From 29cc9eda2021a87396ef31a6fc81daff6fd1be7a Mon Sep 17 00:00:00 2001 From: Myles Watson Date: Thu, 2 Jul 2009 18:56:24 +0000 Subject: Move the v3 resource allocator to v2. Major changes: 1. Separate resource allocation into: A. Read Resources B. Avoid fixed resources (constrain limits) C. Allocate resources D. Set resources Usage notes: Resources which have IORESOURCE_FIXED set in the flags constrain the placement of other resources. All fixed resources will end up outside (above or below) the allocated resources. Domains usually start with base = 0 and limit = 2^address_bits - 1. I've added an IOAPIC to all platforms so that the old limit of 0xfec00000 is still there for resources. Some platforms may want to change that, but I didn't want to break anyone's board. Resources are allocated in a single block for memory and another for I/O. Currently the resource allocator doesn't support holes. Signed-off-by: Myles Watson Acked-by: Ronald G. Minnich Acked-by: Patrick Georgi git-svn-id: svn://svn.coreboot.org/coreboot/trunk@4394 2b7e53f0-3cfb-0310-b3e9-8179ed1497e1 --- src/devices/device.c | 830 +++++++++++++++++++++++++++++++++++---------------- 1 file changed, 572 insertions(+), 258 deletions(-) (limited to 'src/devices/device.c') diff --git a/src/devices/device.c b/src/devices/device.c index 51a1203ec0..123d22a971 100644 --- a/src/devices/device.c +++ b/src/devices/device.c @@ -12,6 +12,7 @@ * Copyright (C) 2005-2006 Tyan * (Written by Yinghai Lu for Tyan) * Copyright (C) 2005-2006 Stefan Reinauer + * Copyright (C) 2009 Myles Watson */ /* @@ -43,12 +44,6 @@ struct device *all_devices = &dev_root; /** Pointer to the last device */ extern struct device **last_dev_p; -/** The upper limit of MEM resource of the devices. - * Reserve 20M for the system */ -#define DEVICE_MEM_HIGH 0xFEBFFFFFUL -/** The lower limit of IO resource of the devices. - * Reserve 4k for ISA/Legacy devices */ -#define DEVICE_IO_START 0x1000 /** * @brief Allocate a new device structure. @@ -71,25 +66,25 @@ device_t alloc_dev(struct bus *parent, struct device_path *path) spin_lock(&dev_lock); - /* Find the last child of our parent */ - for(child = parent->children; child && child->sibling; ) { + /* Find the last child of our parent. */ + for (child = parent->children; child && child->sibling; /* */ ) { child = child->sibling; } dev = malloc(sizeof(*dev)); - if (dev == 0) { + if (dev == 0) die("DEV: out of memory.\n"); - } + memset(dev, 0, sizeof(*dev)); memcpy(&dev->path, path, sizeof(*path)); - /* Initialize the back pointers in the link fields */ - for(link = 0; link < MAX_LINKS; link++) { - dev->link[link].dev = dev; + /* Initialize the back pointers in the link fields. */ + for (link = 0; link < MAX_LINKS; link++) { + dev->link[link].dev = dev; dev->link[link].link = link; } - /* By default devices are enabled */ + /* By default devices are enabled. */ dev->enabled = 1; /* Add the new device to the list of children of the bus. */ @@ -132,64 +127,46 @@ static void read_resources(struct bus *bus) { struct device *curdev; - printk_spew("%s read_resources bus %d link: %d\n", - dev_path(bus->dev), bus->secondary, bus->link); + printk_spew("%s %s bus %x link: %d\n", dev_path(bus->dev), __func__, + bus->secondary, bus->link); - /* Walk through all of the devices and find which resources they need. */ - for(curdev = bus->children; curdev; curdev = curdev->sibling) { - unsigned links; + /* Walk through all devices and find which resources they need. */ + for (curdev = bus->children; curdev; curdev = curdev->sibling) { int i; - if (curdev->have_resources) { - continue; - } if (!curdev->enabled) { continue; } if (!curdev->ops || !curdev->ops->read_resources) { printk_err("%s missing read_resources\n", - dev_path(curdev)); + dev_path(curdev)); continue; } curdev->ops->read_resources(curdev); - curdev->have_resources = 1; - /* Read in subtractive resources behind the current device */ - links = 0; - for(i = 0; i < curdev->resources; i++) { - struct resource *resource; - unsigned link; - resource = &curdev->resource[i]; - if (!(resource->flags & IORESOURCE_SUBTRACTIVE)) - continue; - link = IOINDEX_SUBTRACTIVE_LINK(resource->index); - if (link > MAX_LINKS) { - printk_err("%s subtractive index on link: %d\n", - dev_path(curdev), link); - continue; - } - if (!(links & (1 << link))) { - links |= (1 << link); - read_resources(&curdev->link[link]); - } - } + + /* Read in the resources behind the current device's links. */ + for (i = 0; i < curdev->links; i++) + read_resources(&curdev->link[i]); } printk_spew("%s read_resources bus %d link: %d done\n", - dev_path(bus->dev), bus->secondary, bus->link); + dev_path(bus->dev), bus->secondary, bus->link); } struct pick_largest_state { struct resource *last; - struct device *result_dev; + struct device *result_dev; struct resource *result; int seen_last; }; -static void pick_largest_resource(void *gp, - struct device *dev, struct resource *resource) +static void pick_largest_resource(void *gp, struct device *dev, + struct resource *resource) { struct pick_largest_state *state = gp; struct resource *last; + last = state->last; - /* Be certain to pick the successor to last */ + + /* Be certain to pick the successor to last. */ if (resource == last) { state->seen_last = 1; return; @@ -206,21 +183,22 @@ static void pick_largest_resource(void *gp, if (!state->result || (state->result->align < resource->align) || ((state->result->align == resource->align) && - (state->result->size < resource->size))) - { + (state->result->size < resource->size))) { state->result_dev = dev; state->result = resource; } } -static struct device *largest_resource(struct bus *bus, struct resource **result_res, - unsigned long type_mask, unsigned long type) +static struct device *largest_resource(struct bus *bus, + struct resource **result_res, + unsigned long type_mask, + unsigned long type) { struct pick_largest_state state; state.last = *result_res; - state.result_dev = 0; - state.result = 0; + state.result_dev = NULL; + state.result = NULL; state.seen_last = 0; search_bus_resources(bus, type_mask, type, pick_largest_resource, @@ -233,144 +211,136 @@ static struct device *largest_resource(struct bus *bus, struct resource **result /* Compute allocate resources is the guts of the resource allocator. * * The problem. - * - Allocate resources locations for every device. + * - Allocate resource locations for every device. * - Don't overlap, and follow the rules of bridges. * - Don't overlap with resources in fixed locations. * - Be efficient so we don't have ugly strategies. * * The strategy. * - Devices that have fixed addresses are the minority so don't - * worry about them too much. Instead only use part of the address - * space for devices with programmable addresses. This easily handles + * worry about them too much. Instead only use part of the address + * space for devices with programmable addresses. This easily handles * everything except bridges. * - * - PCI devices are required to have thier sizes and their alignments - * equal. In this case an optimal solution to the packing problem - * exists. Allocate all devices from highest alignment to least - * alignment or vice versa. Use this. + * - PCI devices are required to have their sizes and their alignments + * equal. In this case an optimal solution to the packing problem + * exists. Allocate all devices from highest alignment to least + * alignment or vice versa. Use this. * - * - So we can handle more than PCI run two allocation passes on - * bridges. The first to see how large the resources are behind - * the bridge, and what their alignment requirements are. The - * second to assign a safe address to the devices behind the - * bridge. This allows me to treat a bridge as just a device with - * a couple of resources, and not need to special case it in the - * allocator. Also this allows handling of other types of bridges. + * - So we can handle more than PCI run two allocation passes on bridges. The + * first to see how large the resources are behind the bridge, and what + * their alignment requirements are. The second to assign a safe address to + * the devices behind the bridge. This allows us to treat a bridge as just + * a device with a couple of resources, and not need to special case it in + * the allocator. Also this allows handling of other types of bridges. * */ - -void compute_allocate_resource( - struct bus *bus, - struct resource *bridge, - unsigned long type_mask, - unsigned long type) +void compute_resources(struct bus *bus, struct resource *bridge, + unsigned long type_mask, unsigned long type) { struct device *dev; struct resource *resource; resource_t base; - unsigned long align, min_align; - min_align = 0; - base = bridge->base; + base = round(bridge->base, bridge->align); - printk_spew("%s compute_allocate_resource %s: base: %08Lx size: %08Lx align: %d gran: %d\n", - dev_path(bus->dev), - (bridge->flags & IORESOURCE_IO)? "io": - (bridge->flags & IORESOURCE_PREFETCH)? "prefmem" : "mem", - base, bridge->size, bridge->align, bridge->gran); + printk_spew( "%s %s_%s: base: %llx size: %llx align: %d gran: %d limit: %llx\n", + dev_path(bus->dev), __func__, + (type & IORESOURCE_IO) ? "io" : (type & IORESOURCE_PREFETCH) ? + "prefmem" : "mem", + base, bridge->size, bridge->align, bridge->gran, bridge->limit); - /* We want different minimum alignments for different kinds of - * resources. These minimums are not device type specific - * but resource type specific. - */ - if (bridge->flags & IORESOURCE_IO) { - min_align = log2(DEVICE_IO_ALIGN); - } - if (bridge->flags & IORESOURCE_MEM) { - min_align = log2(DEVICE_MEM_ALIGN); - } + /* For each child which is a bridge, compute_resource_needs. */ + for (dev = bus->children; dev; dev = dev->sibling) { + unsigned i; + struct resource *child_bridge; - /* Make certain I have read in all of the resources */ - read_resources(bus); + if (!dev->links) + continue; - /* Remember I haven't found anything yet. */ - resource = 0; + /* Find the resources with matching type flags. */ + for (i = 0; i < dev->resources; i++) { + unsigned link; + child_bridge = &dev->resource[i]; - /* Walk through all the devices on the current bus and - * compute the addresses. - */ - while((dev = largest_resource(bus, &resource, type_mask, type))) { - resource_t size; - /* Do NOT I repeat do not ignore resources which have zero size. - * If they need to be ignored dev->read_resources should not even - * return them. Some resources must be set even when they have - * no size. PCI bridge resources are a good example of this. - */ - /* Make certain we are dealing with a good minimum size */ - size = resource->size; - align = resource->align; - if (align < min_align) { - align = min_align; - } + if (!(child_bridge->flags & IORESOURCE_BRIDGE) || + (child_bridge->flags & type_mask) != type) + continue; - /* Propagate the resource alignment to the bridge register */ - if (align > bridge->align) { - bridge->align = align; + /* Split prefetchable memory if combined. Many domains + * use the same address space for prefetchable memory + * and non-prefetchable memory. Bridges below them + * need it separated. Add the PREFETCH flag to the + * type_mask and type. + */ + link = IOINDEX_LINK(child_bridge->index); + compute_resources(&dev->link[link], child_bridge, + type_mask | IORESOURCE_PREFETCH, + type | (child_bridge->flags & + IORESOURCE_PREFETCH)); } + } + + /* Remember we haven't found anything yet. */ + resource = NULL; + + /* Walk through all the resources on the current bus and compute the + * amount of address space taken by them. Take granularity and + * alignment into account. + */ + while ((dev = largest_resource(bus, &resource, type_mask, type))) { - if (resource->flags & IORESOURCE_FIXED) { + /* Size 0 resources can be skipped. */ + if (!resource->size) { continue; } - /* Propogate the resource limit to the bridge register */ + /* Propagate the resource alignment to the bridge resource. */ + if (resource->align > bridge->align) { + bridge->align = resource->align; + } + + /* Propagate the resource limit to the bridge register. */ if (bridge->limit > resource->limit) { bridge->limit = resource->limit; } -#warning This heuristic should be replaced by real devices with fixed resources. - /* Artificially deny limits between DEVICE_MEM_HIGH and 0xffffffff */ - if ((bridge->limit > DEVICE_MEM_HIGH) && (bridge->limit <= 0xffffffff)) { - bridge->limit = DEVICE_MEM_HIGH; + + /* Warn if it looks like APICs aren't declared. */ + if ((resource->limit == 0xffffffff) && + (resource->flags & IORESOURCE_ASSIGNED)) { + printk_err("Resource limit looks wrong! (no APIC?)\n"); + printk_err("%s %02lx limit %08Lx\n", dev_path(dev), + resource->index, resource->limit); } if (resource->flags & IORESOURCE_IO) { - /* Don't allow potential aliases over the - * legacy pci expansion card addresses. - * The legacy pci decodes only 10 bits, - * uses 100h - 3ffh. Therefor, only 0 - ff - * can be used out of each 400h block of io - * space. + /* Don't allow potential aliases over the legacy PCI + * expansion card addresses. The legacy PCI decodes + * only 10 bits, uses 0x100 - 0x3ff. Therefore, only + * 0x00 - 0xff can be used out of each 0x400 block of + * I/O space. */ if ((base & 0x300) != 0) { base = (base & ~0x3ff) + 0x400; } - /* Don't allow allocations in the VGA IO range. + /* Don't allow allocations in the VGA I/O range. * PCI has special cases for that. */ else if ((base >= 0x3b0) && (base <= 0x3df)) { base = 0x3e0; } } - if (((round(base, align) + size) -1) <= resource->limit) { - /* base must be aligned to size */ - base = round(base, align); - resource->base = base; - resource->flags |= IORESOURCE_ASSIGNED; - resource->flags &= ~IORESOURCE_STORED; - base += size; - - printk_spew("%s %02lx * [0x%08Lx - 0x%08Lx] %s\n", - dev_path(dev), - resource->index, - resource->base, - resource->base + resource->size - 1, - (resource->flags & IORESOURCE_IO)? "io": - (resource->flags & IORESOURCE_PREFETCH)? "prefmem": "mem"); - } -#if CONFIG_PCIE_CONFIGSPACE_HOLE -#warning Handle PCIe hole differently... - if (base >= 0xf0000000 && base < 0xf4000000) { - base = 0xf4000000; - } -#endif + /* Base must be aligned. */ + base = round(base, resource->align); + resource->base = base; + base += resource->size; + + printk_spew("%s %02lx * [0x%llx - 0x%llx] %s\n", + dev_path(dev), resource->index, + resource->base, + resource->base + resource->size - 1, + (resource->flags & IORESOURCE_IO) ? "io" : + (resource->flags & IORESOURCE_PREFETCH) ? + "prefmem" : "mem"); } /* A pci bridge resource does not need to be a power * of two size, but it does have a minimum granularity. @@ -378,13 +348,317 @@ void compute_allocate_resource( * know not to place something else at an address postitively * decoded by the bridge. */ - bridge->size = round(base, bridge->gran) - bridge->base; + bridge->size = round(base, bridge->gran) - + round(bridge->base, bridge->align); + + printk_spew("%s %s_%s: base: %llx size: %llx align: %d gran: %d limit: %llx done\n", + dev_path(bus->dev), __func__, + (bridge->flags & IORESOURCE_IO) ? "io" : + (bridge->flags & IORESOURCE_PREFETCH) ? "prefmem" : "mem", + base, bridge->size, bridge->align, bridge->gran, bridge->limit); +} + +/** + * This function is the second part of the resource allocator. + * + * The problem. + * - Allocate resource locations for every device. + * - Don't overlap, and follow the rules of bridges. + * - Don't overlap with resources in fixed locations. + * - Be efficient so we don't have ugly strategies. + * + * The strategy. + * - Devices that have fixed addresses are the minority so don't + * worry about them too much. Instead only use part of the address + * space for devices with programmable addresses. This easily handles + * everything except bridges. + * + * - PCI devices are required to have their sizes and their alignments + * equal. In this case an optimal solution to the packing problem + * exists. Allocate all devices from highest alignment to least + * alignment or vice versa. Use this. + * + * - So we can handle more than PCI run two allocation passes on bridges. The + * first to see how large the resources are behind the bridge, and what + * their alignment requirements are. The second to assign a safe address to + * the devices behind the bridge. This allows us to treat a bridge as just + * a device with a couple of resources, and not need to special case it in + * the allocator. Also this allows handling of other types of bridges. + * + * - This function assigns the resources a value. + * + * @param bus The bus we are traversing. + * @param bridge The bridge resource which must contain the bus' resources. + * @param type_mask This value gets anded with the resource type. + * @param type This value must match the result of the and. + */ +void allocate_resources(struct bus *bus, struct resource *bridge, + unsigned long type_mask, unsigned long type) +{ + struct device *dev; + struct resource *resource; + resource_t base; + base = bridge->base; + + printk_spew("%s %s_%s: base:%llx size:%llx align:%d gran:%d limit:%llx\n", + dev_path(bus->dev), __func__, + (type & IORESOURCE_IO) ? "io" : (type & IORESOURCE_PREFETCH) ? + "prefmem" : "mem", + base, bridge->size, bridge->align, bridge->gran, bridge->limit); + + /* Remember we haven't found anything yet. */ + resource = NULL; + + /* Walk through all the resources on the current bus and allocate them + * address space. + */ + while ((dev = largest_resource(bus, &resource, type_mask, type))) { + + /* Propagate the bridge limit to the resource register. */ + if (resource->limit > bridge->limit) { + resource->limit = bridge->limit; + } + + /* Size 0 resources can be skipped. */ + if (!resource->size) { + /* Set the base to limit so it doesn't confuse tolm. */ + resource->base = resource->limit; + resource->flags |= IORESOURCE_ASSIGNED; + continue; + } + + if (resource->flags & IORESOURCE_IO) { + /* Don't allow potential aliases over the legacy PCI + * expansion card addresses. The legacy PCI decodes + * only 10 bits, uses 0x100 - 0x3ff. Therefore, only + * 0x00 - 0xff can be used out of each 0x400 block of + * I/O space. + */ + if ((base & 0x300) != 0) { + base = (base & ~0x3ff) + 0x400; + } + /* Don't allow allocations in the VGA I/O range. + * PCI has special cases for that. + */ + else if ((base >= 0x3b0) && (base <= 0x3df)) { + base = 0x3e0; + } + } + + if ((round(base, resource->align) + resource->size - 1) <= + resource->limit) { + /* Base must be aligned. */ + base = round(base, resource->align); + resource->base = base; + resource->flags |= IORESOURCE_ASSIGNED; + resource->flags &= ~IORESOURCE_STORED; + base += resource->size; + } else { + printk_err("!! Resource didn't fit !!\n"); + printk_err(" aligned base %llx size %llx limit %llx\n", + round(base, resource->align), resource->size, + resource->limit); + printk_err(" %llx needs to be <= %llx (limit)\n", + (round(base, resource->align) + + resource->size) - 1, resource->limit); + printk_err(" %s%s %02lx * [0x%llx - 0x%llx] %s\n", + (resource-> + flags & IORESOURCE_ASSIGNED) ? "Assigned: " : + "", dev_path(dev), resource->index, + resource->base, + resource->base + resource->size - 1, + (resource-> + flags & IORESOURCE_IO) ? "io" : (resource-> + flags & + IORESOURCE_PREFETCH) + ? "prefmem" : "mem"); + } + + printk_spew("%s%s %02lx * [0x%llx - 0x%llx] %s\n", + (resource->flags & IORESOURCE_ASSIGNED) ? "Assigned: " + : "", + dev_path(dev), resource->index, resource->base, + resource->size ? resource->base + resource->size - 1 : + resource->base, + (resource->flags & IORESOURCE_IO) ? "io" : + (resource->flags & IORESOURCE_PREFETCH) ? "prefmem" : + "mem"); + } + /* A PCI bridge resource does not need to be a power of two size, but + * it does have a minimum granularity. Round the size up to that + * minimum granularity so we know not to place something else at an + * address positively decoded by the bridge. + */ + + bridge->flags |= IORESOURCE_ASSIGNED; + + printk_spew("%s %s_%s: next_base: %llx size: %llx align: %d gran: %d done\n", + dev_path(bus->dev), __func__, + (type & IORESOURCE_IO) ? "io" : (type & IORESOURCE_PREFETCH) ? + "prefmem" : "mem", + base, bridge->size, bridge->align, bridge->gran); + + /* For each child which is a bridge, allocate_resources. */ + for (dev = bus->children; dev; dev = dev->sibling) { + unsigned i; + struct resource *child_bridge; - printk_spew("%s compute_allocate_resource %s: base: %08Lx size: %08Lx align: %d gran: %d done\n", - dev_path(bus->dev), - (bridge->flags & IORESOURCE_IO)? "io": - (bridge->flags & IORESOURCE_PREFETCH)? "prefmem" : "mem", - base, bridge->size, bridge->align, bridge->gran); + if (!dev->links) + continue; + + /* Find the resources with matching type flags. */ + for (i = 0; i < dev->resources; i++) { + unsigned link; + child_bridge = &dev->resource[i]; + + if (!(child_bridge->flags & IORESOURCE_BRIDGE) || + (child_bridge->flags & type_mask) != type) + continue; + + /* Split prefetchable memory if combined. Many domains + * use the same address space for prefetchable memory + * and non-prefetchable memory. Bridges below them + * need it separated. Add the PREFETCH flag to the + * type_mask and type. + */ + link = IOINDEX_LINK(child_bridge->index); + allocate_resources(&dev->link[link], child_bridge, + type_mask | IORESOURCE_PREFETCH, + type | (child_bridge->flags & + IORESOURCE_PREFETCH)); + } + } +} + +#if CONFIG_PCI_64BIT_PREF_MEM == 1 + #define MEM_MASK (IORESOURCE_PREFETCH | IORESOURCE_MEM) +#else + #define MEM_MASK (IORESOURCE_MEM) +#endif +#define IO_MASK (IORESOURCE_IO) +#define PREF_TYPE (IORESOURCE_PREFETCH | IORESOURCE_MEM) +#define MEM_TYPE (IORESOURCE_MEM) +#define IO_TYPE (IORESOURCE_IO) + +struct constraints { + struct resource pref, io, mem; +}; + +static void constrain_resources(struct device *dev, struct constraints* limits) +{ + struct device *child; + struct resource *res; + struct resource *lim; + int i; + + printk_spew("%s: %s\n", __func__, dev_path(dev)); + + /* Constrain limits based on the fixed resources of this device. */ + for (i = 0; i < dev->resources; i++) { + res = &dev->resource[i]; + if (!(res->flags & IORESOURCE_FIXED)) + continue; + + /* PREFETCH, MEM, or I/O - skip any others. */ + if ((res->flags & MEM_MASK) == PREF_TYPE) + lim = &limits->pref; + else if ((res->flags & MEM_MASK) == MEM_TYPE) + lim = &limits->mem; + else if ((res->flags & IO_MASK) == IO_TYPE) + lim = &limits->io; + else + continue; + + /* Is it already outside the limits? */ + if (res->size && (((res->base + res->size -1) < lim->base) || + (res->base > lim->limit))) + continue; + + /* Choose to be above or below fixed resources. This + * check is signed so that "negative" amounts of space + * are handled correctly. + */ + if ((signed long long)(lim->limit - (res->base + res->size -1)) > + (signed long long)(res->base - lim->base)) + lim->base = res->base + res->size; + else + lim->limit = res->base -1; + } + + /* Descend into every enabled child and look for fixed resources. */ + for (i = 0; i < dev->links; i++) + for (child = dev->link[i].children; child; + child = child->sibling) + if (child->enabled) + constrain_resources(child, limits); +} + +static void avoid_fixed_resources(struct device *dev) +{ + struct constraints limits; + struct resource *res; + int i; + + printk_spew("%s: %s\n", __func__, dev_path(dev)); + /* Initialize constraints to maximum size. */ + + limits.pref.base = 0; + limits.pref.limit = 0xffffffffffffffffULL; + limits.io.base = 0; + limits.io.limit = 0xffffffffffffffffULL; + limits.mem.base = 0; + limits.mem.limit = 0xffffffffffffffffULL; + + /* Constrain the limits to dev's initial resources. */ + for (i = 0; i < dev->resources; i++) { + res = &dev->resource[i]; + if ((res->flags & IORESOURCE_FIXED)) + continue; + printk_spew("%s:@%s %02lx limit %08Lx\n", __func__, + dev_path(dev), res->index, res->limit); + if ((res->flags & MEM_MASK) == PREF_TYPE && + (res->limit < limits.pref.limit)) + limits.pref.limit = res->limit; + if ((res->flags & MEM_MASK) == MEM_TYPE && + (res->limit < limits.mem.limit)) + limits.mem.limit = res->limit; + if ((res->flags & IO_MASK) == IO_TYPE && + (res->limit < limits.io.limit)) + limits.io.limit = res->limit; + } + + /* Look through the tree for fixed resources and update the limits. */ + constrain_resources(dev, &limits); + + /* Update dev's resources with new limits. */ + for (i = 0; i < dev->resources; i++) { + struct resource *lim; + res = &dev->resource[i]; + + if ((res->flags & IORESOURCE_FIXED)) + continue; + + /* PREFETCH, MEM, or I/O - skip any others. */ + if ((res->flags & MEM_MASK) == PREF_TYPE) + lim = &limits.pref; + else if ((res->flags & MEM_MASK) == MEM_TYPE) + lim = &limits.mem; + else if ((res->flags & IO_MASK) == IO_TYPE) + lim = &limits.io; + else + continue; + + printk_spew("%s2: %s@%02lx limit %08Lx\n", __func__, + dev_path(dev), res->index, res->limit); + printk_spew("\tlim->base %08Lx lim->limit %08Lx\n", + lim->base, lim->limit); + + /* Is the resource outside the limits? */ + if (lim->base > res->base) + res->base = lim->base; + if (res->limit > lim->limit) + res->limit = lim->limit; + } } #if CONFIG_CONSOLE_VGA == 1 @@ -392,9 +666,9 @@ device_t vga_pri = 0; static void allocate_vga_resource(void) { #warning "FIXME modify allocate_vga_resource so it is less pci centric!" -#warning "This function knows to much about PCI stuff, it should be just a ietrator/visitor." +#warning "This function knows too much about PCI stuff, it should be just a iterator/visitor." - /* FIXME handle the VGA pallette snooping */ + /* FIXME: Handle the VGA palette snooping. */ struct device *dev, *vga, *vga_onboard, *vga_first, *vga_last; struct bus *bus; bus = 0; @@ -402,66 +676,63 @@ static void allocate_vga_resource(void) vga_onboard = 0; vga_first = 0; vga_last = 0; - for(dev = all_devices; dev; dev = dev->next) { - if (!dev->enabled) continue; + for (dev = all_devices; dev; dev = dev->next) { + if (!dev->enabled) + continue; if (((dev->class >> 16) == PCI_BASE_CLASS_DISPLAY) && - ((dev->class >> 8) != PCI_CLASS_DISPLAY_OTHER)) - { - if (!vga_first) { - if (dev->on_mainboard) { - vga_onboard = dev; - } else { - vga_first = dev; - } - } else { - if (dev->on_mainboard) { - vga_onboard = dev; - } else { - vga_last = dev; - } - } - - /* It isn't safe to enable other VGA cards */ + ((dev->class >> 8) != PCI_CLASS_DISPLAY_OTHER)) { + if (!vga_first) { + if (dev->on_mainboard) { + vga_onboard = dev; + } else { + vga_first = dev; + } + } else { + if (dev->on_mainboard) { + vga_onboard = dev; + } else { + vga_last = dev; + } + } + + /* It isn't safe to enable other VGA cards. */ dev->command &= ~(PCI_COMMAND_MEMORY | PCI_COMMAND_IO); } } - vga = vga_last; - - if(!vga) { - vga = vga_first; - } + vga = vga_last; + if (!vga) { + vga = vga_first; + } #if CONFIG_CONSOLE_VGA_ONBOARD_AT_FIRST == 1 - if (vga_onboard) // will use on board vga as pri + if (vga_onboard) // Will use on board VGA as pri. #else - if (!vga) // will use last add on adapter as pri + if (!vga) // Will use last add on adapter as pri. #endif - { - vga = vga_onboard; - } - + { + vga = vga_onboard; + } if (vga) { - /* vga is first add on card or the only onboard vga */ + /* VGA is first add on card or the only onboard VGA. */ printk_debug("Allocating VGA resource %s\n", dev_path(vga)); - /* All legacy VGA cards have MEM & I/O space registers */ + /* All legacy VGA cards have MEM & I/O space registers. */ vga->command |= (PCI_COMMAND_MEMORY | PCI_COMMAND_IO); vga_pri = vga; bus = vga->bus; } - /* Now walk up the bridges setting the VGA enable */ - while(bus) { + /* Now walk up the bridges setting the VGA enable. */ + while (bus) { printk_debug("Setting PCI_BRIDGE_CTL_VGA for bridge %s\n", dev_path(bus->dev)); bus->bridge_ctrl |= PCI_BRIDGE_CTL_VGA; - bus = (bus == bus->dev->bus)? 0 : bus->dev->bus; + bus = (bus == bus->dev->bus) ? 0 : bus->dev->bus; } } #endif - /** * @brief Assign the computed resources to the devices on the bus. * @@ -480,21 +751,21 @@ void assign_resources(struct bus *bus) struct device *curdev; printk_spew("%s assign_resources, bus %d link: %d\n", - dev_path(bus->dev), bus->secondary, bus->link); + dev_path(bus->dev), bus->secondary, bus->link); - for(curdev = bus->children; curdev; curdev = curdev->sibling) { + for (curdev = bus->children; curdev; curdev = curdev->sibling) { if (!curdev->enabled || !curdev->resources) { continue; } if (!curdev->ops || !curdev->ops->set_resources) { printk_err("%s missing set_resources\n", - dev_path(curdev)); + dev_path(curdev)); continue; } curdev->ops->set_resources(curdev); } printk_spew("%s assign_resources, bus %d link: %d\n", - dev_path(bus->dev), bus->secondary, bus->link); + dev_path(bus->dev), bus->secondary, bus->link); } /** @@ -539,8 +810,7 @@ void enable_resources(struct device *dev) */ int reset_bus(struct bus *bus) { - if (bus && bus->dev && bus->dev->ops && bus->dev->ops->reset_bus) - { + if (bus && bus->dev && bus->dev->ops && bus->dev->ops->reset_bus) { bus->dev->ops->reset_bus(bus); bus->reset_needed = 0; return 1; @@ -551,37 +821,34 @@ int reset_bus(struct bus *bus) /** * @brief Scan for devices on a bus. * - * If there are bridges on the bus, recursively scan the buses behind the bridges. - * If the setting up and tuning of the bus causes a reset to be required, - * reset the bus and scan it again. + * If there are bridges on the bus, recursively scan the buses behind the + * bridges. If the setting up and tuning of the bus causes a reset to be + * required, reset the bus and scan it again. * - * @param bus pointer to the bus device - * @param max current bus number - * - * @return The maximum bus number found, after scanning all subordinate busses + * @param busdev Pointer to the bus device. + * @param max Current bus number. + * @return The maximum bus number found, after scanning all subordinate buses. */ -unsigned int scan_bus(device_t bus, unsigned int max) +unsigned int scan_bus(struct device *busdev, unsigned int max) { unsigned int new_max; int do_scan_bus; - if ( !bus || - !bus->enabled || - !bus->ops || - !bus->ops->scan_bus) - { + if (!busdev || !busdev->enabled || !busdev->ops || + !busdev->ops->scan_bus) { return max; } + do_scan_bus = 1; - while(do_scan_bus) { + while (do_scan_bus) { int link; - new_max = bus->ops->scan_bus(bus, max); + new_max = busdev->ops->scan_bus(busdev, max); do_scan_bus = 0; - for(link = 0; link < bus->links; link++) { - if (bus->link[link].reset_needed) { - if (reset_bus(&bus->link[link])) { + for (link = 0; link < busdev->links; link++) { + if (busdev->link[link].reset_needed) { + if (reset_bus(&busdev->link[link])) { do_scan_bus = 1; } else { - bus->bus->reset_needed = 1; + busdev->bus->reset_needed = 1; } } } @@ -589,7 +856,6 @@ unsigned int scan_bus(device_t bus, unsigned int max) return new_max; } - /** * @brief Determine the existence of devices and extend the device tree. * @@ -619,7 +885,7 @@ void dev_enumerate(void) printk_info("Enumerating buses...\n"); root = &dev_root; - show_all_devs(BIOS_DEBUG, "Before Phase 3."); + show_all_devs(BIOS_DEBUG, "Before Device Enumeration."); printk_debug("Compare with tree...\n"); show_devs_tree(root, BIOS_DEBUG, 0, 0); @@ -643,66 +909,115 @@ void dev_enumerate(void) * requried by each device. In the second pass, the resources ranges are * relocated to their final position and stored to the hardware. * - * I/O resources start at DEVICE_IO_START and grow upward. MEM resources start - * at DEVICE_MEM_HIGH and grow downward. + * I/O resources grow upward. MEM resources grow downward. * * Since the assignment is hierarchical we set the values into the dev_root * struct. */ void dev_configure(void) { - struct resource *io, *mem; + struct resource *res; struct device *root; + struct device *child; + int i; printk_info("Allocating resources...\n"); root = &dev_root; - print_resource_tree(root, BIOS_DEBUG, "Original."); + /* Each domain should create resources which contain the entire address + * space for IO, MEM, and PREFMEM resources in the domain. The + * allocation of device resources will be done from this address space. + */ - if (!root->ops || !root->ops->read_resources) { - printk_err("dev_root missing read_resources\n"); - return; - } - if (!root->ops || !root->ops->set_resources) { - printk_err("dev_root missing set_resources\n"); - return; - } + /* Read the resources for the entire tree. */ printk_info("Reading resources...\n"); - root->ops->read_resources(root); + read_resources(&root->link[0]); printk_info("Done reading resources.\n"); print_resource_tree(root, BIOS_DEBUG, "After reading."); - /* Get the resources */ - io = &root->resource[0]; - mem = &root->resource[1]; - /* Make certain the io devices are allocated somewhere safe. */ - io->base = DEVICE_IO_START; - io->flags |= IORESOURCE_ASSIGNED; - io->flags &= ~IORESOURCE_STORED; - /* Now reallocate the pci resources memory with the - * highest addresses I can manage. + /* Compute resources for all domains. */ + for (child = root->link[0].children; child; child = child->sibling) { + if (!(child->path.type == DEVICE_PATH_PCI_DOMAIN)) + continue; + for (i = 0; i < child->resources; i++) { + res = &child->resource[i]; + if (res->flags & IORESOURCE_FIXED) + continue; + if (res->flags & IORESOURCE_PREFETCH) { + compute_resources(&child->link[0], + res, MEM_MASK, PREF_TYPE); + continue; + } + if (res->flags & IORESOURCE_MEM) { + compute_resources(&child->link[0], + res, MEM_MASK, MEM_TYPE); + continue; + } + if (res->flags & IORESOURCE_IO) { + compute_resources(&child->link[0], + res, IO_MASK, IO_TYPE); + continue; + } + } + } + + /* For all domains. */ + for (child = root->link[0].children; child; child=child->sibling) + if (child->path.type == DEVICE_PATH_PCI_DOMAIN) + avoid_fixed_resources(child); + + /* Now we need to adjust the resources. MEM resources need to start at + * the highest address managable. */ - mem->base = resource_max(&root->resource[1]); - mem->flags |= IORESOURCE_ASSIGNED; - mem->flags &= ~IORESOURCE_STORED; + for (child = root->link[0].children; child; child = child->sibling) { + if (child->path.type != DEVICE_PATH_PCI_DOMAIN) + continue; + for (i = 0; i < child->resources; i++) { + res = &child->resource[i]; + if (!(res->flags & IORESOURCE_MEM) || + res->flags & IORESOURCE_FIXED) + continue; + res->base = resource_max(res); + } + } #if CONFIG_CONSOLE_VGA == 1 - /* Allocate the VGA I/O resource.. */ + /* Allocate the VGA I/O resource. */ allocate_vga_resource(); print_resource_tree(root, BIOS_DEBUG, "After VGA."); #endif /* Store the computed resource allocations into device registers ... */ printk_info("Setting resources...\n"); - root->ops->set_resources(root); + for (child = root->link[0].children; child; child = child->sibling) { + if (!(child->path.type == DEVICE_PATH_PCI_DOMAIN)) + continue; + for (i = 0; i < child->resources; i++) { + res = &child->resource[i]; + if (res->flags & IORESOURCE_FIXED) + continue; + if (res->flags & IORESOURCE_PREFETCH) { + allocate_resources(&child->link[0], + res, MEM_MASK, PREF_TYPE); + continue; + } + if (res->flags & IORESOURCE_MEM) { + allocate_resources(&child->link[0], + res, MEM_MASK, MEM_TYPE); + continue; + } + if (res->flags & IORESOURCE_IO) { + allocate_resources(&child->link[0], + res, IO_MASK, IO_TYPE); + continue; + } + } + } + assign_resources(&root->link[0]); printk_info("Done setting resources.\n"); -#if 0 - mem->flags |= IORESOURCE_STORED; - report_resource_stored(root, mem, ""); -#endif print_resource_tree(root, BIOS_DEBUG, "After assigning values."); printk_info("Done allocating resources.\n"); @@ -736,13 +1051,13 @@ void dev_initialize(void) struct device *dev; printk_info("Initializing devices...\n"); - for(dev = all_devices; dev; dev = dev->next) { + for (dev = all_devices; dev; dev = dev->next) { if (dev->enabled && !dev->initialized && - dev->ops && dev->ops->init) - { + dev->ops && dev->ops->init) { if (dev->path.type == DEVICE_PATH_I2C) { - printk_debug("smbus: %s[%d]->", - dev_path(dev->bus->dev), dev->bus->link); + printk_debug("smbus: %s[%d]->", + dev_path(dev->bus->dev), + dev->bus->link); } printk_debug("%s init\n", dev_path(dev)); dev->initialized = 1; @@ -752,4 +1067,3 @@ void dev_initialize(void) printk_info("Devices initialized\n"); show_all_devs(BIOS_DEBUG, "After init."); } - -- cgit v1.2.3