summaryrefslogtreecommitdiff
path: root/src/northbridge/amd/gx2/raminit.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/northbridge/amd/gx2/raminit.c')
-rw-r--r--src/northbridge/amd/gx2/raminit.c526
1 files changed, 514 insertions, 12 deletions
diff --git a/src/northbridge/amd/gx2/raminit.c b/src/northbridge/amd/gx2/raminit.c
index 6fe98017bb..7ceb81a4e3 100644
--- a/src/northbridge/amd/gx2/raminit.c
+++ b/src/northbridge/amd/gx2/raminit.c
@@ -1,7 +1,521 @@
+/*
+ * This file is part of the coreboot project.
+ *
+ * Copyright (C) 2007 Advanced Micro Devices, Inc.
+ * Copyright (C) 2010 Nils Jacobs
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
+ */
+
#include <cpu/amd/gx2def.h>
+#include <spd.h>
+
+static const unsigned char NumColAddr[] = {
+ 0x00, 0x10, 0x11, 0x00, 0x00, 0x00, 0x00, 0x07,
+ 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F,
+};
+
+static void banner(const char *s)
+{
+ printk(BIOS_DEBUG, " * %s\n", s);
+}
+
+static void hcf(void)
+{
+ print_emerg("DIE\n");
+ /* this guarantees we flush the UART fifos (if any) and also
+ * ensures that things, in general, keep going so no debug output
+ * is lost
+ */
+ while (1)
+ print_emerg_char(0);
+}
+
+static void auto_size_dimm(unsigned int dimm)
+{
+ uint32_t dimm_setting;
+ uint16_t dimm_size;
+ uint8_t spd_byte;
+ msr_t msr;
+
+ dimm_setting = 0;
+
+ banner("Check present");
+ /* Check that we have a dimm */
+ if (spd_read_byte(dimm, SPD_MEMORY_TYPE) == 0xFF) {
+ return;
+ }
+
+ banner("MODBANKS");
+ /* Field: Module Banks per DIMM */
+ /* EEPROM byte usage: (5) Number of DIMM Banks */
+ spd_byte = spd_read_byte(dimm, SPD_NUM_DIMM_BANKS);
+ if ((MIN_MOD_BANKS > spd_byte) || (spd_byte > MAX_MOD_BANKS)) {
+ print_emerg("Number of module banks not compatible\n");
+ post_code(ERROR_BANK_SET);
+ hcf();
+ }
+ dimm_setting |= (spd_byte >> 1) << CF07_UPPER_D0_MB_SHIFT;
+ banner("FIELDBANKS");
+
+ /* Field: Banks per SDRAM device */
+ /* EEPROM byte usage: (17) Number of Banks on SDRAM Device */
+ spd_byte = spd_read_byte(dimm, SPD_NUM_BANKS_PER_SDRAM);
+ if ((MIN_DEV_BANKS > spd_byte) || (spd_byte > MAX_DEV_BANKS)) {
+ print_emerg("Number of device banks not compatible\n");
+ post_code(ERROR_BANK_SET);
+ hcf();
+ }
+ dimm_setting |= (spd_byte >> 2) << CF07_UPPER_D0_CB_SHIFT;
+ banner("SPDNUMROWS");
+
+ /*; Field: DIMM size
+ *; EEPROM byte usage: (3) Number of Row Addresses
+ *; (4) Number of Column Addresses
+ *; (5) Number of DIMM Banks
+ *; (31) Module Bank Density
+ *; Size = Module Density * Module Banks
+ */
+ if ((spd_read_byte(dimm, SPD_NUM_ROWS) & 0xF0)
+ || (spd_read_byte(dimm, SPD_NUM_COLUMNS) & 0xF0)) {
+ print_emerg("Assymetirc DIMM not compatible\n");
+ post_code(ERROR_UNSUPPORTED_DIMM);
+ hcf();
+ }
+ banner("SPDBANKDENSITY");
+
+ dimm_size = spd_read_byte(dimm, SPD_BANK_DENSITY);
+ banner("DIMMSIZE");
+ dimm_size |= (dimm_size << 8); /* align so 1GB(bit0) is bit 8, this is a little weird to get gcc to not optimize this out */
+ dimm_size &= 0x01FC; /* and off 2GB DIMM size : not supported and the 1GB size we just moved up to bit 8 as well as all the extra on top */
+
+ /* Module Density * Module Banks */
+ dimm_size <<= (dimm_setting >> CF07_UPPER_D0_MB_SHIFT) & 1; /* shift to multiply by # DIMM banks */
+ banner("BEFORT CTZ");
+ dimm_size = __builtin_ctz(dimm_size);
+ banner("TEST DIMM SIZE>7");
+ if (dimm_size > 7) { /* 7 is 512MB only support 512MB per DIMM */
+ print_emerg("Only support up to 512MB per DIMM\n");
+ post_code(ERROR_DENSITY_DIMM);
+ hcf();
+ }
+ dimm_setting |= dimm_size << CF07_UPPER_D0_SZ_SHIFT;
+ banner("PAGESIZE");
+
+/*; Field: PAGE size
+*; EEPROM byte usage: (4) Number of Column Addresses
+*; PageSize = 2^# Column Addresses * Data width in bytes (should be 8bytes for a normal DIMM)
+*
+*; But this really works by magic.
+*; If ma[11:0] is the memory address pins, and pa[13:0] is the physical column address
+*; that MC generates, here is how the MC assigns the pa onto the ma pins:
+*
+*;ma 11 10 09 08 07 06 05 04 03 02 01 00
+*;--------------------------------------------------------------------------------------------------------------------------------------
+*;pa 09 08 07 06 05 04 03 (7 col addr bits = 1K page size)
+*;pa 10 09 08 07 06 05 04 03 (8 col addr bits = 2K page size)
+*;pa 11 10 09 08 07 06 05 04 03 (9 col addr bits = 4K page size)
+*;pa 12 11 10 09 08 07 06 05 04 03 (10 col addr bits = 8K page size)
+*;pa 13 AP 12 11 10 09 08 07 06 05 04 03 (11 col addr bits = 16K page size)
+*; *AP=autoprecharge bit
+*
+*; Remember that pa[2:0] are zeroed out since it's a 64-bit data bus (8 bytes),
+*; so lower 3 address bits are dont_cares.So from the table above,
+*; it's easier to see what the old code is doing: if for example,#col_addr_bits=7(06h),
+*; it adds 3 to get 10, then does 2^10=1K. Get it?*/
+
+ spd_byte = NumColAddr[spd_read_byte(dimm, SPD_NUM_COLUMNS) & 0xF];
+ banner("MAXCOLADDR");
+ if (spd_byte > MAX_COL_ADDR) {
+ print_emerg("DIMM page size not compatible\n");
+ post_code(ERROR_SET_PAGE);
+ hcf();
+ }
+ banner(">11address test");
+ spd_byte -= 7;
+ if (spd_byte > 4) { /* if the value is above 4 it means >11 col address lines */
+ spd_byte = 7; /* which means >16k so set to disabled */
+ }
+ dimm_setting |= spd_byte << CF07_UPPER_D0_PSZ_SHIFT; /* 0=1k,1=2k,2=4k,etc */
+
+ banner("RDMSR CF07");
+ msr = rdmsr(MC_CF07_DATA);
+ banner("WRMSR CF07");
+ if (dimm == DIMM0) {
+ msr.hi &= 0xFFFF0000;
+ msr.hi |= dimm_setting;
+ } else {
+ msr.hi &= 0x0000FFFF;
+ msr.hi |= dimm_setting << 16;
+ }
+ wrmsr(MC_CF07_DATA, msr);
+ banner("ALL DONE");
+}
+
+static void checkDDRMax(void)
+{
+ uint8_t spd_byte0, spd_byte1;
+ uint16_t speed;
+
+ /* PC133 identifier */
+ spd_byte0 = spd_read_byte(DIMM0, SPD_MIN_CYCLE_TIME_AT_CAS_MAX);
+ if (spd_byte0 == 0xFF) {
+ spd_byte0 = 0;
+ }
+ spd_byte1 = spd_read_byte(DIMM1, SPD_MIN_CYCLE_TIME_AT_CAS_MAX);
+ if (spd_byte1 == 0xFF) {
+ spd_byte1 = 0;
+ }
+
+ /* Use the slowest DIMM */
+ if (spd_byte0 < spd_byte1) {
+ spd_byte0 = spd_byte1;
+ }
+
+ /* Turn SPD ns time into MHZ. Check what the asm does to this math. */
+ speed = 20000 / (((spd_byte0 >> 4) * 10) + (spd_byte0 & 0x0F));
+
+ /* current speed > max speed? */
+ if (GeodeLinkSpeed() > speed) {
+ print_emerg("DIMM overclocked. Check GeodeLink Speed\n");
+ post_code(POST_PLL_MEM_FAIL);
+ hcf();
+ }
+}
+
+const uint16_t REF_RATE[] = { 15, 3, 7, 31, 62, 125 }; /* ns */
+
+static void set_refresh_rate(void)
+{
+ uint8_t spd_byte0, spd_byte1;
+ uint16_t rate0, rate1;
+ msr_t msr;
+
+ spd_byte0 = spd_read_byte(DIMM0, SPD_REFRESH);
+ spd_byte0 &= 0xF;
+ if (spd_byte0 > 5) {
+ spd_byte0 = 5;
+ }
+ rate0 = REF_RATE[spd_byte0];
+
+ spd_byte1 = spd_read_byte(DIMM1, SPD_REFRESH);
+ spd_byte1 &= 0xF;
+ if (spd_byte1 > 5) {
+ spd_byte1 = 5;
+ }
+ rate1 = REF_RATE[spd_byte1];
+
+ /* Use the faster rate (lowest number) */
+ if (rate0 > rate1) {
+ rate0 = rate1;
+ }
+
+ msr = rdmsr(MC_CF07_DATA);
+ msr.lo |= ((rate0 * (GeodeLinkSpeed() / 2)) / 16)
+ << CF07_LOWER_REF_INT_SHIFT;
+ wrmsr(MC_CF07_DATA, msr);
+}
+
+const uint8_t CASDDR[] = { 5, 5, 2, 6, 0 }; /* 1(1.5), 1.5, 2, 2.5, 0 */
+
+static u8 getcasmap(u32 dimm, u16 glspeed)
+{
+ u16 dimm_speed;
+ u8 spd_byte, casmap, casmap_shift=0;
+
+ /************************** DIMM0 **********************************/
+ casmap = spd_read_byte(dimm, SPD_ACCEPTABLE_CAS_LATENCIES);
+ if (casmap != 0xFF) {
+ /* IF -.5 timing is supported, check -.5 timing > GeodeLink */
+ spd_byte = spd_read_byte(dimm, SPD_SDRAM_CYCLE_TIME_2ND);
+ if (spd_byte != 0) {
+ /* Turn SPD ns time into MHZ. Check what the asm does to this math. */
+ dimm_speed = 20000 / (((spd_byte >> 4) * 10) + (spd_byte & 0x0F));
+ if (dimm_speed >= glspeed) {
+ casmap_shift = 1; /* -.5 is a shift of 1 */
+ /* IF -1 timing is supported, check -1 timing > GeodeLink */
+ spd_byte = spd_read_byte(dimm, SPD_SDRAM_CYCLE_TIME_3RD);
+ if (spd_byte != 0) {
+ /* Turn SPD ns time into MHZ. Check what the asm does to this math. */
+ dimm_speed = 20000 / (((spd_byte >> 4) * 10) + (spd_byte & 0x0F));
+ if (dimm_speed >= glspeed) {
+ casmap_shift = 2; /* -1 is a shift of 2 */
+ }
+ } /* SPD_SDRAM_CYCLE_TIME_3RD (-1) !=0 */
+ } else {
+ casmap_shift = 0;
+ }
+ } /* SPD_SDRAM_CYCLE_TIME_2ND (-.5) !=0 */
+ /* set the casmap based on the shift to limit possible CAS settings */
+ spd_byte = 31 - __builtin_clz((uint32_t) casmap);
+ /* just want bits in the lower byte since we have to cast to a 32 */
+ casmap &= 0xFF << (spd_byte - casmap_shift);
+ } else { /* No DIMM */
+ casmap = 0;
+ }
+ return casmap;
+}
+
+static void setCAS(void)
+{
+/*;*****************************************************************************
+;*
+;* setCAS
+;* EEPROM byte usage: (18) SDRAM device attributes - CAS latency
+;* EEPROM byte usage: (23) SDRAM Minimum Clock Cycle Time @ CLX -.5
+;* EEPROM byte usage: (25) SDRAM Minimum Clock Cycle Time @ CLX -1
+;*
+;* The CAS setting is based on the information provided in each DIMMs SPD.
+;* The speed at which a DIMM can run is described relative to the slowest
+;* CAS the DIMM supports. Each speed for the relative CAS settings is
+;* checked that it is within the GeodeLink speed. If it isn't within the GeodeLink
+;* speed, the CAS setting is removed from the list of good settings for
+;* the DIMM. This is done for both DIMMs and the lists are compared to
+;* find the lowest common CAS latency setting. If there are no CAS settings
+;* in common we out a ERROR_DIFF_DIMMS (78h) to port 80h and halt.
+;*
+;* Entry:
+;* Exit: Set fastest CAS Latency based on GeodeLink speed and SPD information.
+;* Destroys: We really use everything !
+;*****************************************************************************/
+ uint16_t glspeed;
+ uint8_t spd_byte, casmap0, casmap1;
+ msr_t msr;
+
+ glspeed = GeodeLinkSpeed();
+
+ casmap0 = getcasmap(DIMM0, glspeed);
+ casmap1 = getcasmap(DIMM1, glspeed);
+
+ /********************* CAS_LAT MAP COMPARE ***************************/
+ if (casmap0 == 0) {
+ spd_byte = CASDDR[__builtin_ctz(casmap1)];
+ } else if (casmap1 == 0) {
+ spd_byte = CASDDR[__builtin_ctz(casmap0)];
+ } else if ((casmap0 &= casmap1)) {
+ spd_byte = CASDDR[__builtin_ctz(casmap0)];
+ } else {
+ print_emerg("DIMM CAS Latencies not compatible\n");
+ post_code(ERROR_DIFF_DIMMS);
+ hcf();
+ }
+
+ msr = rdmsr(MC_CF8F_DATA);
+ msr.lo &= ~(7 << CF8F_LOWER_CAS_LAT_SHIFT);
+ msr.lo |= spd_byte << CF8F_LOWER_CAS_LAT_SHIFT;
+ wrmsr(MC_CF8F_DATA, msr);
+}
+
+static void set_latencies(void)
+{
+ uint32_t memspeed, dimm_setting;
+ uint8_t spd_byte0, spd_byte1;
+ msr_t msr;
+
+ memspeed = GeodeLinkSpeed() / 2;
+ dimm_setting = 0;
+
+ /* MC_CF8F setup */
+ /* tRAS */
+ spd_byte0 = spd_read_byte(DIMM0, SPD_tRAS);
+ if (spd_byte0 == 0xFF) {
+ spd_byte0 = 0;
+ }
+ spd_byte1 = spd_read_byte(DIMM1, SPD_tRAS);
+ if (spd_byte1 == 0xFF) {
+ spd_byte1 = 0;
+ }
+ if (spd_byte0 < spd_byte1) {
+ spd_byte0 = spd_byte1;
+ }
+ /* (ns/(1/MHz) = (us*MHZ)/1000 = clocks/1000 = clocks) */
+ spd_byte1 = (spd_byte0 * memspeed) / 1000;
+ if (((spd_byte0 * memspeed) % 1000)) {
+ ++spd_byte1;
+ }
+ if (spd_byte1 > 6) {
+ --spd_byte1;
+ }
+ dimm_setting |= spd_byte1 << CF8F_LOWER_ACT2PRE_SHIFT;
+
+ /* tRP */
+ spd_byte0 = spd_read_byte(DIMM0, SPD_tRP);
+ if (spd_byte0 == 0xFF) {
+ spd_byte0 = 0;
+ }
+ spd_byte1 = spd_read_byte(DIMM1, SPD_tRP);
+ if (spd_byte1 == 0xFF) {
+ spd_byte1 = 0;
+ }
+ if (spd_byte0 < spd_byte1) {
+ spd_byte0 = spd_byte1;
+ }
+ /* (ns/(1/MHz) = (us*MHZ)/1000 = clocks/1000 = clocks) */
+ spd_byte1 = ((spd_byte0 >> 2) * memspeed) / 1000;
+ if ((((spd_byte0 >> 2) * memspeed) % 1000)) {
+ ++spd_byte1;
+ }
+ dimm_setting |= spd_byte1 << CF8F_LOWER_PRE2ACT_SHIFT;
+
+ /* tRCD */
+ spd_byte0 = spd_read_byte(DIMM0, SPD_tRCD);
+ if (spd_byte0 == 0xFF) {
+ spd_byte0 = 0;
+ }
+ spd_byte1 = spd_read_byte(DIMM1, SPD_tRCD);
+ if (spd_byte1 == 0xFF) {
+ spd_byte1 = 0;
+ }
+ if (spd_byte0 < spd_byte1) {
+ spd_byte0 = spd_byte1;
+ }
+ /* (ns/(1/MHz) = (us*MHZ)/1000 = clocks/1000 = clocks) */
+ spd_byte1 = ((spd_byte0 >> 2) * memspeed) / 1000;
+ if ((((spd_byte0 >> 2) * memspeed) % 1000)) {
+ ++spd_byte1;
+ }
+ dimm_setting |= spd_byte1 << CF8F_LOWER_ACT2CMD_SHIFT;
+
+ /* tRRD */
+ spd_byte0 = spd_read_byte(DIMM0, SPD_tRRD);
+ if (spd_byte0 == 0xFF) {
+ spd_byte0 = 0;
+ }
+ spd_byte1 = spd_read_byte(DIMM1, SPD_tRRD);
+ if (spd_byte1 == 0xFF) {
+ spd_byte1 = 0;
+ }
+ if (spd_byte0 < spd_byte1) {
+ spd_byte0 = spd_byte1;
+ }
+ /* (ns/(1/MHz) = (us*MHZ)/1000 = clocks/1000 = clocks) */
+ spd_byte1 = ((spd_byte0 >> 2) * memspeed) / 1000;
+ if ((((spd_byte0 >> 2) * memspeed) % 1000)) {
+ ++spd_byte1;
+ }
+ dimm_setting |= spd_byte1 << CF8F_LOWER_ACT2ACT_SHIFT;
+
+ /* tRC = tRP + tRAS */
+ dimm_setting |= (((dimm_setting >> CF8F_LOWER_ACT2PRE_SHIFT) & 0x0F) +
+ ((dimm_setting >> CF8F_LOWER_PRE2ACT_SHIFT) & 0x07))
+ << CF8F_LOWER_REF2ACT_SHIFT;
+
+ msr = rdmsr(MC_CF8F_DATA);
+ msr.lo &= 0xF00000FF;
+ msr.lo |= dimm_setting;
+ msr.hi |= CF8F_UPPER_REORDER_DIS_SET;
+ wrmsr(MC_CF8F_DATA, msr);
+ printk(BIOS_DEBUG, "MSR MC_CF8F_DATA (%08x) value is %08x:%08x\n",
+ MC_CF8F_DATA, msr.hi, msr.lo);
+}
+
+static void set_extended_mode_registers(void)
+{
+ uint8_t spd_byte0, spd_byte1;
+ msr_t msr;
+ spd_byte0 = spd_read_byte(DIMM0, SPD_DEVICE_ATTRIBUTES_GENERAL);
+ if (spd_byte0 == 0xFF) {
+ spd_byte0 = 0;
+ }
+ spd_byte1 = spd_read_byte(DIMM1, SPD_DEVICE_ATTRIBUTES_GENERAL);
+ if (spd_byte1 == 0xFF) {
+ spd_byte1 = 0;
+ }
+ spd_byte1 &= spd_byte0;
+
+ msr = rdmsr(MC_CF07_DATA);
+ if (spd_byte1 & 1) { /* Drive Strength Control */
+ msr.lo |= CF07_LOWER_EMR_DRV_SET;
+ }
+ if (spd_byte1 & 2) { /* FET Control */
+ msr.lo |= CF07_LOWER_EMR_QFC_SET;
+ }
+ wrmsr(MC_CF07_DATA, msr);
+}
static void sdram_set_registers(const struct mem_controller *ctrl)
{
+ msr_t msr;
+ uint32_t msrnum;
+
+ /* Set Refresh Staggering */
+ msrnum = MC_CF07_DATA;
+ msr = rdmsr(msrnum);
+ msr.lo &= ~0xC0;
+ msr.lo |= 0x0; /* set refresh to 4SDRAM clocks */
+ wrmsr(msrnum, msr);
+
+ /* Memory Interleave: Set HOI here otherwise default is LOI */
+ /* msrnum = MC_CF8F_DATA;
+ msr = rdmsr(msrnum);
+ msr.hi |= CF8F_UPPER_HOI_LOI_SET;
+ wrmsr(msrnum, msr); */
+}
+
+static void sdram_set_spd_registers(const struct mem_controller *ctrl)
+{
+ uint8_t spd_byte;
+
+ banner("sdram_set_spd_register");
+ post_code(POST_MEM_SETUP); // post_70h
+
+ spd_byte = spd_read_byte(DIMM0, SPD_MODULE_ATTRIBUTES);
+ banner("Check DIMM 0");
+ /* Check DIMM is not Register and not Buffered DIMMs. */
+ if ((spd_byte != 0xFF) && (spd_byte & 3)) {
+ print_emerg("DIMM0 NOT COMPATIBLE\n");
+ post_code(ERROR_UNSUPPORTED_DIMM);
+ hcf();
+ }
+ banner("Check DIMM 1");
+ spd_byte = spd_read_byte(DIMM1, SPD_MODULE_ATTRIBUTES);
+ if ((spd_byte != 0xFF) && (spd_byte & 3)) {
+ print_emerg("DIMM1 NOT COMPATIBLE\n");
+ post_code(ERROR_UNSUPPORTED_DIMM);
+ hcf();
+ }
+
+ post_code(POST_MEM_SETUP2); // post_72h
+ banner("Check DDR MAX");
+
+ /* Check that the memory is not overclocked. */
+ checkDDRMax();
+
+ /* Size the DIMMS */
+ post_code(POST_MEM_SETUP3); // post_73h
+ banner("AUTOSIZE DIMM 0");
+ auto_size_dimm(DIMM0);
+ post_code(POST_MEM_SETUP4); // post_74h
+ banner("AUTOSIZE DIMM 1");
+ auto_size_dimm(DIMM1);
+
+ /* Set CAS latency */
+ banner("set cas latency");
+ post_code(POST_MEM_SETUP5); // post_75h
+ setCAS();
+
+ /* Set all the other latencies here (tRAS, tRP....) */
+ banner("set all latency");
+ set_latencies();
+
+ /* Set Extended Mode Registers */
+ banner("set emrs");
+ set_extended_mode_registers();
+
+ banner("set ref rate");
+ /* Set Memory Refresh Rate */
+ set_refresh_rate();
}
/* Section 6.1.3, LX processor databooks, BIOS Initialization Sequence
@@ -40,18 +554,6 @@ static void sdram_enable(int controllers, const struct mem_controller *ctrl)
}
//print_debug("sdram_enable step 4\n");
- /* 5. set refresh interval */
- msr = rdmsr(0x20000018);
- msr.lo &= ~(0xffff << 8);
- msr.lo |= (0x34 << 8);
- wrmsr(0x20000018, msr);
- /* set refresh staggering to 4 SDRAM clocks */
- msr = rdmsr(0x20000018);
- msr.lo &= ~(0x03 << 6);
- msr.lo |= (0x00 << 6);
- wrmsr(0x20000018, msr);
- //print_debug("sdram_enable step 5\n");
-
/* 6. enable DLL, load Extended Mode Register by set and clear PROG_DRAM */
msr = rdmsr(MC_CF07_DATA);
msr.lo |= ((0x01 << 28) | 0x01);