diff options
-rw-r--r-- | Documentation/releases/coreboot-4.13-relnotes.md | 10 | ||||
-rw-r--r-- | src/cpu/x86/Kconfig | 8 | ||||
-rw-r--r-- | src/cpu/x86/mp_init.c | 39 | ||||
-rw-r--r-- | src/cpu/x86/smm/Makefile.inc | 4 | ||||
-rw-r--r-- | src/cpu/x86/smm/smm_module_loaderv2.c | 655 | ||||
-rw-r--r-- | src/include/cpu/x86/smm.h | 18 |
6 files changed, 726 insertions, 8 deletions
diff --git a/Documentation/releases/coreboot-4.13-relnotes.md b/Documentation/releases/coreboot-4.13-relnotes.md index 2910867f78..dcc8bf44af 100644 --- a/Documentation/releases/coreboot-4.13-relnotes.md +++ b/Documentation/releases/coreboot-4.13-relnotes.md @@ -39,4 +39,14 @@ attributes as per their datasheet and convert those attributes into SPD files fo the platforms. More details about the tools are added in [README.md](https://review.coreboot.org/plugins/gitiles/coreboot/+/refs/heads/master/util/spd_tools/intel/lp4x/README.md). +### New version of SMM loader + +A new version of the SMM loader which accomodates platforms with over 32 CPU +CPU threads. The existing version of SMM loader uses a 64K code/data +segment and only a limited number of CPU threads can fit into one segment +(because of save state, STM, other features, etc). This loader extends beyond +the 64K segment to accomodate additional CPUs and in theory allows as many +CPU threads as possible limited only by SMRAM space and not by 64K. By default +this loader version is disabled. Please see cpu/x86/Kconfig for more info. + ### Add significant changes here diff --git a/src/cpu/x86/Kconfig b/src/cpu/x86/Kconfig index 5394cd023d..b3a16bcf63 100644 --- a/src/cpu/x86/Kconfig +++ b/src/cpu/x86/Kconfig @@ -121,6 +121,14 @@ config SMM_STUB_STACK_SIZE endif +config X86_SMM_LOADER_VERSION2 + bool + default n + depends on HAVE_SMI_HANDLER + help + This option enables SMM module loader that works with server + platforms which may contain more than 32 CPU threads. + config SMM_LAPIC_REMAP_MITIGATION bool default y if NORTHBRIDGE_INTEL_I945 diff --git a/src/cpu/x86/mp_init.c b/src/cpu/x86/mp_init.c index caed8f4005..5807831c98 100644 --- a/src/cpu/x86/mp_init.c +++ b/src/cpu/x86/mp_init.c @@ -726,12 +726,21 @@ static void asmlinkage smm_do_relocation(void *arg) * the location of the new SMBASE. If using SMM modules then this * calculation needs to match that of the module loader. */ +#if CONFIG(X86_SMM_LOADER_VERSION2) + perm_smbase = smm_get_cpu_smbase(cpu); + mp_state.perm_smbase = perm_smbase; + if (!perm_smbase) { + printk(BIOS_ERR, "%s: bad SMBASE for CPU %d\n", __func__, cpu); + return; + } +#else perm_smbase = mp_state.perm_smbase; perm_smbase -= cpu * runtime->save_state_size; - - printk(BIOS_DEBUG, "New SMBASE 0x%08lx\n", perm_smbase); +#endif /* Setup code checks this callback for validity. */ + printk(BIOS_INFO, "%s : curr_smbase 0x%x perm_smbase 0x%x, cpu = %d\n", + __func__, (int)curr_smbase, (int)perm_smbase, cpu); mp_state.ops.relocation_handler(cpu, curr_smbase, perm_smbase); if (CONFIG(STM)) { @@ -758,9 +767,17 @@ static void adjust_smm_apic_id_map(struct smm_loader_params *smm_params) static int install_relocation_handler(int num_cpus, size_t save_state_size) { + int cpus = num_cpus; +#if CONFIG(X86_SMM_LOADER_VERSION2) + /* Default SMRAM size is not big enough to concurrently + * handle relocation for more than ~32 CPU threads + * therefore, relocate 1 by 1. */ + cpus = 1; +#endif + struct smm_loader_params smm_params = { .per_cpu_stack_size = CONFIG_SMM_STUB_STACK_SIZE, - .num_concurrent_stacks = num_cpus, + .num_concurrent_stacks = cpus, .per_cpu_save_state_size = save_state_size, .num_concurrent_save_states = 1, .handler = smm_do_relocation, @@ -770,9 +787,10 @@ static int install_relocation_handler(int num_cpus, size_t save_state_size) if (mp_state.ops.adjust_smm_params != NULL) mp_state.ops.adjust_smm_params(&smm_params, 0); - if (smm_setup_relocation_handler(&smm_params)) + if (smm_setup_relocation_handler(&smm_params)) { + printk(BIOS_ERR, "%s: smm setup failed\n", __func__); return -1; - + } adjust_smm_apic_id_map(&smm_params); return 0; @@ -781,8 +799,13 @@ static int install_relocation_handler(int num_cpus, size_t save_state_size) static int install_permanent_handler(int num_cpus, uintptr_t smbase, size_t smsize, size_t save_state_size) { - /* There are num_cpus concurrent stacks and num_cpus concurrent save - * state areas. Lastly, set the stack size to 1KiB. */ + /* + * All the CPUs will relocate to permanaent handler now. Set parameters + * needed for all CPUs. The placement of each CPUs entry point is + * determined by the loader. This code simply provides the beginning of + * SMRAM region, the number of CPUs who will use the handler, the stack + * size and save state size for each CPU. + */ struct smm_loader_params smm_params = { .per_cpu_stack_size = CONFIG_SMM_MODULE_STACK_SIZE, .num_concurrent_stacks = num_cpus, @@ -794,7 +817,7 @@ static int install_permanent_handler(int num_cpus, uintptr_t smbase, if (mp_state.ops.adjust_smm_params != NULL) mp_state.ops.adjust_smm_params(&smm_params, 1); - printk(BIOS_DEBUG, "Installing SMM handler to 0x%08lx\n", smbase); + printk(BIOS_DEBUG, "Installing permanent SMM handler to 0x%08lx\n", smbase); if (smm_load_module((void *)smbase, smsize, &smm_params)) return -1; diff --git a/src/cpu/x86/smm/Makefile.inc b/src/cpu/x86/smm/Makefile.inc index dbe567a8a2..1273a6cf27 100644 --- a/src/cpu/x86/smm/Makefile.inc +++ b/src/cpu/x86/smm/Makefile.inc @@ -1,6 +1,10 @@ ## SPDX-License-Identifier: GPL-2.0-only +ifeq ($(CONFIG_X86_SMM_LOADER_VERSION2),y) +ramstage-y += smm_module_loaderv2.c +else ramstage-y += smm_module_loader.c +endif ramstage-y += smi_trigger.c ifeq ($(CONFIG_ARCH_RAMSTAGE_X86_32),y) diff --git a/src/cpu/x86/smm/smm_module_loaderv2.c b/src/cpu/x86/smm/smm_module_loaderv2.c new file mode 100644 index 0000000000..10cc6281f7 --- /dev/null +++ b/src/cpu/x86/smm/smm_module_loaderv2.c @@ -0,0 +1,655 @@ +/* SPDX-License-Identifier: GPL-2.0-only */ + +#include <stdint.h> +#include <string.h> +#include <rmodule.h> +#include <cpu/x86/smm.h> +#include <commonlib/helpers.h> +#include <console/console.h> +#include <security/intel/stm/SmmStm.h> + +#define FXSAVE_SIZE 512 +#define SMM_CODE_SEGMENT_SIZE 0x10000 +/* FXSAVE area during relocation. While it may not be strictly needed the + SMM stub code relies on the FXSAVE area being non-zero to enable SSE + instructions within SMM mode. */ +static uint8_t fxsave_area_relocation[CONFIG_MAX_CPUS][FXSAVE_SIZE] +__attribute__((aligned(16))); + +/* + * Components that make up the SMRAM: + * 1. Save state - the total save state memory used + * 2. Stack - stacks for the CPUs in the SMM handler + * 3. Stub - SMM stub code for calling into handler + * 4. Handler - C-based SMM handler. + * + * The components are assumed to consist of one consecutive region. + */ + +/* These parameters are used by the SMM stub code. A pointer to the params + * is also passed to the C-base handler. */ +struct smm_stub_params { + u32 stack_size; + u32 stack_top; + u32 c_handler; + u32 c_handler_arg; + u32 fxsave_area; + u32 fxsave_area_size; + struct smm_runtime runtime; +} __packed; + +/* + * The stub is the entry point that sets up protected mode and stacks for each + * CPU. It then calls into the SMM handler module. It is encoded as an rmodule. + */ +extern unsigned char _binary_smmstub_start[]; + +/* Per CPU minimum stack size. */ +#define SMM_MINIMUM_STACK_SIZE 32 + +struct cpu_smm_info { + uint8_t active; + uintptr_t smbase; + uintptr_t entry; + uintptr_t ss_start; + uintptr_t code_start; + uintptr_t code_end; +}; +struct cpu_smm_info cpus[CONFIG_MAX_CPUS] = { 0 }; + +/* + * This method creates a map of all the CPU entry points, save state locations + * and the beginning and end of code segments for each CPU. This map is used + * during relocation to properly align as many CPUs that can fit into the SMRAM + * region. For more information on how SMRAM works, refer to the latest Intel + * developer's manuals (volume 3, chapter 34). SMRAM is divided up into the + * following regions: + * +-----------------+ Top of SMRAM + * | | <- MSEG, FXSAVE + * +-----------------+ + * | common | + * | smi handler | 64K + * | | + * +-----------------+ + * | CPU 0 code seg | + * +-----------------+ + * | CPU 1 code seg | + * +-----------------+ + * | CPU x code seg | + * +-----------------+ + * | | + * | | + * +-----------------+ + * | stacks | + * +-----------------+ <- START of SMRAM + * + * The code below checks when a code segment is full and begins placing the remainder + * CPUs in the lower segments. The entry point for each CPU is smbase + 0x8000 + * and save state is smbase + 0x8000 + (0x8000 - state save size). Save state + * area grows downward into the CPUs entry point. Therefore staggering too many + * CPUs in one 32K block will corrupt CPU0's entry code as the save states move + * downward. + * input : smbase of first CPU (all other CPUs + * will go below this address) + * input : num_cpus in the system. The map will + * be created from 0 to num_cpus. + */ +static int smm_create_map(uintptr_t smbase, unsigned int num_cpus, + const struct smm_loader_params *params) +{ + unsigned int i; + struct rmodule smm_stub; + unsigned int ss_size = params->per_cpu_save_state_size, stub_size; + unsigned int smm_entry_offset = params->smm_main_entry_offset; + unsigned int seg_count = 0, segments = 0, available; + unsigned int cpus_in_segment = 0; + unsigned int base = smbase; + + if (rmodule_parse(&_binary_smmstub_start, &smm_stub)) { + printk(BIOS_ERR, "%s: unable to get SMM module size\n", __func__); + return 0; + } + + stub_size = rmodule_memory_size(&smm_stub); + /* How many CPUs can fit into one 64K segment? */ + available = 0xFFFF - smm_entry_offset - ss_size - stub_size; + if (available > 0) { + cpus_in_segment = available / ss_size; + /* minimum segments needed will always be 1 */ + segments = num_cpus / cpus_in_segment + 1; + printk(BIOS_DEBUG, + "%s: cpus allowed in one segment %d\n", __func__, cpus_in_segment); + printk(BIOS_DEBUG, + "%s: min # of segments needed %d\n", __func__, segments); + } else { + printk(BIOS_ERR, "%s: not enough space in SMM to setup all CPUs\n", __func__); + printk(BIOS_ERR, " save state & stub size need to be reduced\n"); + printk(BIOS_ERR, " or increase SMRAM size\n"); + return 0; + } + + if (sizeof(cpus) / sizeof(struct cpu_smm_info) < num_cpus) { + printk(BIOS_ERR, + "%s: increase MAX_CPUS in Kconfig\n", __func__); + return 0; + } + + for (i = 0; i < num_cpus; i++) { + cpus[i].smbase = base; + cpus[i].entry = base + smm_entry_offset; + cpus[i].ss_start = cpus[i].entry + (smm_entry_offset - ss_size); + cpus[i].code_start = cpus[i].entry; + cpus[i].code_end = cpus[i].entry + stub_size; + cpus[i].active = 1; + base -= ss_size; + seg_count++; + if (seg_count >= cpus_in_segment) { + base -= smm_entry_offset; + seg_count = 0; + } + } + + if (CONFIG_DEFAULT_CONSOLE_LOGLEVEL >= BIOS_DEBUG) { + seg_count = 0; + for (i = 0; i < num_cpus; i++) { + printk(BIOS_DEBUG, "CPU 0x%x\n", i); + printk(BIOS_DEBUG, + " smbase %zx entry %zx\n", + cpus[i].smbase, cpus[i].entry); + printk(BIOS_DEBUG, + " ss_start %zx code_end %zx\n", + cpus[i].ss_start, cpus[i].code_end); + seg_count++; + if (seg_count >= cpus_in_segment) { + printk(BIOS_DEBUG, + "-------------NEW CODE SEGMENT --------------\n"); + seg_count = 0; + } + } + } + return 1; +} + +/* + * This method expects the smm relocation map to be complete. + * This method does not read any HW registers, it simply uses a + * map that was created during SMM setup. + * input: cpu_num - cpu number which is used as an index into the + * map to return the smbase + */ +u32 smm_get_cpu_smbase(unsigned int cpu_num) +{ + if (cpu_num < CONFIG_MAX_CPUS) { + if (cpus[cpu_num].active) + return cpus[cpu_num].smbase; + } + return 0; +} + +/* + * This method assumes that at least 1 CPU has been set up from + * which it will place other CPUs below its smbase ensuring that + * save state does not clobber the first CPUs init code segment. The init + * code which is the smm stub code is the same for all CPUs. They enter + * smm, setup stacks (based on their apic id), enter protected mode + * and then jump to the common smi handler. The stack is allocated + * at the beginning of smram (aka tseg base, not smbase). The stack + * pointer for each CPU is calculated by using its apic id + * (code is in smm_stub.s) + * Each entry point will now have the same stub code which, sets up the CPU + * stack, enters protected mode and then jumps to the smi handler. It is + * important to enter protected mode before the jump because the "jump to + * address" might be larger than the 20bit address supported by real mode. + * SMI entry right now is in real mode. + * input: smbase - this is the smbase of the first cpu not the smbase + * where tseg starts (aka smram_start). All CPUs code segment + * and stack will be below this point except for the common + * SMI handler which is one segment above + * input: num_cpus - number of cpus that need relocation including + * the first CPU (though its code is already loaded) + * input: top of stack (stacks work downward by default in Intel HW) + * output: return -1, if runtime smi code could not be installed. In + * this case SMM will not work and any SMI's generated will + * cause a CPU shutdown or general protection fault because + * the appropriate smi handling code was not installed + */ + +static int smm_place_entry_code(uintptr_t smbase, unsigned int num_cpus, + unsigned int stack_top, const struct smm_loader_params *params) +{ + unsigned int i; + unsigned int size; + if (smm_create_map(smbase, num_cpus, params)) { + /* + * Ensure there was enough space and the last CPUs smbase + * did not encroach upon the stack. Stack top is smram start + * + size of stack. + */ + if (cpus[num_cpus].active) { + if (cpus[num_cpus - 1].smbase + + params->smm_main_entry_offset < stack_top) { + printk(BIOS_ERR, "%s: stack encroachment\n", __func__); + printk(BIOS_ERR, "%s: smbase %zx, stack_top %x\n", + __func__, cpus[num_cpus].smbase, stack_top); + return 0; + } + } + } else { + printk(BIOS_ERR, "%s: unable to place smm entry code\n", __func__); + return 0; + } + + printk(BIOS_INFO, "%s: smbase %zx, stack_top %x\n", + __func__, cpus[num_cpus-1].smbase, stack_top); + + /* start at 1, the first CPU stub code is already there */ + size = cpus[0].code_end - cpus[0].code_start; + for (i = 1; i < num_cpus; i++) { + memcpy((int *)cpus[i].code_start, (int *)cpus[0].code_start, size); + printk(BIOS_DEBUG, + "SMM Module: placing smm entry code at %zx, cpu # 0x%x\n", + cpus[i].code_start, i); + printk(BIOS_DEBUG, "%s: copying from %zx to %zx 0x%x bytes\n", + __func__, cpus[0].code_start, cpus[i].code_start, size); + } + return 1; +} + +/* + * Place stacks in base -> base + size region, but ensure the stacks don't + * overlap the staggered entry points. + */ +static void *smm_stub_place_stacks(char *base, size_t size, + struct smm_loader_params *params) +{ + size_t total_stack_size; + char *stacks_top; + + /* If stack space is requested assume the space lives in the lower + * half of SMRAM. */ + total_stack_size = params->per_cpu_stack_size * + params->num_concurrent_stacks; + printk(BIOS_DEBUG, "%s: cpus: %zx : stack space: needed -> %zx\n", + __func__, params->num_concurrent_stacks, + total_stack_size); + printk(BIOS_DEBUG, " available -> %zx : per_cpu_stack_size : %zx\n", + size, params->per_cpu_stack_size); + + /* There has to be at least one stack user. */ + if (params->num_concurrent_stacks < 1) + return NULL; + + /* Total stack size cannot fit. */ + if (total_stack_size > size) + return NULL; + + /* Stacks extend down to SMBASE */ + stacks_top = &base[total_stack_size]; + printk(BIOS_DEBUG, "%s: exit, stack_top %p\n", __func__, stacks_top); + + return stacks_top; +} + +/* + * Place the staggered entry points for each CPU. The entry points are + * staggered by the per CPU SMM save state size extending down from + * SMM_ENTRY_OFFSET. + */ +static int smm_stub_place_staggered_entry_points(char *base, + const struct smm_loader_params *params, const struct rmodule *smm_stub) +{ + size_t stub_entry_offset; + int rc = 1; + stub_entry_offset = rmodule_entry_offset(smm_stub); + /* Each CPU now has its own stub code, which enters protected mode, + * sets up the stack, and then jumps to common SMI handler + */ + if (params->num_concurrent_save_states > 1 || stub_entry_offset != 0) { + rc = smm_place_entry_code((unsigned int)base, + params->num_concurrent_save_states, + (unsigned int)params->stack_top, params); + } + return rc; +} + +/* + * The stub setup code assumes it is completely contained within the + * default SMRAM size (0x10000) for the default SMI handler (entry at + * 0x30000), but no assumption should be made for the permanent SMI handler. + * The placement of CPU entry points for permanent handler are determined + * by the number of CPUs in the system and the amount of SMRAM. + * There are potentially 3 regions to place + * within the default SMRAM size: + * 1. Save state areas + * 2. Stub code + * 3. Stack areas + * + * The save state and smm stack are treated as contiguous for the number of + * concurrent areas requested. The save state always lives at the top of the + * the CPUS smbase (and the entry point is at offset 0x8000). This allows only a certain + * number of CPUs with staggered entry points until the save state area comes + * down far enough to overwrite/corrupt the entry code (stub code). Therefore, + * an SMM map is created to avoid this corruption, see smm_create_map() above. + * This module setup code works for the default (0x30000) SMM handler setup and the + * permanent SMM handler. + */ +static int smm_module_setup_stub(void *smbase, size_t smm_size, + struct smm_loader_params *params, + void *fxsave_area) +{ + size_t total_save_state_size; + size_t smm_stub_size; + size_t stub_entry_offset; + char *smm_stub_loc; + void *stacks_top; + size_t size; + char *base; + size_t i; + struct smm_stub_params *stub_params; + struct rmodule smm_stub; + unsigned int total_size_all; + base = smbase; + size = smm_size; + + /* The number of concurrent stacks cannot exceed CONFIG_MAX_CPUS. */ + if (params->num_concurrent_stacks > CONFIG_MAX_CPUS) { + printk(BIOS_ERR, "%s: not enough stacks\n", __func__); + return -1; + } + + /* Fail if can't parse the smm stub rmodule. */ + if (rmodule_parse(&_binary_smmstub_start, &smm_stub)) { + printk(BIOS_ERR, "%s: unable to parse smm stub\n", __func__); + return -1; + } + + /* Adjust remaining size to account for save state. */ + total_save_state_size = params->per_cpu_save_state_size * + params->num_concurrent_save_states; + if (total_save_state_size > size) { + printk(BIOS_ERR, + "%s: more state save space needed:need -> %zx:available->%zx\n", + __func__, total_save_state_size, size); + return -1; + } + + size -= total_save_state_size; + + /* The save state size encroached over the first SMM entry point. */ + if (size <= params->smm_main_entry_offset) { + printk(BIOS_ERR, "%s: encroachment over SMM entry point\n", __func__); + printk(BIOS_ERR, "%s: state save size: %zx : smm_entry_offset -> %x\n", + __func__, size, params->smm_main_entry_offset); + return -1; + } + + /* Need a minimum stack size and alignment. */ + if (params->per_cpu_stack_size <= SMM_MINIMUM_STACK_SIZE || + (params->per_cpu_stack_size & 3) != 0) { + printk(BIOS_ERR, "%s: need minimum stack size\n", __func__); + return -1; + } + + smm_stub_loc = NULL; + smm_stub_size = rmodule_memory_size(&smm_stub); + stub_entry_offset = rmodule_entry_offset(&smm_stub); + + /* Put the stub at the main entry point */ + smm_stub_loc = &base[params->smm_main_entry_offset]; + + /* Stub is too big to fit. */ + if (smm_stub_size > (size - params->smm_main_entry_offset)) { + printk(BIOS_ERR, "%s: stub is too big to fit\n", __func__); + return -1; + } + + /* The stacks, if requested, live in the lower half of SMRAM space + * for default handler, but for relocated handler it lives at the beginning + * of SMRAM which is TSEG base + */ + size = params->num_concurrent_stacks * params->per_cpu_stack_size; + stacks_top = smm_stub_place_stacks((char *)params->smram_start, size, params); + if (stacks_top == NULL) { + printk(BIOS_ERR, "%s: not enough space for stacks\n", __func__); + printk(BIOS_ERR, "%s: ....need -> %p : available -> %zx\n", __func__, + base, size); + return -1; + } + params->stack_top = stacks_top; + /* Load the stub. */ + if (rmodule_load(smm_stub_loc, &smm_stub)) { + printk(BIOS_ERR, "%s: load module failed\n", __func__); + return -1; + } + + if (!smm_stub_place_staggered_entry_points(base, params, &smm_stub)) { + printk(BIOS_ERR, "%s: staggered entry points failed\n", __func__); + return -1; + } + + /* Setup the parameters for the stub code. */ + stub_params = rmodule_parameters(&smm_stub); + stub_params->stack_top = (uintptr_t)stacks_top; + stub_params->stack_size = params->per_cpu_stack_size; + stub_params->c_handler = (uintptr_t)params->handler; + stub_params->c_handler_arg = (uintptr_t)params->handler_arg; + stub_params->fxsave_area = (uintptr_t)fxsave_area; + stub_params->fxsave_area_size = FXSAVE_SIZE; + stub_params->runtime.smbase = (uintptr_t)smbase; + stub_params->runtime.smm_size = smm_size; + stub_params->runtime.save_state_size = params->per_cpu_save_state_size; + stub_params->runtime.num_cpus = params->num_concurrent_stacks; + + printk(BIOS_DEBUG, "%s: stack_end = 0x%x\n", + __func__, stub_params->runtime.smbase); + printk(BIOS_DEBUG, + "%s: stack_top = 0x%x\n", __func__, stub_params->stack_top); + printk(BIOS_DEBUG, "%s: stack_size = 0x%x\n", + __func__, stub_params->stack_size); + printk(BIOS_DEBUG, "%s: runtime.smbase = 0x%x\n", + __func__, stub_params->runtime.smbase); + printk(BIOS_DEBUG, "%s: runtime.start32_offset = 0x%x\n", __func__, + stub_params->runtime.start32_offset); + printk(BIOS_DEBUG, "%s: runtime.smm_size = 0x%zx\n", + __func__, smm_size); + printk(BIOS_DEBUG, "%s: per_cpu_save_state_size = 0x%x\n", + __func__, stub_params->runtime.save_state_size); + printk(BIOS_DEBUG, "%s: num_cpus = 0x%x\n", __func__, + stub_params->runtime.num_cpus); + printk(BIOS_DEBUG, "%s: total_save_state_size = 0x%x\n", + __func__, (stub_params->runtime.save_state_size * + stub_params->runtime.num_cpus)); + total_size_all = stub_params->stack_size + + (stub_params->runtime.save_state_size * + stub_params->runtime.num_cpus); + printk(BIOS_DEBUG, "%s: total_size_all = 0x%x\n", __func__, + total_size_all); + + /* Initialize the APIC id to CPU number table to be 1:1 */ + for (i = 0; i < params->num_concurrent_stacks; i++) + stub_params->runtime.apic_id_to_cpu[i] = i; + + /* Allow the initiator to manipulate SMM stub parameters. */ + params->runtime = &stub_params->runtime; + + printk(BIOS_DEBUG, "SMM Module: stub loaded at %p. Will call %p(%p)\n", + smm_stub_loc, params->handler, params->handler_arg); + return 0; +} + +/* + * smm_setup_relocation_handler assumes the callback is already loaded in + * memory. i.e. Another SMM module isn't chained to the stub. The other + * assumption is that the stub will be entered from the default SMRAM + * location: 0x30000 -> 0x40000. + */ +int smm_setup_relocation_handler(struct smm_loader_params *params) +{ + void *smram = (void *)(SMM_DEFAULT_BASE); + printk(BIOS_SPEW, "%s: enter\n", __func__); + /* There can't be more than 1 concurrent save state for the relocation + * handler because all CPUs default to 0x30000 as SMBASE. */ + if (params->num_concurrent_save_states > 1) + return -1; + + /* A handler has to be defined to call for relocation. */ + if (params->handler == NULL) + return -1; + + /* Since the relocation handler always uses stack, adjust the number + * of concurrent stack users to be CONFIG_MAX_CPUS. */ + if (params->num_concurrent_stacks == 0) + params->num_concurrent_stacks = CONFIG_MAX_CPUS; + + params->smm_main_entry_offset = SMM_ENTRY_OFFSET; + params->smram_start = SMM_DEFAULT_BASE; + params->smram_end = SMM_DEFAULT_BASE + SMM_DEFAULT_SIZE; + return smm_module_setup_stub(smram, SMM_DEFAULT_SIZE, + params, fxsave_area_relocation); + printk(BIOS_SPEW, "%s: exit\n", __func__); +} + +/* + *The SMM module is placed within the provided region in the following + * manner: + * +-----------------+ <- smram + size + * | BIOS resource | + * | list (STM) | + * +-----------------+ + * | fxsave area | + * +-----------------+ + * | smi handler | + * | ... | + * +-----------------+ <- cpu0 + * | stub code | <- cpu1 + * | stub code | <- cpu2 + * | stub code | <- cpu3, etc + * | | + * | | + * | | + * | stacks | + * +-----------------+ <- smram start + + * It should be noted that this algorithm will not work for + * SMM_DEFAULT_SIZE SMRAM regions such as the A segment. This algorithm + * expects a region large enough to encompass the handler and stacks + * as well as the SMM_DEFAULT_SIZE. + */ +int smm_load_module(void *smram, size_t size, struct smm_loader_params *params) +{ + struct rmodule smm_mod; + size_t total_stack_size; + size_t handler_size; + size_t module_alignment; + size_t alignment_size; + size_t fxsave_size; + void *fxsave_area; + size_t total_size = 0; + char *base; + + if (size <= SMM_DEFAULT_SIZE) + return -1; + + /* Load main SMI handler at the top of SMRAM + * everything else will go below + */ + base = smram; + base += size; + params->smram_start = (uintptr_t)smram; + params->smram_end = params->smram_start + size; + params->smm_main_entry_offset = SMM_ENTRY_OFFSET; + + /* Fail if can't parse the smm rmodule. */ + if (rmodule_parse(&_binary_smm_start, &smm_mod)) + return -1; + + /* Clear SMM region */ + if (CONFIG(DEBUG_SMI)) + memset(smram, 0xcd, size); + + total_stack_size = params->per_cpu_stack_size * + params->num_concurrent_stacks; + total_size += total_stack_size; + /* Stacks are the base of SMRAM */ + params->stack_top = smram + total_stack_size; + + /* MSEG starts at the top of SMRAM and works down */ + if (CONFIG(STM)) { + base -= CONFIG_MSEG_SIZE + CONFIG_BIOS_RESOURCE_LIST_SIZE; + total_size += CONFIG_MSEG_SIZE + CONFIG_BIOS_RESOURCE_LIST_SIZE; + } + + /* FXSAVE goes below MSEG */ + if (CONFIG(SSE)) { + fxsave_size = FXSAVE_SIZE * params->num_concurrent_stacks; + fxsave_area = base - fxsave_size; + base -= fxsave_size; + total_size += fxsave_size; + } else { + fxsave_size = 0; + fxsave_area = NULL; + } + + + handler_size = rmodule_memory_size(&smm_mod); + base -= handler_size; + total_size += handler_size; + module_alignment = rmodule_load_alignment(&smm_mod); + alignment_size = module_alignment - + ((uintptr_t)base % module_alignment); + if (alignment_size != module_alignment) { + handler_size += alignment_size; + base += alignment_size; + } + + printk(BIOS_DEBUG, + "%s: total_smm_space_needed %zx, available -> %zx\n", + __func__, total_size, size); + + /* Does the required amount of memory exceed the SMRAM region size? */ + if (total_size > size) { + printk(BIOS_ERR, "%s: need more SMRAM\n", __func__); + return -1; + } + if (handler_size > SMM_CODE_SEGMENT_SIZE) { + printk(BIOS_ERR, "%s: increase SMM_CODE_SEGMENT_SIZE: handler_size = %zx\n", + __func__, handler_size); + return -1; + } + + if (rmodule_load(base, &smm_mod)) + return -1; + + params->handler = rmodule_entry(&smm_mod); + params->handler_arg = rmodule_parameters(&smm_mod); + + printk(BIOS_DEBUG, "%s: smram_start: 0x%p\n", + __func__, smram); + printk(BIOS_DEBUG, "%s: smram_end: %p\n", + __func__, smram + size); + printk(BIOS_DEBUG, "%s: stack_top: %p\n", + __func__, params->stack_top); + printk(BIOS_DEBUG, "%s: handler start %p\n", + __func__, params->handler); + printk(BIOS_DEBUG, "%s: handler_size %zx\n", + __func__, handler_size); + printk(BIOS_DEBUG, "%s: handler_arg %p\n", + __func__, params->handler_arg); + printk(BIOS_DEBUG, "%s: fxsave_area %p\n", + __func__, fxsave_area); + printk(BIOS_DEBUG, "%s: fxsave_size %zx\n", + __func__, fxsave_size); + printk(BIOS_DEBUG, "%s: CONFIG_MSEG_SIZE 0x%x\n", + __func__, CONFIG_MSEG_SIZE); + printk(BIOS_DEBUG, "%s: CONFIG_BIOS_RESOURCE_LIST_SIZE 0x%x\n", + __func__, CONFIG_BIOS_RESOURCE_LIST_SIZE); + + /* CPU 0 smbase goes first, all other CPUs + * will be staggered below + */ + base -= SMM_CODE_SEGMENT_SIZE; + printk(BIOS_DEBUG, "%s: cpu0 entry: %p\n", + __func__, base); + params->smm_entry = (uintptr_t)base + params->smm_main_entry_offset; + return smm_module_setup_stub(base, size, params, fxsave_area); +} diff --git a/src/include/cpu/x86/smm.h b/src/include/cpu/x86/smm.h index a3101e5155..db63e8be25 100644 --- a/src/include/cpu/x86/smm.h +++ b/src/include/cpu/x86/smm.h @@ -128,6 +128,12 @@ static inline bool smm_points_to_smram(const void *ptr, const size_t len) * into this field so the code doing the loading can manipulate the * runtime's assumptions. e.g. updating the APIC id to CPU map to * handle sparse APIC id space. + * The following parameters are only used when X86_SMM_LOADER_VERSION2 is enabled. + * - smm_entry - entry address of first CPU thread, all others will be tiled + * below this address. + * - smm_main_entry_offset - default entry offset (e.g 0x8000) + * - smram_start - smaram starting address + * - smram_end - smram ending address */ struct smm_loader_params { void *stack_top; @@ -141,12 +147,24 @@ struct smm_loader_params { void *handler_arg; struct smm_runtime *runtime; + + /* The following are only used by X86_SMM_LOADER_VERSION2 */ +#if CONFIG(X86_SMM_LOADER_VERSION2) + unsigned int smm_entry; + unsigned int smm_main_entry_offset; + unsigned int smram_start; + unsigned int smram_end; +#endif }; /* Both of these return 0 on success, < 0 on failure. */ int smm_setup_relocation_handler(struct smm_loader_params *params); int smm_load_module(void *smram, size_t size, struct smm_loader_params *params); +#if CONFIG(X86_SMM_LOADER_VERSION2) +u32 smm_get_cpu_smbase(unsigned int cpu_num); +#endif + /* Backup and restore default SMM region. */ void *backup_default_smm_area(void); void restore_default_smm_area(void *smm_save_area); |