 ++ .globl __riscv_save_4 ++ .globl __riscv_save_3 ++ .globl __riscv_save_2 ++ .globl __riscv_save_1 ++ .globl __riscv_save_0 ++ ++ .globl __riscv_restore_12 ++ .globl __riscv_restore_11 ++ .globl __riscv_restore_10 ++ .globl __riscv_restore_9 ++ .globl __riscv_restore_8 ++ .globl __riscv_restore_7 ++ .globl __riscv_restore_6 ++ .globl __riscv_restore_5 ++ .globl __riscv_restore_4 ++ .globl __riscv_restore_3 ++ .globl __riscv_restore_2 ++ .globl __riscv_restore_1 ++ .globl __riscv_restore_0 ++ ++#ifdef __riscv64 ++ ++__riscv_save_12: ++ addi sp, sp, -112 ++ li t1, 0 ++ sd s11, 8(sp) ++ j .Ls10 ++ ++__riscv_save_11: ++__riscv_save_10: ++ addi sp, sp, -112 ++ li t1, -16 ++.Ls10: ++ sd s10, 16(sp) ++ sd s9, 24(sp) ++ j .Ls8 ++ ++__riscv_save_9: ++__riscv_save_8: ++ addi sp, sp, -112 ++ li t1, -32 ++.Ls8: ++ sd s8, 32(sp) ++ sd s7, 40(sp) ++ j .Ls6 ++ ++__riscv_save_7: ++__riscv_save_6: ++ addi sp, sp, -112 ++ li t1, -48 ++.Ls6: ++ sd s6, 48(sp) ++ sd s5, 56(sp) ++ j .Ls4 ++ ++__riscv_save_5: ++__riscv_save_4: ++ addi sp, sp, -112 ++ li t1, -64 ++.Ls4: ++ sd s4, 64(sp) ++ sd s3, 72(sp) ++ j .Ls2 ++ ++__riscv_save_3: ++__riscv_save_2: ++ addi sp, sp, -112 ++ li t1, -80 ++.Ls2: ++ sd s2, 80(sp) ++ sd s1, 88(sp) ++ sd s0, 96(sp) ++ sd ra, 104(sp) ++ sub sp, sp, t1 ++ jr t0 ++ ++__riscv_save_1: ++__riscv_save_0: ++ addi sp, sp, -16 ++ sd s0, 0(sp) ++ sd ra, 8(sp) ++ jr t0 ++ ++__riscv_restore_12: ++ ld s11, 8(sp) ++ addi sp, sp, 16 ++ ++__riscv_restore_11: ++__riscv_restore_10: ++ ld s10, 0(sp) ++ ld s9, 8(sp) ++ addi sp, sp, 16 ++ ++__riscv_restore_9: ++__riscv_restore_8: ++ ld s8, 0(sp) ++ ld s7, 8(sp) ++ addi sp, sp, 16 ++ ++__riscv_restore_7: ++__riscv_restore_6: ++ ld s6, 0(sp) ++ ld s5, 8(sp) ++ addi sp, sp, 16 ++ ++__riscv_restore_5: ++__riscv_restore_4: ++ ld s4, 0(sp) ++ ld s3, 8(sp) ++ addi sp, sp, 16 ++ ++__riscv_restore_3: ++__riscv_restore_2: ++ ld s2, 0(sp) ++ ld s1, 8(sp) ++ addi sp, sp, 16 ++ ++__riscv_restore_1: ++__riscv_restore_0: ++ ld s0, 0(sp) ++ ld ra, 8(sp) ++ addi sp, sp, 16 ++ ret ++ ++#else ++ ++__riscv_save_12: ++ addi sp, sp, -64 ++ li t1, 0 ++ sw s11, 12(sp) ++ j .Ls10 ++ ++__riscv_save_11: ++__riscv_save_10: ++__riscv_save_9: ++__riscv_save_8: ++ addi sp, sp, -64 ++ li t1, -16 ++.Ls10: ++ sw s10, 16(sp) ++ sw s9, 20(sp) ++ sw s8, 24(sp) ++ sw s7, 28(sp) ++ j .Ls6 ++ ++__riscv_save_7: ++__riscv_save_6: ++__riscv_save_5: ++__riscv_save_4: ++ addi sp, sp, -64 ++ li t1, -32 ++.Ls6: ++ sw s6, 32(sp) ++ sw s5, 36(sp) ++ sw s4, 40(sp) ++ sw s3, 44(sp) ++ sw s2, 48(sp) ++ sw s1, 52(sp) ++ sw s0, 56(sp) ++ sw ra, 60(sp) ++ sub sp, sp, t1 ++ jr t0 ++ ++__riscv_save_3: ++__riscv_save_2: ++__riscv_save_1: ++__riscv_save_0: ++ addi sp, sp, -16 ++ sw s2, 0(sp) ++ sw s1, 4(sp) ++ sw s0, 8(sp) ++ sw ra, 12(sp) ++ jr t0 ++ ++__riscv_restore_12: ++ lw s11, 12(sp) ++ addi sp, sp, 16 ++ ++__riscv_restore_11: ++__riscv_restore_10: ++__riscv_restore_9: ++__riscv_restore_8: ++ lw s10, 0(sp) ++ lw s9, 4(sp) ++ lw s8, 8(sp) ++ lw s7, 12(sp) ++ addi sp, sp, 16 ++ ++__riscv_restore_7: ++__riscv_restore_6: ++__riscv_restore_5: ++__riscv_restore_4: ++ lw s6, 0(sp) ++ lw s5, 4(sp) ++ lw s4, 8(sp) ++ lw s3, 12(sp) ++ addi sp, sp, 16 ++ ++__riscv_restore_3: ++__riscv_restore_2: ++__riscv_restore_1: ++__riscv_restore_0: ++ lw s2, 0(sp) ++ lw s1, 4(sp) ++ lw s0, 8(sp) ++ lw ra, 12(sp) ++ addi sp, sp, 16 ++ ret ++ ++#endif +diff -urN empty/libgcc/config/riscv/t-dpbit gcc-5.2.0/libgcc/config/riscv/t-dpbit +--- empty/libgcc/config/riscv/t-dpbit 1970-01-01 01:00:00.000000000 +0100 ++++ gcc-5.2.0/libgcc/config/riscv/t-dpbit 2015-07-17 22:36:52.319705931 +0200 +@@ -0,0 +1,4 @@ ++LIB2ADD += dp-bit.c ++ ++dp-bit.c: $(srcdir)/fp-bit.c ++ cat $(srcdir)/fp-bit.c > dp-bit.c +diff -urN empty/libgcc/config/riscv/t-elf gcc-5.2.0/libgcc/config/riscv/t-elf +--- empty/libgcc/config/riscv/t-elf 1970-01-01 01:00:00.000000000 +0100 ++++ gcc-5.2.0/libgcc/config/riscv/t-elf 2015-07-17 22:36:52.319705931 +0200 +@@ -0,0 +1,4 @@ ++LIB2ADD += $(srcdir)/config/riscv/riscv-fp.c \ ++ $(srcdir)/config/riscv/save-restore.S \ ++ $(srcdir)/config/riscv/mul.S \ ++ $(srcdir)/config/riscv/div.S +diff -urN empty/libgcc/config/riscv/t-elf32 gcc-5.2.0/libgcc/config/riscv/t-elf32 +--- empty/libgcc/config/riscv/t-elf32 1970-01-01 01:00:00.000000000 +0100 ++++ gcc-5.2.0/libgcc/config/riscv/t-elf32 2015-07-17 22:36:52.319705931 +0200 +@@ -0,0 +1,2 @@ ++HOST_LIBGCC2_CFLAGS += -m32 ++CRTSTUFF_CFLAGS += -m32 +diff -urN empty/libgcc/config/riscv/t-fpbit gcc-5.2.0/libgcc/config/riscv/t-fpbit +--- empty/libgcc/config/riscv/t-fpbit 1970-01-01 01:00:00.000000000 +0100 ++++ gcc-5.2.0/libgcc/config/riscv/t-fpbit 2015-07-17 22:36:52.319705931 +0200 +@@ -0,0 +1,5 @@ ++LIB2ADD += fp-bit.c ++ ++fp-bit.c: $(srcdir)/fp-bit.c ++ echo '#define FLOAT' > fp-bit.c ++ cat $(srcdir)/fp-bit.c >> fp-bit.c +diff -urN empty/libgcc/config/riscv/t-tpbit gcc-5.2.0/libgcc/config/riscv/t-tpbit +--- empty/libgcc/config/riscv/t-tpbit 1970-01-01 01:00:00.000000000 +0100 ++++ gcc-5.2.0/libgcc/config/riscv/t-tpbit 2015-07-17 22:36:52.319705931 +0200 +@@ -0,0 +1,10 @@ ++LIB2ADD += tp-bit.c ++ ++tp-bit.c: $(srcdir)/fp-bit.c ++ echo '#ifdef _RISCVEL' > tp-bit.c ++ echo '# define FLOAT_BIT_ORDER_MISMATCH' >> tp-bit.c ++ echo '#endif' >> tp-bit.c ++ echo '#if __LDBL_MANT_DIG__ == 113' >> tp-bit.c ++ echo '# define TFLOAT' >> tp-bit.c ++ cat $(srcdir)/fp-bit.c >> tp-bit.c ++ echo '#endif' >> tp-bit.c |