From c4128cfbec0d496873b9a2a684cf32a23b17137d Mon Sep 17 00:00:00 2001 From: Marc Jones Date: Fri, 19 Sep 2008 21:19:46 +0000 Subject: Whitespace and style cleanup. (trivial) Signed-off-by: Marc Jones Acked-by: Marc Jones git-svn-id: svn://svn.coreboot.org/coreboot/trunk@3586 2b7e53f0-3cfb-0310-b3e9-8179ed1497e1 --- src/northbridge/amd/amdk8/raminit_f.c | 1829 ++++++++++++++++++--------------- 1 file changed, 979 insertions(+), 850 deletions(-) (limited to 'src/northbridge/amd') diff --git a/src/northbridge/amd/amdk8/raminit_f.c b/src/northbridge/amd/amdk8/raminit_f.c index 3b51286d96..a1a3522500 100644 --- a/src/northbridge/amd/amdk8/raminit_f.c +++ b/src/northbridge/amd/amdk8/raminit_f.c @@ -36,9 +36,9 @@ static inline void print_raminit(const char *strval, uint32_t val) { #if CONFIG_USE_PRINTK_IN_CAR - printk_debug("%s%08x\r\n", strval, val); + printk_debug("%s%08x\r\n", strval, val); #else - print_debug(strval); print_debug_hex32(val); print_debug("\r\n"); + print_debug(strval); print_debug_hex32(val); print_debug("\r\n"); #endif } @@ -55,7 +55,7 @@ static inline void print_tx(const char *strval, uint32_t val) static inline void print_t(const char *strval) { #if RAM_TIMING_DEBUG == 1 - print_debug(strval); + print_debug(strval); #endif } @@ -68,11 +68,12 @@ static inline void print_t(const char *strval) #include "amdk8_f_pci.c" - // for PCI_ADDR(0, 0x18, 2, 0x98) index, and PCI_ADDR(0x, 0x18, 2, 0x9c) data + /* for PCI_ADDR(0, 0x18, 2, 0x98) index, + and PCI_ADDR(0x, 0x18, 2, 0x9c) data */ /* - index: + index: [29: 0] DctOffset (Dram Controller Offset) - [30:30] DctAccessWrite (Dram Controller Read/Write Select) + [30:30] DctAccessWrite (Dram Controller Read/Write Select) 0 = read access 1 = write access [31:31] DctAccessDone (Dram Controller Access Done) @@ -81,23 +82,23 @@ static inline void print_t(const char *strval) Data: [31: 0] DctOffsetData (Dram Controller Offset Data) - + Read: - - Write the register num to DctOffset with DctAccessWrite = 0 + - Write the register num to DctOffset with + DctAccessWrite = 0 - poll the DctAccessDone until it = 1 - Read the data from DctOffsetData Write: - Write the data to DctOffsetData - Write register num to DctOffset with DctAccessWrite = 1 - poll the DctAccessDone untio it = 1 - */ static void setup_resource_map(const unsigned int *register_values, int max) { int i; - for(i = 0; i < max; i += 3) { + for (i = 0; i < max; i += 3) { device_t dev; unsigned where; unsigned long reg; @@ -112,14 +113,15 @@ static void setup_resource_map(const unsigned int *register_values, int max) static int controller_present(const struct mem_controller *ctrl) { - return pci_read_config32(ctrl->f0, 0) == 0x11001022; + return pci_read_config32(ctrl->f0, 0) == 0x11001022; } static void sdram_set_registers(const struct mem_controller *ctrl, struct sys_info *sysinfo) { static const unsigned int register_values[] = { - /* Careful set limit registers before base registers which contain the enables */ + /* Careful set limit registers before base registers which + contain the enables */ /* DRAM Limit i Registers * F1:0x44 i = 0 * F1:0x4C i = 1 @@ -238,67 +240,82 @@ static void sdram_set_registers(const struct mem_controller *ctrl, struct sys_in * [28:19] Address Mask (36-27) * The bits with an address mask of 1 are excluded from address comparison * [31:29] Reserved - * + * */ PCI_ADDR(0, 0x18, 2, 0x60), 0xe007c01f, 0x00000000, PCI_ADDR(0, 0x18, 2, 0x64), 0xe007c01f, 0x00000000, PCI_ADDR(0, 0x18, 2, 0x68), 0xe007c01f, 0x00000000, PCI_ADDR(0, 0x18, 2, 0x6C), 0xe007c01f, 0x00000000, - /* DRAM Control Register - * F2:0x78 - * [ 3: 0] RdPtrInit ( Read Pointer Initial Value) + /* DRAM Control Register + * F2:0x78 + * [ 3: 0] RdPtrInit ( Read Pointer Initial Value) * 0x03-0x00: reserved * [ 6: 4] RdPadRcvFifoDly (Read Delay from Pad Receive FIFO) * 000 = reserved * 001 = reserved - * 010 = 1.5 Memory Clocks + * 010 = 1.5 Memory Clocks * 011 = 2 Memory Clocks * 100 = 2.5 Memory Clocks * 101 = 3 Memory Clocks * 110 = 3.5 Memory Clocks * 111 = Reseved - * [15: 7] Reserved - * [16:16] AltVidC3MemClkTriEn (AltVID Memory Clock Tristate Enable) - * Enables the DDR memory clocks to be tristated when alternate VID mode is enabled. This bit has no effect if the DisNbClkRamp bit (F3, 0x88) is set + * [15: 7] Reserved + * [16:16] AltVidC3MemClkTriEn (AltVID Memory Clock Tristate Enable) + * Enables the DDR memory clocks to be tristated when alternate VID + * mode is enabled. This bit has no effect if the DisNbClkRamp bit + * (F3, 0x88) is set * [17:17] DllTempAdjTime (DLL Temperature Adjust Cycle Time) * 0 = 5 ms * 1 = 1 ms * [18:18] DqsRcvEnTrain (DQS Receiver Enable Training Mode) * 0 = Normal DQS Receiver enable operation * 1 = DQS receiver enable training mode - * [31:19] reverved - */ - PCI_ADDR(0, 0x18, 2, 0x78), 0xfff80000, (6<<4)|(6<<0), - - /* DRAM Initialization Register - * F2:0x7C - * [15: 0] MrsAddress (Address for MRS/EMRS Commands) - * this field specifies the dsata driven on the DRAM address pins 15-0 for MRS and EMRS commands - * [18:16] MrsBank (Bank Address for MRS/EMRS Commands) - * this files specifies the data driven on the DRAM bank pins for the MRS and EMRS commands + * [31:19] reverved + */ + PCI_ADDR(0, 0x18, 2, 0x78), 0xfff80000, (6<<4)|(6<<0), + + /* DRAM Initialization Register + * F2:0x7C + * [15: 0] MrsAddress (Address for MRS/EMRS Commands) + * this field specifies the dsata driven on the DRAM address pins + * 15-0 for MRS and EMRS commands + * [18:16] MrsBank (Bank Address for MRS/EMRS Commands) + * this files specifies the data driven on the DRAM bank pins for + * the MRS and EMRS commands * [23:19] reverved - * [24:24] SendPchgAll (Send Precharge All Command) - * Setting this bit causes the DRAM controller to send a precharge all command. This bit is cleared by the hardware after the command completes + * [24:24] SendPchgAll (Send Precharge All Command) + * Setting this bit causes the DRAM controller to send a precharge + * all command. This bit is cleared by the hardware after the + * command completes * [25:25] SendAutoRefresh (Send Auto Refresh Command) - * Setting this bit causes the DRAM controller to send an auto refresh command. This bit is cleared by the hardware after the command completes + * Setting this bit causes the DRAM controller to send an auto + * refresh command. This bit is cleared by the hardware after the + * command completes * [26:26] SendMrsCmd (Send MRS/EMRS Command) - * Setting this bit causes the DRAM controller to send the MRS or EMRS command defined by the MrsAddress and MrsBank fields. This bit is cleared by the hardware adter the commmand completes + * Setting this bit causes the DRAM controller to send the MRS or + * EMRS command defined by the MrsAddress and MrsBank fields. This + * bit is cleared by the hardware adter the commmand completes * [27:27] DeassertMemRstX (De-assert Memory Reset) - * Setting this bit causes the DRAM controller to de-assert the memory reset pin. This bit cannot be used to assert the memory reset pin + * Setting this bit causes the DRAM controller to de-assert the + * memory reset pin. This bit cannot be used to assert the memory + * reset pin * [28:28] AssertCke (Assert CKE) - * setting this bit causes the DRAM controller to assert the CKE pins. This bit cannot be used to de-assert the CKE pins + * setting this bit causes the DRAM controller to assert the CKE + * pins. This bit cannot be used to de-assert the CKE pins * [30:29] reverved * [31:31] EnDramInit (Enable DRAM Initialization) - * Setting this bit puts the DRAM controller in a BIOS controlled DRAM initialization mode. BIOS must clear this bit aster DRAM initialization is complete. - */ -// PCI_ADDR(0, 0x18, 2, 0x7C), 0x60f80000, 0, + * Setting this bit puts the DRAM controller in a BIOS controlled + * DRAM initialization mode. BIOS must clear this bit aster DRAM + * initialization is complete. + */ +// PCI_ADDR(0, 0x18, 2, 0x7C), 0x60f80000, 0, /* DRAM Bank Address Mapping Register * F2:0x80 * Specify the memory module size - * [ 3: 0] CS1/0 + * [ 3: 0] CS1/0 * [ 7: 4] CS3/2 * [11: 8] CS5/4 * [15:12] CS7/6 @@ -316,7 +333,7 @@ static void sdram_set_registers(const struct mem_controller *ctrl, struct sys_in 9: 15 11 3 :4G 10: 16 10 3 :4G 11: 16 11 3 :8G - */ + */ PCI_ADDR(0, 0x18, 2, 0x80), 0xffff0000, 0x00000000, /* DRAM Timing Low Register * F2:0x88 @@ -335,7 +352,7 @@ static void sdram_set_registers(const struct mem_controller *ctrl, struct sys_in * 01 = 4 clocks * 10 = 5 clocks * 11 = 6 clocks - * [ 7: 6] Reserved + * [ 7: 6] Reserved * [ 9: 8] Trp (Row Precharge Time, Precharge-to-Active or Auto-Refresh) * 00 = 3 clocks * 01 = 4 clocks @@ -344,36 +361,39 @@ static void sdram_set_registers(const struct mem_controller *ctrl, struct sys_in * [10:10] Reserved * [11:11] Trtp (Read to Precharge Time, read Cas# to precharge time) * 0 = 2 clocks for Burst Length of 32 Bytes - * 4 clocks for Burst Length of 64 Bytes - * 1 = 3 clocks for Burst Length of 32 Bytes - * 5 clocks for Burst Length of 64 Bytes + * 4 clocks for Burst Length of 64 Bytes + * 1 = 3 clocks for Burst Length of 32 Bytes + * 5 clocks for Burst Length of 64 Bytes * [15:12] Tras (Minimum Ras# Active Time) - * 0000 = reserved + * 0000 = reserved * 0001 = reserved - * 0010 = 5 bus clocks - * ... - * 1111 = 18 bus clocks - * [19:16] Trc (Row Cycle Time, Ras#-active to Ras#-active or auto refresh of the same bank) + * 0010 = 5 bus clocks + * ... + * 1111 = 18 bus clocks + * [19:16] Trc (Row Cycle Time, Ras#-active to Ras#-active or auto + * refresh of the same bank) * 0000 = 11 bus clocks * 0010 = 12 bus clocks - * ... + * ... * 1110 = 25 bus clocks * 1111 = 26 bus clocks - * [21:20] Twr (Write Recovery Time, From the last data to precharge, writes can go back-to-back) - * 00 = 3 bus clocks - * 01 = 4 bus clocks - * 10 = 5 bus clocks - * 11 = 6 bus clocks - * [23:22] Trrd (Active-to-active (Ras#-to-Ras#) Delay of different banks) - * 00 = 2 bus clocks - * 01 = 3 bus clocks - * 10 = 4 bus clocks - * 11 = 5 bus clocks - * [31:24] MemClkDis ( Disable the MEMCLK outputs for DRAM channel A, BIOS should set it to reduce the power consumption) - * Bit F(1207) M2 Package S1g1 Package - * 0 N/A MA1_CLK1 N/A + * [21:20] Twr (Write Recovery Time, From the last data to precharge, + * writes can go back-to-back) + * 00 = 3 bus clocks + * 01 = 4 bus clocks + * 10 = 5 bus clocks + * 11 = 6 bus clocks + * [23:22] Trrd (Active-to-active(Ras#-to-Ras#) Delay of different banks) + * 00 = 2 bus clocks + * 01 = 3 bus clocks + * 10 = 4 bus clocks + * 11 = 5 bus clocks + * [31:24] MemClkDis ( Disable the MEMCLK outputs for DRAM channel A, + * BIOS should set it to reduce the power consumption) + * Bit F(1207) M2 Package S1g1 Package + * 0 N/A MA1_CLK1 N/A * 1 N/A MA0_CLK1 MA0_CLK1 - * 2 MA3_CLK N/A N/A + * 2 MA3_CLK N/A N/A * 3 MA2_CLK N/A N/A * 4 MA1_CLK MA1_CLK0 N/A * 5 MA0_CLK MA0_CLK0 MA0_CLK0 @@ -394,84 +414,95 @@ static void sdram_set_registers(const struct mem_controller *ctrl, struct sys_in * 110 = 8 bus clocks * 111 = 9 bus clocks * [ 7: 7] Reserved - * [ 9: 8] Twtr (Internal DRAM Write-to-Read Command Delay, minium write-to-read delay when both access the same chip select) - * 00 = Reserved - * 01 = 1 bus clocks - * 10 = 2 bus clocks - * 11 = 3 bus clocks - * [11:10] Twrrd (Write to Read DIMM Termination Turnaround, minimum write-to-read delay when accessing two different DIMMs) - * 00 = 0 bus clocks - * 01 = 1 bus clocks - * 10 = 2 bus clocks - * 11 = 3 bus clocks - * [13:12] Twrwr (Write to Write Timing) - * 00 = 1 bus clocks ( 0 idle cycle on the bus) - * 01 = 2 bus clocks ( 1 idle cycle on the bus) - * 10 = 3 bus clocks ( 2 idle cycles on the bus) - * 11 = Reserved - * [15:14] Trdrd ( Read to Read Timing) - * 00 = 2 bus clocks ( 1 idle cycle on the bus) - * 01 = 3 bus clocks ( 2 idle cycles on the bus) - * 10 = 4 bus clocks ( 3 idle cycles on the bus) - * 11 = 5 bus clocks ( 4 idel cycles on the bus) - * [17:16] Tref (Refresh Rate) - * 00 = Undefined behavior - * 01 = Reserved - * 10 = Refresh interval of 7.8 microseconds - * 11 = Refresh interval of 3.9 microseconds + * [ 9: 8] Twtr (Internal DRAM Write-to-Read Command Delay, + * minium write-to-read delay when both access the same chip select) + * 00 = Reserved + * 01 = 1 bus clocks + * 10 = 2 bus clocks + * 11 = 3 bus clocks + * [11:10] Twrrd (Write to Read DIMM Termination Turnaround, minimum + * write-to-read delay when accessing two different DIMMs) + * 00 = 0 bus clocks + * 01 = 1 bus clocks + * 10 = 2 bus clocks + * 11 = 3 bus clocks + * [13:12] Twrwr (Write to Write Timing) + * 00 = 1 bus clocks ( 0 idle cycle on the bus) + * 01 = 2 bus clocks ( 1 idle cycle on the bus) + * 10 = 3 bus clocks ( 2 idle cycles on the bus) + * 11 = Reserved + * [15:14] Trdrd ( Read to Read Timing) + * 00 = 2 bus clocks ( 1 idle cycle on the bus) + * 01 = 3 bus clocks ( 2 idle cycles on the bus) + * 10 = 4 bus clocks ( 3 idle cycles on the bus) + * 11 = 5 bus clocks ( 4 idel cycles on the bus) + * [17:16] Tref (Refresh Rate) + * 00 = Undefined behavior + * 01 = Reserved + * 10 = Refresh interval of 7.8 microseconds + * 11 = Refresh interval of 3.9 microseconds * [19:18] Reserved - * [22:20] Trfc0 ( Auto-Refresh Row Cycle Time for the Logical DIMM0, based on DRAM density and speed) - * 000 = 75 ns (all speeds, 256Mbit) - * 001 = 105 ns (all speeds, 512Mbit) - * 010 = 127.5 ns (all speeds, 1Gbit) - * 011 = 195 ns (all speeds, 2Gbit) - * 100 = 327.5 ns (all speeds, 4Gbit) - * 101 = reserved - * 110 = reserved - * 111 = reserved - * [25:23] Trfc1 ( Auto-Refresh Row Cycle Time for the Logical DIMM1, based on DRAM density and speed) - * [28:26] Trfc2 ( Auto-Refresh Row Cycle Time for the Logical DIMM2, based on DRAM density and speed) - * [31:29] Trfc3 ( Auto-Refresh Row Cycle Time for the Logical DIMM3, based on DRAM density and speed) + * [22:20] Trfc0 ( Auto-Refresh Row Cycle Time for the Logical DIMM0, + * based on DRAM density and speed) + * 000 = 75 ns (all speeds, 256Mbit) + * 001 = 105 ns (all speeds, 512Mbit) + * 010 = 127.5 ns (all speeds, 1Gbit) + * 011 = 195 ns (all speeds, 2Gbit) + * 100 = 327.5 ns (all speeds, 4Gbit) + * 101 = reserved + * 110 = reserved + * 111 = reserved + * [25:23] Trfc1 ( Auto-Refresh Row Cycle Time for the Logical DIMM1, + * based on DRAM density and speed) + * [28:26] Trfc2 ( Auto-Refresh Row Cycle Time for the Logical DIMM2, + * based on DRAM density and speed) + * [31:29] Trfc3 ( Auto-Refresh Row Cycle Time for the Logical DIMM3, + * based on DRAM density and speed) */ PCI_ADDR(0, 0x18, 2, 0x8c), 0x000c008f, (2 << 16)|(1 << 8), /* DRAM Config Low Register * F2:0x90 * [ 0: 0] InitDram (Initialize DRAM) - * 1 = write 1 cause DRAM controller to execute the DRAM initialization, when done it read to 0 + * 1 = write 1 cause DRAM controller to execute the DRAM + * initialization, when done it read to 0 * [ 1: 1] ExitSelfRef ( Exit Self Refresh Command ) - * 1 = write 1 causes the DRAM controller to bring the DRAMs out fo self refresh mode + * 1 = write 1 causes the DRAM controller to bring the DRAMs out + * for self refresh mode * [ 3: 2] Reserved * [ 5: 4] DramTerm (DRAM Termination) - * 00 = On die termination disabled - * 01 = 75 ohms - * 10 = 150 ohms - * 11 = 50 ohms + * 00 = On die termination disabled + * 01 = 75 ohms + * 10 = 150 ohms + * 11 = 50 ohms * [ 6: 6] Reserved * [ 7: 7] DramDrvWeak ( DRAM Drivers Weak Mode) * 0 = Normal drive strength mode. * 1 = Weak drive strength mode * [ 8: 8] ParEn (Parity Enable) - * 1 = Enable address parity computation output, PAR, and enables the parity error input, ERR - * [ 9: 9] SelfRefRateEn (Faster Self Refresh Rate Enable) - * 1 = Enable high temperature ( two times normal ) self refresh rate + * 1 = Enable address parity computation output, PAR, + * and enables the parity error input, ERR + * [ 9: 9] SelfRefRateEn (Faster Self Refresh Rate Enable) + * 1 = Enable high temperature ( two times normal ) + * self refresh rate * [10:10] BurstLength32 ( DRAM Burst Length Set for 32 Bytes) * 0 = 64-byte mode * 1 = 32-byte mode - * [11:11] Width128 ( Width of DRAM interface) + * [11:11] Width128 ( Width of DRAM interface) * 0 = the controller DRAM interface is 64-bits wide * 1 = the controller DRAM interface is 128-bits wide - * [12:12] X4Dimm (DIMM 0 is x4) - * [13:13] X4Dimm (DIMM 1 is x4) - * [14:14] X4Dimm (DIMM 2 is x4) - * [15:15] X4Dimm (DIMM 3 is x4) - * 0 = DIMM is not x4 - * 1 = x4 DIMM present + * [12:12] X4Dimm (DIMM 0 is x4) + * [13:13] X4Dimm (DIMM 1 is x4) + * [14:14] X4Dimm (DIMM 2 is x4) + * [15:15] X4Dimm (DIMM 3 is x4) + * 0 = DIMM is not x4 + * 1 = x4 DIMM present * [16:16] UnBuffDimm ( Unbuffered DIMMs) * 0 = Buffered DIMMs * 1 = Unbuffered DIMMs * [18:17] Reserved * [19:19] DimmEccEn ( DIMM ECC Enable ) - 1 = ECC checking is being enabled for all DIMMs on the DRAM controller ( Through F3 0x44[EccEn]) + * 1 = ECC checking is being enabled for all DIMMs on the DRAM + * controller ( Through F3 0x44[EccEn]) * [31:20] Reserved */ PCI_ADDR(0, 0x18, 2, 0x90), 0xfff6004c, 0x00000010, @@ -481,96 +512,121 @@ static void sdram_set_registers(const struct mem_controller *ctrl, struct sys_in * 000 = 200MHz * 001 = 266MHz * 010 = 333MHz - * 011 = reserved + * 011 = reserved * 1xx = reserved * [ 3: 3] MemClkFreqVal (Memory Clock Freqency Valid) - * 1 = BIOS need to set the bit when setting up MemClkFreq to the proper value + * 1 = BIOS need to set the bit when setting up MemClkFreq to + * the proper value * [ 7: 4] MaxAsyncLat ( Maximum Asynchronous Latency) - * 0000 = 0 ns - * ... - * 1111 = 15 ns - * [11: 8] Reserved - * [12:12] RDqsEn ( Read DQS Enable) This bit is only be set if x8 registered DIMMs are present in the system - * 0 = DM pins function as data mask pins - * 1 = DM pins function as read DQS pins - * [13:13] Reserved - * [14:14] DisDramInterface ( Disable the DRAM interface ) When this bit is set, the DRAM controller is disabled, and interface in low power state - * 0 = Enabled (default) - * 1 = Disabled - * [15:15] PowerDownEn ( Power Down Mode Enable ) - * 0 = Disabled (default) - * 1 = Enabled - * [16:16] PowerDown ( Power Down Mode ) - * 0 = Channel CKE Control - * 1 = Chip Select CKE Control - * [17:17] FourRankSODimm (Four Rank SO-DIMM) - * 1 = this bit is set by BIOS to indicate that a four rank SO-DIMM is present - * [18:18] FourRankRDimm (Four Rank Registered DIMM) - * 1 = this bit is set by BIOS to indicate that a four rank registered DIMM is present + * 0000 = 0 ns + * ... + * 1111 = 15 ns + * [11: 8] Reserved + * [12:12] RDqsEn ( Read DQS Enable) This bit is only be set if x8 + * registered DIMMs are present in the system + * 0 = DM pins function as data mask pins + * 1 = DM pins function as read DQS pins + * [13:13] Reserved + * [14:14] DisDramInterface ( Disable the DRAM interface ) When this bit + * is set, the DRAM controller is disabled, and interface in low power + * state + * 0 = Enabled (default) + * 1 = Disabled + * [15:15] PowerDownEn ( Power Down Mode Enable ) + * 0 = Disabled (default) + * 1 = Enabled + * [16:16] PowerDown ( Power Down Mode ) + * 0 = Channel CKE Control + * 1 = Chip Select CKE Control + * [17:17] FourRankSODimm (Four Rank SO-DIMM) + * 1 = this bit is set by BIOS to indicate that a four rank + * SO-DIMM is present + * [18:18] FourRankRDimm (Four Rank Registered DIMM) + * 1 = this bit is set by BIOS to indicate that a four rank + * registered DIMM is present * [19:19] Reserved - * [20:20] SlowAccessMode (Slow Access Mode (2T Mode)) - * 0 = DRAM address and control signals are driven for one MEMCLK cycle - * 1 = One additional MEMCLK of setup time is provided on all DRAM address and control signals except CS, CKE, and ODT; i.e., these signals are drivern for two MEMCLK cycles rather than one - * [21:21] Reserved - * [22:22] BankSwizzleMode ( Bank Swizzle Mode), - * 0 = Disabled (default) - * 1 = Enabled - * [23:23] Reserved + * [20:20] SlowAccessMode (Slow Access Mode (2T Mode)) + * 0 = DRAM address and control signals are driven for one + * MEMCLK cycle + * 1 = One additional MEMCLK of setup time is provided on all + * DRAM address and control signals except CS, CKE, and ODT; + * i.e., these signals are drivern for two MEMCLK cycles + * rather than one + * [21:21] Reserved + * [22:22] BankSwizzleMode ( Bank Swizzle Mode), + * 0 = Disabled (default) + * 1 = Enabled + * [23:23] Reserved * [27:24] DcqBypassMax ( DRAM Controller Queue Bypass Maximum) * 0000 = No bypass; the oldest request is never bypassed * 0001 = The oldest request may be bypassed no more than 1 time * ... - * 1111 = The oldest request may be bypassed no more than 15 times - * [31:28] FourActWindow ( Four Bank Activate Window) , not more than 4 banks in a 8 bank device are activated - * 0000 = No tFAW window restriction - * 0001 = 8 MEMCLK cycles - * 0010 = 9 MEMCLK cycles - * ... - * 1101 = 20 MEMCLK cycles + * 1111 = The oldest request may be bypassed no more than 15\ + * times + * [31:28] FourActWindow ( Four Bank Activate Window) , not more than + * 4 banks in a 8 bank device are activated + * 0000 = No tFAW window restriction + * 0001 = 8 MEMCLK cycles + * 0010 = 9 MEMCLK cycles + * ... + * 1101 = 20 MEMCLK cycles * 111x = reserved */ PCI_ADDR(0, 0x18, 2, 0x94), 0x00a82f00,0x00008000, /* DRAM Delay Line Register * F2:0xa0 - * [ 0: 0] MemClrStatus (Memory Clear Status) : ---------Readonly - * when set, this bit indicates that the memory clear function is complete. Only clear by reset. BIOS should not write or read the DRAM until this bit is set by hardware + * [ 0: 0] MemClrStatus (Memory Clear Status) : Readonly + * when set, this bit indicates that the memory clear function + * is complete. Only clear by reset. BIOS should not write or + * read the DRAM until this bit is set by hardware * [ 1: 1] DisableJitter ( Disable Jitter) - * When set the DDR compensation circuit will not change the values unless the change is more than one step from the current value + * When set the DDR compensation circuit will not change the + * values unless the change is more than one step from the + * current value * [ 3: 2] RdWrQByp ( Read/Write Queue Bypass Count) * 00 = 2 * 01 = 4 * 10 = 8 * 11 = 16 * [ 4: 4] Mode64BitMux (Mismatched DIMM Support Enable) - * 1 When bit enables support for mismatched DIMMs when using 128-bit DRAM interface, the Width128 no effect, only for M2 and s1g1 + * 1 When bit enables support for mismatched DIMMs when using + * 128-bit DRAM interface, the Width128 no effect, only for + * AM2 and s1g1 * [ 5: 5] DCC_EN ( Dynamica Idle Cycle Counter Enable) - * When set to 1, indicates that each entry in the page tables dynamically adjusts the idle cycle limit based on page Conflict/Page Miss (PC/PM) traffic + * When set to 1, indicates that each entry in the page tables + * dynamically adjusts the idle cycle limit based on page + * Conflict/Page Miss (PC/PM) traffic * [ 8: 6] ILD_lmt ( Idle Cycle Limit) * 000 = 0 cycles * 001 = 4 cycles * 010 = 8 cycles * 011 = 16 cycles * 100 = 32 cycles - * 101 = 64 cycles + * 101 = 64 cycles * 110 = 128 cycles - * 111 = 256 cycles + * 111 = 256 cycles * [ 9: 9] DramEnabled ( DRAM Enabled) - * When Set, this bit indicates that the DRAM is enabled, this bit is set by hardware after DRAM initialization or on an exit from self refresh. The DRAM controller is intialized after the - * hardware-controlled initialization process ( initiated by the F2 0x90[DramInit]) completes or when the BIOS-controlled initialization process completes (F2 0x7c(EnDramInit] is + * When Set, this bit indicates that the DRAM is enabled, this + * bit is set by hardware after DRAM initialization or on an exit + * from self refresh. The DRAM controller is intialized after the + * hardware-controlled initialization process ( initiated by the + * F2 0x90[DramInit]) completes or when the BIOS-controlled + * initialization process completes (F2 0x7c(EnDramInit] is * written from 1 to 0) * [23:10] Reserved - * [31:24] MemClkDis ( Disable the MEMCLK outputs for DRAM channel B, BIOS should set it to reduce the power consumption) - * Bit F(1207) M2 Package S1g1 Package - * 0 N/A MA1_CLK1 N/A - * 1 N/A MA0_CLK1 MA0_CLK1 - * 2 MA3_CLK N/A N/A - * 3 MA2_CLK N/A N/A - * 4 MA1_CLK MA1_CLK0 N/A - * 5 MA0_CLK MA0_CLK0 MA0_CLK0 - * 6 N/A MA1_CLK2 N/A - * 7 N/A MA0_CLK2 MA0_CLK2 + * [31:24] MemClkDis ( Disable the MEMCLK outputs for DRAM channel B, + * BIOS should set it to reduce the power consumption) + * Bit F(1207) M2 Package S1g1 Package + * 0 N/A MA1_CLK1 N/A + * 1 N/A MA0_CLK1 MA0_CLK1 + * 2 MA3_CLK N/A N/A + * 3 MA2_CLK N/A N/A + * 4 MA1_CLK MA1_CLK0 N/A + * 5 MA0_CLK MA0_CLK0 MA0_CLK0 + * 6 N/A MA1_CLK2 N/A + * 7 N/A MA0_CLK2 MA0_CLK2 */ - PCI_ADDR(0, 0x18, 2, 0xa0), 0x00fffc00, 0xff000000, + PCI_ADDR(0, 0x18, 2, 0xa0), 0x00fffc00, 0xff000000, /* DRAM Scrub Control Register * F3:0x58 @@ -622,11 +678,12 @@ static void sdram_set_registers(const struct mem_controller *ctrl, struct sys_in */ PCI_ADDR(0, 0x18, 3, 0x60), 0xffffff00, 0x00000000, }; - // for PCI_ADDR(0, 0x18, 2, 0x98) index, and PCI_ADDR(0x, 0x18, 2, 0x9c) data + /* for PCI_ADDR(0, 0x18, 2, 0x98) index, + and PCI_ADDR(0x, 0x18, 2, 0x9c) data */ /* - index: + index: [29: 0] DctOffset (Dram Controller Offset) - [30:30] DctAccessWrite (Dram Controller Read/Write Select) + [30:30] DctAccessWrite (Dram Controller Read/Write Select) 0 = read access 1 = write access [31:31] DctAccessDone (Dram Controller Access Done) @@ -635,7 +692,7 @@ static void sdram_set_registers(const struct mem_controller *ctrl, struct sys_in Data: [31: 0] DctOffsetData (Dram Controller Offset Data) - + Read: - Write the register num to DctOffset with DctAccessWrite = 0 - poll the DctAccessDone until it = 1 @@ -644,22 +701,22 @@ static void sdram_set_registers(const struct mem_controller *ctrl, struct sys_in - Write the data to DctOffsetData - Write register num to DctOffset with DctAccessWrite = 1 - poll the DctAccessDone untio it = 1 - + */ int i; int max; - if (!controller_present(ctrl)) { + if (!controller_present(ctrl)) { sysinfo->ctrl_present[ctrl->node_id] = 0; - return; - } + return; + } sysinfo->ctrl_present[ctrl->node_id] = 1; - + print_spew("setting up CPU"); print_spew_hex8(ctrl->node_id); print_spew(" northbridge registers\r\n"); max = sizeof(register_values)/sizeof(register_values[0]); - for(i = 0; i < max; i += 3) { + for (i = 0; i < max; i += 3) { device_t dev; unsigned where; unsigned long reg; @@ -674,6 +731,7 @@ static void sdram_set_registers(const struct mem_controller *ctrl, struct sys_in print_spew("done.\r\n"); } + static int is_dual_channel(const struct mem_controller *ctrl) { uint32_t dcl; @@ -681,9 +739,10 @@ static int is_dual_channel(const struct mem_controller *ctrl) return dcl & DCL_Width128; } + static int is_opteron(const struct mem_controller *ctrl) { - /* Test to see if I am an Opteron. + /* Test to see if I am an Opteron. * FIXME Testing dual channel capability is correct for now * but a better test is probably required. * m2 and s1g1 support dual channel too. but only support unbuffered dimm @@ -694,6 +753,7 @@ static int is_opteron(const struct mem_controller *ctrl) return !!(nbcap & NBCAP_128Bit); } + static int is_registered(const struct mem_controller *ctrl) { /* Test to see if we are dealing with registered SDRAM. @@ -705,6 +765,7 @@ static int is_registered(const struct mem_controller *ctrl) return !(dcl & DCL_UnBuffDimm); } + static void spd_get_dimm_size(unsigned device, struct dimm_size *sz) { /* Calculate the log base 2 size of a DIMM in bits */ @@ -716,13 +777,13 @@ static void spd_get_dimm_size(unsigned device, struct dimm_size *sz) value = spd_read_byte(device, SPD_ROW_NUM); /* rows */ if (value < 0) goto hw_err; - if ((value & 0xff) == 0) goto val_err; // max is 16 ? + if ((value & 0xff) == 0) goto val_err; /* max is 16 ? */ sz->per_rank += value & 0xff; sz->rows = value & 0xff; value = spd_read_byte(device, SPD_COL_NUM); /* columns */ if (value < 0) goto hw_err; - if ((value & 0xff) == 0) goto val_err; //max is 11 + if ((value & 0xff) == 0) goto val_err; /* max is 11 */ sz->per_rank += value & 0xff; sz->col = value & 0xff; @@ -733,16 +794,17 @@ static void spd_get_dimm_size(unsigned device, struct dimm_size *sz) sz->per_rank += sz->bank; /* Get the module data width and convert it to a power of two */ - value = spd_read_byte(device, SPD_DATA_WIDTH); + value = spd_read_byte(device, SPD_DATA_WIDTH); if (value < 0) goto hw_err; value &= 0xff; if ((value != 72) && (value != 64)) goto val_err; sz->per_rank += log2(value) - 3; //64 bit So another 3 lines /* How many ranks? */ - value = spd_read_byte(device, SPD_MOD_ATTRIB_RANK); /* number of physical banks */ + /* number of physical banks */ + value = spd_read_byte(device, SPD_MOD_ATTRIB_RANK); if (value < 0) goto hw_err; -// value >>= SPD_MOD_ATTRIB_RANK_NUM_SHIFT; +/* value >>= SPD_MOD_ATTRIB_RANK_NUM_SHIFT; */ value &= SPD_MOD_ATTRIB_RANK_NUM_MASK; value += SPD_MOD_ATTRIB_RANK_NUM_BASE; // 0-->1, 1-->2, 3-->4 /* @@ -756,16 +818,16 @@ static void spd_get_dimm_size(unsigned device, struct dimm_size *sz) } sz->rank = value; - /* verify if per_rank is equal byte 31 + /* verify if per_rank is equal byte 31 it has the DIMM size as a multiple of 128MB. - */ - value = spd_read_byte(device, SPD_RANK_SIZE); - if (value < 0) goto hw_err; - value &= 0xff; + */ + value = spd_read_byte(device, SPD_RANK_SIZE); + if (value < 0) goto hw_err; + value &= 0xff; value = log2(value); - if(value <=4 ) value += 8; // add back to 1G to high + if (value <=4 ) value += 8; // add back to 1G to high value += (27-5); // make 128MB to the real lines - if( value != (sz->per_rank)) { + if ( value != (sz->per_rank)) { print_err("Bad RANK Size --\r\n"); goto val_err; } @@ -775,7 +837,7 @@ static void spd_get_dimm_size(unsigned device, struct dimm_size *sz) val_err: die("Bad SPD value\r\n"); /* If an hw_error occurs report that I have no memory */ -hw_err: + hw_err: sz->per_rank = 0; sz->rows = 0; sz->col = 0; @@ -785,24 +847,25 @@ hw_err: return; } -static void set_dimm_size(const struct mem_controller *ctrl, struct dimm_size *sz, unsigned index, int is_Width128) + +static void set_dimm_size(const struct mem_controller *ctrl, + struct dimm_size *sz, unsigned index, int is_Width128) { uint32_t base0, base1; - /* For each base register. * Place the dimm size in 32 MB quantities in the bits 31 - 21. * The initialize dimm size is in bits. * Set the base enable bit0. */ - + base0 = base1 = 0; /* Make certain side1 of the dimm is at least 128MB */ if (sz->per_rank >= 27) { base0 = (1 << ((sz->per_rank - 27 ) + 19)) | 1; } - + /* Make certain side2 of the dimm is at least 128MB */ if (sz->rank > 1) { // 2 ranks or 4 ranks base1 = (1 << ((sz->per_rank - 27 ) + 19)) | 1; @@ -822,7 +885,7 @@ static void set_dimm_size(const struct mem_controller *ctrl, struct dimm_size *s pci_write_config32(ctrl->f2, DRAM_CSBASE + (((index << 1)+0)<<2), base0); pci_write_config32(ctrl->f2, DRAM_CSBASE + (((index << 1)+1)<<2), base1); #if QRANK_DIMM_SUPPORT == 1 - if(sz->rank == 4) { + if (sz->rank == 4) { pci_write_config32(ctrl->f2, DRAM_CSBASE + (((index << 1)+4)<<2), base0); pci_write_config32(ctrl->f2, DRAM_CSBASE + (((index << 1)+5)<<2), base1); } @@ -838,26 +901,26 @@ static void set_dimm_size(const struct mem_controller *ctrl, struct dimm_size *s ClkDis0 = DTL_MemClkDis0_AM2; #elif CPU_SOCKET_TYPE == 0x12 /* S1G1 */ ClkDis0 = DTL_MemClkDis0_S1g1; -#endif +#endif dword = pci_read_config32(ctrl->f2, DRAM_TIMING_LOW); //Channel A dword &= ~(ClkDis0 >> index); #if QRANK_DIMM_SUPPORT == 1 - if(sz->rank == 4) { + if (sz->rank == 4) { dword &= ~(ClkDis0 >> (index+2)); } #endif pci_write_config32(ctrl->f2, DRAM_TIMING_LOW, dword); - - if (is_Width128) { //Channel B - dword = pci_read_config32(ctrl->f2, DRAM_CTRL_MISC); - dword &= ~(ClkDis0 >> index); + + if (is_Width128) { //Channel B + dword = pci_read_config32(ctrl->f2, DRAM_CTRL_MISC); + dword &= ~(ClkDis0 >> index); #if QRANK_DIMM_SUPPORT == 1 - if(sz->rank == 4) { - dword &= ~(ClkDis0 >> (index+2)); - } + if (sz->rank == 4) { + dword &= ~(ClkDis0 >> (index+2)); + } #endif - pci_write_config32(ctrl->f2, DRAM_CTRL_MISC, dword); + pci_write_config32(ctrl->f2, DRAM_CTRL_MISC, dword); } } @@ -878,53 +941,57 @@ static void set_dimm_size(const struct mem_controller *ctrl, struct dimm_size *s 11: 16 11 3 :8G */ -static void set_dimm_cs_map(const struct mem_controller *ctrl, struct dimm_size *sz, unsigned index) + +static void set_dimm_cs_map(const struct mem_controller *ctrl, + struct dimm_size *sz, unsigned index) { static const uint8_t cs_map_aaa[24] = { - /* (bank=2, row=13, col=9)(3, 16, 11) ---> (0, 0, 0) (1, 3, 2) */ + /* (bank=2, row=13, col=9)(3, 16, 11) ---> (0, 0, 0) (1, 3, 2) */ //Bank2 - 0, 1, 3, - 0, 2, 6, - 0, 0, 0, - 0, 0, 0, + 0, 1, 3, + 0, 2, 6, + 0, 0, 0, + 0, 0, 0, //Bank3 - 0, 4, 0, - 0, 5, 8, - 0, 7, 9, - 0,10,11, + 0, 4, 0, + 0, 5, 8, + 0, 7, 9, + 0,10,11, }; - uint32_t map; + uint32_t map; - map = pci_read_config32(ctrl->f2, DRAM_BANK_ADDR_MAP); - map &= ~(0xf << (index * 4)); + map = pci_read_config32(ctrl->f2, DRAM_BANK_ADDR_MAP); + map &= ~(0xf << (index * 4)); #if QRANK_DIMM_SUPPORT == 1 - if(sz->rank == 4) { - map &= ~(0xf << ( (index + 2) * 4)); - } + if (sz->rank == 4) { + map &= ~(0xf << ( (index + 2) * 4)); + } #endif - /* Make certain side1 of the dimm is at least 128MB */ - if (sz->per_rank >= 27) { - unsigned temp_map; - temp_map = cs_map_aaa[(sz->bank-2)*3*4 + (sz->rows - 13)*3 + (sz->col - 9) ]; - map |= temp_map << (index*4); + /* Make certain side1 of the dimm is at least 128MB */ + if (sz->per_rank >= 27) { + unsigned temp_map; + temp_map = cs_map_aaa[(sz->bank-2)*3*4 + (sz->rows - 13)*3 + (sz->col - 9) ]; + map |= temp_map << (index*4); #if QRANK_DIMM_SUPPORT == 1 - if(sz->rank == 4) { - map |= temp_map << ( (index + 2) * 4); - } + if (sz->rank == 4) { + map |= temp_map << ( (index + 2) * 4); + } #endif - } + } - pci_write_config32(ctrl->f2, DRAM_BANK_ADDR_MAP, map); + pci_write_config32(ctrl->f2, DRAM_BANK_ADDR_MAP, map); } -static long spd_set_ram_size(const struct mem_controller *ctrl, long dimm_mask, struct mem_info *meminfo) + +static long spd_set_ram_size(const struct mem_controller *ctrl, long dimm_mask, + struct mem_info *meminfo) { int i; - - for(i = 0; i < DIMM_SOCKETS; i++) { + + for (i = 0; i < DIMM_SOCKETS; i++) { struct dimm_size *sz = &(meminfo->sz[i]); if (!(dimm_mask & (1 << i))) { continue; @@ -939,8 +1006,9 @@ static long spd_set_ram_size(const struct mem_controller *ctrl, long dimm_mask, return dimm_mask; } + static void route_dram_accesses(const struct mem_controller *ctrl, - unsigned long base_k, unsigned long limit_k) + unsigned long base_k, unsigned long limit_k) { /* Route the addresses to the controller node */ unsigned node_id; @@ -962,12 +1030,14 @@ static void route_dram_accesses(const struct mem_controller *ctrl, limit_reg = 0x44 + index; base_reg = 0x40 + index; - for(device = PCI_DEV(0, 0x18, 1); device <= PCI_DEV(0, 0x1f, 1); device += PCI_DEV(0, 1, 0)) { + for (device = PCI_DEV(0, 0x18, 1); device <= PCI_DEV(0, 0x1f, 1); + device += PCI_DEV(0, 1, 0)) { pci_write_config32(device, limit_reg, limit); pci_write_config32(device, base_reg, base); } } + static void set_top_mem(unsigned tom_k, unsigned hole_startk) { /* Error if I don't have memory */ @@ -981,7 +1051,7 @@ static void set_top_mem(unsigned tom_k, unsigned hole_startk) print_debug(" KB\r\n"); msr_t msr; - if(tom_k > (4*1024*1024)) { + if (tom_k > (4*1024*1024)) { /* Now set top of memory */ msr.lo = (tom_k & 0x003fffff) << 10; msr.hi = (tom_k & 0xffc00000) >> 22; @@ -993,8 +1063,8 @@ static void set_top_mem(unsigned tom_k, unsigned hole_startk) */ if (tom_k >= 0x003f0000) { #if HW_MEM_HOLE_SIZEK != 0 - if(hole_startk != 0) { - tom_k = hole_startk; + if (hole_startk != 0) { + tom_k = hole_startk; } else #endif tom_k = 0x3f0000; @@ -1008,20 +1078,20 @@ static unsigned long interleave_chip_selects(const struct mem_controller *ctrl, { /* 35 - 27 */ - static const uint8_t csbase_low_f0_shift[] = { - /* 128MB */ (14 - (13-5)), - /* 256MB */ (15 - (13-5)), - /* 512MB */ (15 - (13-5)), - /* 512MB */ (16 - (13-5)), - /* 512MB */ (16 - (13-5)), - /* 1GB */ (16 - (13-5)), - /* 1GB */ (16 - (13-5)), - /* 2GB */ (16 - (13-5)), - /* 2GB */ (17 - (13-5)), - /* 4GB */ (17 - (13-5)), - /* 4GB */ (16 - (13-5)), - /* 8GB */ (17 - (13-5)), - }; + static const uint8_t csbase_low_f0_shift[] = { + /* 128MB */ (14 - (13-5)), + /* 256MB */ (15 - (13-5)), + /* 512MB */ (15 - (13-5)), + /* 512MB */ (16 - (13-5)), + /* 512MB */ (16 - (13-5)), + /* 1GB */ (16 - (13-5)), + /* 1GB */ (16 - (13-5)), + /* 2GB */ (16 - (13-5)), + /* 2GB */ (17 - (13-5)), + /* 4GB */ (17 - (13-5)), + /* 4GB */ (16 - (13-5)), + /* 8GB */ (17 - (13-5)), + }; /* cs_base_high is not changed */ @@ -1038,13 +1108,13 @@ static unsigned long interleave_chip_selects(const struct mem_controller *ctrl, chip_selects = 0; common_size = 0; common_cs_mode = 0xff; - for(index = 0; index < 8; index++) { + for (index = 0; index < 8; index++) { unsigned size; unsigned cs_mode; uint32_t value; - + value = pci_read_config32(ctrl->f2, DRAM_CSBASE + (index << 2)); - + /* Is it enabled? */ if (!(value & 1)) { continue; @@ -1060,39 +1130,40 @@ static unsigned long interleave_chip_selects(const struct mem_controller *ctrl, } value = pci_read_config32(ctrl->f2, DRAM_BANK_ADDR_MAP); - cs_mode =( value >> ((index>>1)*4)) & 0xf; - if(common_cs_mode == 0xff) { - common_cs_mode = cs_mode; - } - /* The cs_mode differed fail */ - if(common_cs_mode != cs_mode) { - return 0; - } + cs_mode =( value >> ((index>>1)*4)) & 0xf; + if (common_cs_mode == 0xff) { + common_cs_mode = cs_mode; + } + /* The cs_mode differed fail */ + if (common_cs_mode != cs_mode) { + return 0; + } } /* Chip selects can only be interleaved when there is * more than one and their is a power of two of them. */ bits = log2(chip_selects); - if (((1 << bits) != chip_selects) || (bits < 1) || (bits > 3)) { //chip_selects max = 8 + if (((1 << bits) != chip_selects) || (bits < 1) || (bits > 3)) { + //chip_selects max = 8 return 0; } /* Find the bits of csbase that we need to interleave on */ csbase_inc = 1 << (csbase_low_f0_shift[common_cs_mode]); - if(is_Width128) { + if (is_Width128) { csbase_inc <<=1; - } - + } + - /* Compute the initial values for csbase and csbask. + /* Compute the initial values for csbase and csbask. * In csbase just set the enable bit and the base to zero. * In csmask set the mask bits for the size and page level interleave. */ csbase = 0 | 1; csmask = (((common_size << bits) - 1) << 19); csmask |= 0x3fe0 & ~((csbase_inc << bits) - csbase_inc); - for(index = 0; index < 8; index++) { + for (index = 0; index < 8; index++) { uint32_t value; value = pci_read_config32(ctrl->f2, DRAM_CSBASE + (index << 2)); @@ -1101,15 +1172,15 @@ static unsigned long interleave_chip_selects(const struct mem_controller *ctrl, continue; } pci_write_config32(ctrl->f2, DRAM_CSBASE + (index << 2), csbase); - if((index & 1) == 0) { //only have 4 CSMASK + if ((index & 1) == 0) { //only have 4 CSMASK pci_write_config32(ctrl->f2, DRAM_CSMASK + ((index>>1) << 2), csmask); } csbase += csbase_inc; } - + print_debug("Interleaved\r\n"); - /* Return the memory size in K */ + /* Return the memory size in K */ return common_size << ((27-10) + bits); } static unsigned long order_chip_selects(const struct mem_controller *ctrl) @@ -1118,14 +1189,14 @@ static unsigned long order_chip_selects(const struct mem_controller *ctrl) /* Remember which registers we have used in the high 8 bits of tom */ tom = 0; - for(;;) { + for (;;) { /* Find the largest remaining canidate */ unsigned index, canidate; uint32_t csbase, csmask; unsigned size; csbase = 0; canidate = 0; - for(index = 0; index < 8; index++) { + for (index = 0; index < 8; index++) { uint32_t value; value = pci_read_config32(ctrl->f2, DRAM_CSBASE + (index << 2)); @@ -1133,12 +1204,12 @@ static unsigned long order_chip_selects(const struct mem_controller *ctrl) if (!(value & 1)) { continue; } - + /* Is it greater? */ if (value <= csbase) { continue; } - + /* Has it already been selected */ if (tom & (1 << (index + 24))) { continue; @@ -1147,6 +1218,7 @@ static unsigned long order_chip_selects(const struct mem_controller *ctrl) csbase = value; canidate = index; } + /* See if I have found a new canidate */ if (csbase == 0) { break; @@ -1171,12 +1243,12 @@ static unsigned long order_chip_selects(const struct mem_controller *ctrl) /* Write the new base register */ pci_write_config32(ctrl->f2, DRAM_CSBASE + (canidate << 2), csbase); /* Write the new mask register */ - if((canidate & 1) == 0) { //only have 4 CSMASK - pci_write_config32(ctrl->f2, DRAM_CSMASK + ((canidate>>1) << 2), csmask); - } - + if ((canidate & 1) == 0) { //only have 4 CSMASK + pci_write_config32(ctrl->f2, DRAM_CSMASK + ((canidate>>1) << 2), csmask); + } + } - /* Return the memory size in K */ + /* Return the memory size in K */ return (tom & ~0xff000000) << (27-10); } @@ -1186,7 +1258,7 @@ unsigned long memory_end_k(const struct mem_controller *ctrl, int max_node_id) unsigned end_k; /* Find the last memory address used */ end_k = 0; - for(node_id = 0; node_id < max_node_id; node_id++) { + for (node_id = 0; node_id < max_node_id; node_id++) { uint32_t limit, base; unsigned index; index = node_id << 3; @@ -1200,19 +1272,24 @@ unsigned long memory_end_k(const struct mem_controller *ctrl, int max_node_id) return end_k; } -static void order_dimms(const struct mem_controller *ctrl, struct mem_info *meminfo) + +static void order_dimms(const struct mem_controller *ctrl, + struct mem_info *meminfo) { unsigned long tom_k, base_k; - if (read_option(CMOS_VSTART_interleave_chip_selects, CMOS_VLEN_interleave_chip_selects, 1) != 0) { + if (read_option(CMOS_VSTART_interleave_chip_selects, + CMOS_VLEN_interleave_chip_selects, 1) != 0) { tom_k = interleave_chip_selects(ctrl, meminfo->is_Width128); } else { print_debug("Interleaving disabled\r\n"); tom_k = 0; } + if (!tom_k) { tom_k = order_chip_selects(ctrl); } + /* Compute the memory base address */ base_k = memory_end_k(ctrl, ctrl->node_id); tom_k += base_k; @@ -1220,52 +1297,60 @@ static void order_dimms(const struct mem_controller *ctrl, struct mem_info *memi set_top_mem(tom_k, 0); } -static long disable_dimm(const struct mem_controller *ctrl, unsigned index, long dimm_mask, struct mem_info *meminfo) + +static long disable_dimm(const struct mem_controller *ctrl, unsigned index, + long dimm_mask, struct mem_info *meminfo) { - print_debug("disabling dimm"); - print_debug_hex8(index); + print_debug("disabling dimm"); + print_debug_hex8(index); print_debug("\r\n"); pci_write_config32(ctrl->f2, DRAM_CSBASE + (((index << 1)+0)<<2), 0); pci_write_config32(ctrl->f2, DRAM_CSBASE + (((index << 1)+1)<<2), 0); #if QRANK_DIMM_SUPPORT == 1 - if(meminfo->sz[index].rank == 4) { - pci_write_config32(ctrl->f2, DRAM_CSBASE + (((index << 1)+4)<<2), 0); - pci_write_config32(ctrl->f2, DRAM_CSBASE + (((index << 1)+5)<<2), 0); - } + if (meminfo->sz[index].rank == 4) { + pci_write_config32(ctrl->f2, DRAM_CSBASE + (((index << 1)+4)<<2), 0); + pci_write_config32(ctrl->f2, DRAM_CSBASE + (((index << 1)+5)<<2), 0); + } #endif dimm_mask &= ~(1 << index); return dimm_mask; } -static long spd_handle_unbuffered_dimms(const struct mem_controller *ctrl, long dimm_mask, struct mem_info *meminfo) + +static long spd_handle_unbuffered_dimms(const struct mem_controller *ctrl, + long dimm_mask, struct mem_info *meminfo) { int i; uint32_t registered; uint32_t dcl; registered = 0; - for(i = 0; (i < DIMM_SOCKETS); i++) { + for (i = 0; (i < DIMM_SOCKETS); i++) { int value; if (!(dimm_mask & (1 << i))) { continue; } + value = spd_read_byte(ctrl->channel0[i], SPD_DIMM_TYPE); if (value < 0) { return -1; } + /* Registered dimm ? */ value &= 0x3f; - if ((value == SPD_DIMM_TYPE_RDIMM) || (value == SPD_DIMM_TYPE_mRDIMM)) { - //check SPD_MOD_ATTRIB to verify it is SPD_MOD_ATTRIB_REGADC (0x11)? + if ((value == SPD_DIMM_TYPE_RDIMM) || + (value == SPD_DIMM_TYPE_mRDIMM)) { + /* check SPD_MOD_ATTRIB to verify it is + SPD_MOD_ATTRIB_REGADC (0x11)? */ registered |= (1<is_registered = 0; } pci_write_config32(ctrl->f2, DRAM_CONFIG_LOW, dcl); - + #if 1 if (meminfo->is_registered) { print_debug("Registered\r\n"); @@ -1294,12 +1379,13 @@ static long spd_handle_unbuffered_dimms(const struct mem_controller *ctrl, long return dimm_mask; } + static unsigned int spd_detect_dimms(const struct mem_controller *ctrl) { unsigned dimm_mask; int i; dimm_mask = 0; - for(i = 0; i < DIMM_SOCKETS; i++) { + for (i = 0; i < DIMM_SOCKETS; i++) { int byte; unsigned device; device = ctrl->channel0[i]; @@ -1320,6 +1406,7 @@ static unsigned int spd_detect_dimms(const struct mem_controller *ctrl) return dimm_mask; } + static long spd_enable_2channels(const struct mem_controller *ctrl, long dimm_mask, struct mem_info *meminfo) { int i; @@ -1336,7 +1423,7 @@ static long spd_enable_2channels(const struct mem_controller *ctrl, long dimm_ma 13, /* *Pri SDRAM Width */ 17, /* *Logical Banks */ 18, /* *Supported CAS Latencies */ - 20, /* *DIMM Type Info */ + 20, /* *DIMM Type Info */ 21, /* *SDRAM Module Attributes */ 23, /* *Cycle time at CAS Latnecy (CLX - 1) */ 26, /* *Cycle time at CAS Latnecy (CLX - 2) */ @@ -1345,23 +1432,24 @@ static long spd_enable_2channels(const struct mem_controller *ctrl, long dimm_ma 29, /* *tRCD RAS to CAS */ 30, /* *tRAS Activate to Precharge */ 36, /* *Write recovery time (tWR) */ - 37, /* *Internal write to read command delay (tRDP) */ - 38, /* *Internal read to precharge commanfd delay (tRTP) */ - 41, /* *Extension of Byte 41 tRC and Byte 42 tRFC */ + 37, /* *Internal write to read command delay (tRDP) */ + 38, /* *Internal read to precharge commanfd delay (tRTP) */ + 41, /* *Extension of Byte 41 tRC and Byte 42 tRFC */ 41, /* *Minimum Active to Active/Auto Refresh Time(Trc) */ 42, /* *Minimum Auto Refresh Command Time(Trfc) */ }; /* If the dimms are not in pairs do not do dual channels */ if ((dimm_mask & ((1 << DIMM_SOCKETS) - 1)) != - ((dimm_mask >> DIMM_SOCKETS) & ((1 << DIMM_SOCKETS) - 1))) { + ((dimm_mask >> DIMM_SOCKETS) & ((1 << DIMM_SOCKETS) - 1))) { goto single_channel; } - /* If the cpu is not capable of doing dual channels don't do dual channels */ + /* If the cpu is not capable of doing dual channels + don't do dual channels */ nbcap = pci_read_config32(ctrl->f3, NORTHBRIDGE_CAP); if (!(nbcap & NBCAP_128Bit)) { goto single_channel; } - for(i = 0; (i < 4) && (ctrl->channel0[i]); i++) { + for (i = 0; (i < 4) && (ctrl->channel0[i]); i++) { unsigned device0, device1; int value0, value1; int j; @@ -1371,7 +1459,7 @@ static long spd_enable_2channels(const struct mem_controller *ctrl, long dimm_ma } device0 = ctrl->channel0[i]; device1 = ctrl->channel1[i]; - for(j = 0; j < sizeof(addresses)/sizeof(addresses[0]); j++) { + for (j = 0; j < sizeof(addresses)/sizeof(addresses[0]); j++) { unsigned addr; addr = addresses[j]; value0 = spd_read_byte(device0, addr); @@ -1406,10 +1494,10 @@ struct mem_param { uint16_t cycle_time; uint8_t divisor; /* In 1/40 ns increments */ uint8_t TrwtTO; - uint8_t Twrrd; - uint8_t Twrwr; - uint8_t Trdrd; - uint8_t DcqByPassMax; + uint8_t Twrrd; + uint8_t Twrwr; + uint8_t Trdrd; + uint8_t DcqByPassMax; uint32_t dch_memclk; char name[9]; }; @@ -1418,7 +1506,7 @@ struct mem_param { { .name = "200Mhz\r\n", .cycle_time = 0x500, - .divisor = 200, // how many 1/40ns per clock + .divisor = 200, // how many 1/40ns per clock .dch_memclk = DCH_MemClkFreq_200MHz, //0 .TrwtTO = 7, .Twrrd = 2, @@ -1432,34 +1520,34 @@ struct mem_param { .cycle_time = 0x375, .divisor = 150, //???? .dch_memclk = DCH_MemClkFreq_266MHz, //1 - .TrwtTO = 7, - .Twrrd = 2, - .Twrwr = 2, - .Trdrd = 3, - .DcqByPassMax = 4, + .TrwtTO = 7, + .Twrrd = 2, + .Twrwr = 2, + .Trdrd = 3, + .DcqByPassMax = 4, }, - { - .name = "333Mhz\r\n", - .cycle_time = 0x300, - .divisor = 120, - .dch_memclk = DCH_MemClkFreq_333MHz, //2 - .TrwtTO = 7, - .Twrrd = 2, - .Twrwr = 2, - .Trdrd = 3, - .DcqByPassMax = 4, - - }, + { + .name = "333Mhz\r\n", + .cycle_time = 0x300, + .divisor = 120, + .dch_memclk = DCH_MemClkFreq_333MHz, //2 + .TrwtTO = 7, + .Twrrd = 2, + .Twrwr = 2, + .Trdrd = 3, + .DcqByPassMax = 4, + + }, { .name = "400Mhz\r\n", .cycle_time = 0x250, .divisor = 100, .dch_memclk = DCH_MemClkFreq_400MHz,//3 - .TrwtTO = 7, - .Twrrd = 2, - .Twrwr = 2, - .Trdrd = 3, - .DcqByPassMax = 4, + .TrwtTO = 7, + .Twrrd = 2, + .Twrwr = 2, + .Trdrd = 3, + .DcqByPassMax = 4, }, { .cycle_time = 0x000, @@ -1470,7 +1558,7 @@ static const struct mem_param *get_mem_param(unsigned min_cycle_time) { const struct mem_param *param; - for(param = &speed[0]; param->cycle_time ; param++) { + for (param = &speed[0]; param->cycle_time ; param++) { if (min_cycle_time > (param+1)->cycle_time) { break; } @@ -1495,52 +1583,54 @@ static uint8_t get_exact_divisor(int i, uint8_t divisor) /*6 */ 200, 166, 166, 100, /*7 */ 200, 171, 142, 100, - /*8 */ 200, 150, 125, 100, - /*9 */ 200, 156, 133, 100, - /*10*/ 200, 160, 120, 100, - /*11*/ 200, 163, 127, 100, + /*8 */ 200, 150, 125, 100, + /*9 */ 200, 156, 133, 100, + /*10*/ 200, 160, 120, 100, + /*11*/ 200, 163, 127, 100, + + /*12*/ 200, 150, 133, 100, + /*13*/ 200, 153, 123, 100, + /*14*/ 200, 157, 128, 100, + /*15*/ 200, 160, 120, 100, + }; - /*12*/ 200, 150, 133, 100, - /*13*/ 200, 153, 123, 100, - /*14*/ 200, 157, 128, 100, - /*15*/ 200, 160, 120, 100, - }; - unsigned fid_cur; int index; - + msr_t msr; msr = rdmsr(0xc0010042); - fid_cur = msr.lo & 0x3f; + fid_cur = msr.lo & 0x3f; index = fid_cur>>1; - if(index>12) return divisor; + if (index>12) return divisor; - if(i>3) return divisor; + if (i>3) return divisor; return dv_a[index * 4+i]; } + struct spd_set_memclk_result { const struct mem_param *param; long dimm_mask; }; + static unsigned convert_to_linear(unsigned value) { - static const unsigned fraction[] = { 0x25, 0x33, 0x66, 0x75 }; - unsigned valuex; + static const unsigned fraction[] = { 0x25, 0x33, 0x66, 0x75 }; + unsigned valuex; - /* We need to convert value to more readable */ - if((value & 0xf) < 10) { //no .25, .33, .66, .75 - value <<= 4; - } else { + /* We need to convert value to more readable */ + if ((value & 0xf) < 10) { //no .25, .33, .66, .75 + value <<= 4; + } else { valuex = ((value & 0xf0) << 4) | fraction [(value & 0xf)-10]; - value = valuex; - } - return value; + value = valuex; + } + return value; } static struct spd_set_memclk_result spd_set_memclk(const struct mem_controller *ctrl, long dimm_mask, struct mem_info *meminfo) @@ -1568,14 +1658,14 @@ static struct spd_set_memclk_result spd_set_memclk(const struct mem_controller * if (bios_cycle_time > min_cycle_time) { min_cycle_time = bios_cycle_time; } - min_latency = 3; + min_latency = 3; - print_tx("1 min_cycle_time:", min_cycle_time); + print_tx("1 min_cycle_time:", min_cycle_time); /* Compute the least latency with the fastest clock supported * by both the memory controller and the dimms. */ - for(i = 0; i < DIMM_SOCKETS; i++) { + for (i = 0; i < DIMM_SOCKETS; i++) { int new_cycle_time, new_latency; int index; int latencies; @@ -1604,7 +1694,7 @@ static struct spd_set_memclk_result spd_set_memclk(const struct mem_controller * latency = log2(latencies) - 2; /* Loop through and find a fast clock with a low latency */ - for(index = 0; index < 3; index++, latency++) { + for (index = 0; index < 3; index++, latency++) { int value; if ((latency < 3) || (latency > 6) || (!(latencies & (1 << latency)))) { @@ -1614,52 +1704,56 @@ static struct spd_set_memclk_result spd_set_memclk(const struct mem_controller * if (value < 0) { goto hw_error; } - print_tx("\tindex:", index); - print_tx("\t\tlatency:", latency); - print_tx("\t\tvalue1:", value); + + print_tx("\tindex:", index); + print_tx("\t\tlatency:", latency); + print_tx("\t\tvalue1:", value); value = convert_to_linear(value); - print_tx("\t\tvalue2:", value); + print_tx("\t\tvalue2:", value); /* Only increase the latency if we decreas the clock */ if (value >= min_cycle_time ) { - if(value < new_cycle_time) { + if (value < new_cycle_time) { new_cycle_time = value; new_latency = latency; } else if (value == new_cycle_time) { - if(new_latency > latency) { + if (new_latency > latency) { new_latency = latency; } } } - print_tx("\t\tnew_cycle_time:", new_cycle_time); - print_tx("\t\tnew_latency:", new_latency); + print_tx("\t\tnew_cycle_time:", new_cycle_time); + print_tx("\t\tnew_latency:", new_latency); } + if (new_latency > 6){ continue; } + /* Does min_latency need to be increased? */ if (new_cycle_time > min_cycle_time) { min_cycle_time = new_cycle_time; } + /* Does min_cycle_time need to be increased? */ if (new_latency > min_latency) { min_latency = new_latency; } - print_tx("2 min_cycle_time:", min_cycle_time); - print_tx("2 min_latency:", min_latency); + print_tx("2 min_cycle_time:", min_cycle_time); + print_tx("2 min_latency:", min_latency); } /* Make a second pass through the dimms and disable * any that cannot support the selected memclk and cas latency. */ - print_tx("3 min_cycle_time:", min_cycle_time); - print_tx("3 min_latency:", min_latency); - - for(i = 0; (i < DIMM_SOCKETS) && (ctrl->channel0[i]); i++) { + print_tx("3 min_cycle_time:", min_cycle_time); + print_tx("3 min_latency:", min_latency); + + for (i = 0; (i < DIMM_SOCKETS) && (ctrl->channel0[i]); i++) { int latencies; int latency; int index; @@ -1667,6 +1761,7 @@ static struct spd_set_memclk_result spd_set_memclk(const struct mem_controller * if (!(dimm_mask & (1 << i))) { continue; } + latencies = spd_read_byte(ctrl->channel0[i], SPD_CAS_LAT); if (latencies < 0) goto hw_error; if (latencies == 0) { @@ -1677,7 +1772,7 @@ static struct spd_set_memclk_result spd_set_memclk(const struct mem_controller * latency = log2(latencies) -2; /* Walk through searching for the selected latency */ - for(index = 0; index < 3; index++, latency++) { + for (index = 0; index < 3; index++, latency++) { if (!(latencies & (1 << latency))) { continue; } @@ -1688,13 +1783,13 @@ static struct spd_set_memclk_result spd_set_memclk(const struct mem_controller * if ((latency != min_latency) || (index >= 3)) { goto dimm_err; } - + /* Read the min_cycle_time for this latency */ value = spd_read_byte(ctrl->channel0[i], latency_indicies[index]); if (value < 0) goto hw_error; - - value = convert_to_linear(value); - /* All is good if the selected clock speed + + value = convert_to_linear(value); + /* All is good if the selected clock speed * is what I need or slower. */ if (value <= min_cycle_time) { @@ -1705,8 +1800,8 @@ static struct spd_set_memclk_result spd_set_memclk(const struct mem_controller * dimm_mask = disable_dimm(ctrl, i, dimm_mask, meminfo); } - print_tx("4 min_cycle_time:", min_cycle_time); - + print_tx("4 min_cycle_time:", min_cycle_time); + /* Now that I know the minimum cycle time lookup the memory parameters */ result.param = get_mem_param(min_cycle_time); @@ -1724,7 +1819,7 @@ static struct spd_set_memclk_result spd_set_memclk(const struct mem_controller * value &= ~(DTL_TCL_MASK << DTL_TCL_SHIFT); value |= (min_latency - DTL_TCL_BASE) << DTL_TCL_SHIFT; pci_write_config32(ctrl->f2, DRAM_TIMING_LOW, value); - + result.dimm_mask = dimm_mask; return result; hw_error: @@ -1735,12 +1830,12 @@ static struct spd_set_memclk_result spd_set_memclk(const struct mem_controller * static unsigned convert_to_1_4(unsigned value) { - static const uint8_t fraction[] = { 0, 1, 2, 2, 3, 3, 0 }; - unsigned valuex; + static const uint8_t fraction[] = { 0, 1, 2, 2, 3, 3, 0 }; + unsigned valuex; - /* We need to convert value to more readable */ - valuex = fraction [value & 0x7]; - return valuex; + /* We need to convert value to more readable */ + valuex = fraction [value & 0x7]; + return valuex; } static int update_dimm_Trc(const struct mem_controller *ctrl, const struct mem_param *param, int i) { @@ -1758,7 +1853,7 @@ static int update_dimm_Trc(const struct mem_controller *ctrl, const struct mem_p value *=10; clocks = (value + param->divisor - 1)/param->divisor; - + if (clocks < DTL_TRC_MIN) { clocks = DTL_TRC_MIN; } @@ -1768,7 +1863,7 @@ static int update_dimm_Trc(const struct mem_controller *ctrl, const struct mem_p dtl = pci_read_config32(ctrl->f2, DRAM_TIMING_LOW); old_clocks = ((dtl >> DTL_TRC_SHIFT) & DTL_TRC_MASK) + DTL_TRC_BASE; - if (old_clocks >= clocks) { //?? someone did it + if (old_clocks >= clocks) { //?? someone did it // clocks = old_clocks; return 1; } @@ -1786,9 +1881,9 @@ static int update_dimm_Trfc(const struct mem_controller *ctrl, const struct mem_ //get the cs_size --> logic dimm size value = spd_read_byte(ctrl->channel0[i], SPD_PRI_WIDTH); - if (value < 0) { - return -1; - } + if (value < 0) { + return -1; + } value = 6 - log2(value); //4-->4, 8-->3, 16-->2 @@ -1806,46 +1901,52 @@ static int update_dimm_Trfc(const struct mem_controller *ctrl, const struct mem_ return 1; } -static int update_dimm_TT_1_4(const struct mem_controller *ctrl, const struct mem_param *param, int i, - unsigned TT_REG, +static int update_dimm_TT_1_4(const struct mem_controller *ctrl, const struct mem_param *param, int i, + unsigned TT_REG, unsigned SPD_TT, unsigned TT_SHIFT, unsigned TT_MASK, unsigned TT_BASE, unsigned TT_MIN, unsigned TT_MAX ) { - unsigned clocks, old_clocks; - uint32_t dtl; - int value; - value = spd_read_byte(ctrl->channel0[i], SPD_TT); //already in 1/4 ns - if (value < 0) return -1; + unsigned clocks, old_clocks; + uint32_t dtl; + int value; + value = spd_read_byte(ctrl->channel0[i], SPD_TT); //already in 1/4 ns + if (value < 0) return -1; value *=10; - clocks = (value + param->divisor -1)/param->divisor; - if (clocks < TT_MIN) { - clocks = TT_MIN; - } - if (clocks > TT_MAX) { - return 0; - } - dtl = pci_read_config32(ctrl->f2, TT_REG); - - old_clocks = ((dtl >> TT_SHIFT) & TT_MASK) + TT_BASE; - if (old_clocks >= clocks) { //some one did it? -// clocks = old_clocks; - return 1; - } - dtl &= ~(TT_MASK << TT_SHIFT); - dtl |= ((clocks - TT_BASE) << TT_SHIFT); - pci_write_config32(ctrl->f2, TT_REG, dtl); - return 1; -} - -static int update_dimm_Trcd(const struct mem_controller *ctrl, const struct mem_param *param, int i) + clocks = (value + param->divisor -1)/param->divisor; + if (clocks < TT_MIN) { + clocks = TT_MIN; + } + + if (clocks > TT_MAX) { + return 0; + } + + dtl = pci_read_config32(ctrl->f2, TT_REG); + + old_clocks = ((dtl >> TT_SHIFT) & TT_MASK) + TT_BASE; + if (old_clocks >= clocks) { //some one did it? +// clocks = old_clocks; + return 1; + } + dtl &= ~(TT_MASK << TT_SHIFT); + dtl |= ((clocks - TT_BASE) << TT_SHIFT); + pci_write_config32(ctrl->f2, TT_REG, dtl); + return 1; +} + + +static int update_dimm_Trcd(const struct mem_controller *ctrl, + const struct mem_param *param, int i) { return update_dimm_TT_1_4(ctrl, param, i, DRAM_TIMING_LOW, SPD_TRCD, DTL_TRCD_SHIFT, DTL_TRCD_MASK, DTL_TRCD_BASE, DTL_TRCD_MIN, DTL_TRCD_MAX); } + static int update_dimm_Trrd(const struct mem_controller *ctrl, const struct mem_param *param, int i) { return update_dimm_TT_1_4(ctrl, param, i, DRAM_TIMING_LOW, SPD_TRRD, DTL_TRRD_SHIFT, DTL_TRRD_MASK, DTL_TRRD_BASE, DTL_TRRD_MIN, DTL_TRRD_MAX); } + static int update_dimm_Tras(const struct mem_controller *ctrl, const struct mem_param *param, int i) { unsigned clocks, old_clocks; @@ -1853,48 +1954,54 @@ static int update_dimm_Tras(const struct mem_controller *ctrl, const struct mem_ int value; value = spd_read_byte(ctrl->channel0[i], SPD_TRAS); //in 1 ns if (value < 0) return -1; - print_tx("update_dimm_Tras: 0 value=", value); - - value<<=2; //convert it to in 1/4ns + print_tx("update_dimm_Tras: 0 value=", value); + + value <<= 2; //convert it to in 1/4ns value *= 10; - print_tx("update_dimm_Tras: 1 value=", value); + print_tx("update_dimm_Tras: 1 value=", value); clocks = (value + param->divisor - 1)/param->divisor; - print_tx("update_dimm_Tras: divisor=", param->divisor); - print_tx("update_dimm_Tras: clocks=", clocks); + print_tx("update_dimm_Tras: divisor=", param->divisor); + print_tx("update_dimm_Tras: clocks=", clocks); if (clocks < DTL_TRAS_MIN) { clocks = DTL_TRAS_MIN; } + if (clocks > DTL_TRAS_MAX) { return 0; } + dtl = pci_read_config32(ctrl->f2, DRAM_TIMING_LOW); old_clocks = ((dtl >> DTL_TRAS_SHIFT) & DTL_TRAS_MASK) + DTL_TRAS_BASE; if (old_clocks >= clocks) { // someone did it? return 1; } + dtl &= ~(DTL_TRAS_MASK << DTL_TRAS_SHIFT); dtl |= ((clocks - DTL_TRAS_BASE) << DTL_TRAS_SHIFT); pci_write_config32(ctrl->f2, DRAM_TIMING_LOW, dtl); return 1; } -static int update_dimm_Trp(const struct mem_controller *ctrl, const struct mem_param *param, int i) +static int update_dimm_Trp(const struct mem_controller *ctrl, + const struct mem_param *param, int i) { return update_dimm_TT_1_4(ctrl, param, i, DRAM_TIMING_LOW, SPD_TRP, DTL_TRP_SHIFT, DTL_TRP_MASK, DTL_TRP_BASE, DTL_TRP_MIN, DTL_TRP_MAX); } -static int update_dimm_Trtp(const struct mem_controller *ctrl, const struct mem_param *param, int i, struct mem_info *meminfo) + +static int update_dimm_Trtp(const struct mem_controller *ctrl, + const struct mem_param *param, int i, struct mem_info *meminfo) { - //need to figure if it is 32 byte burst or 64 bytes burst + /* need to figure if it is 32 byte burst or 64 bytes burst */ int offset = 2; - if(!meminfo->is_Width128) { + if (!meminfo->is_Width128) { uint32_t dword; dword = pci_read_config32(ctrl->f2, DRAM_CONFIG_LOW); - if((dword & DCL_BurstLength32)) offset = 0; + if ((dword & DCL_BurstLength32)) offset = 0; } - return update_dimm_TT_1_4(ctrl, param, i, DRAM_TIMING_LOW, SPD_TRTP, DTL_TRTP_SHIFT, DTL_TRTP_MASK, DTL_TRTP_BASE+offset, DTL_TRTP_MIN+offset, DTL_TRTP_MAX+offset); + return update_dimm_TT_1_4(ctrl, param, i, DRAM_TIMING_LOW, SPD_TRTP, DTL_TRTP_SHIFT, DTL_TRTP_MASK, DTL_TRTP_BASE+offset, DTL_TRTP_MIN+offset, DTL_TRTP_MAX+offset); } @@ -1904,14 +2011,15 @@ static int update_dimm_Twr(const struct mem_controller *ctrl, const struct mem_p } -static int update_dimm_Tref(const struct mem_controller *ctrl, const struct mem_param *param, int i) +static int update_dimm_Tref(const struct mem_controller *ctrl, + const struct mem_param *param, int i) { - uint32_t dth, dth_old; - int value; - value = spd_read_byte(ctrl->channel0[i], SPD_TREF); // 0: 15.625us, 1: 3.9us 2: 7.8 us.... - if (value < 0) return -1; + uint32_t dth, dth_old; + int value; + value = spd_read_byte(ctrl->channel0[i], SPD_TREF); // 0: 15.625us, 1: 3.9us 2: 7.8 us.... + if (value < 0) return -1; - if(value == 1 ) { + if (value == 1 ) { value = 3; } else { value = 2; @@ -1922,111 +2030,113 @@ static int update_dimm_Tref(const struct mem_controller *ctrl, const struct mem_ dth_old = dth; dth &= ~(DTH_TREF_MASK << DTH_TREF_SHIFT); dth |= (value << DTH_TREF_SHIFT); - if(dth_old != dth) { + if (dth_old != dth) { pci_write_config32(ctrl->f2, DRAM_TIMING_HIGH, dth); } return 1; } -static void set_4RankRDimm(const struct mem_controller *ctrl, const struct mem_param *param, struct mem_info *meminfo) + +static void set_4RankRDimm(const struct mem_controller *ctrl, + const struct mem_param *param, struct mem_info *meminfo) { #if QRANK_DIMM_SUPPRT == 1 - int value; + int value; int i; - - if(!(meminfo->is_registered)) return; + + if (!(meminfo->is_registered)) return; value = 0; - for(i = 0; i < DIMM_SOCKETS; i++) { - if (!(dimm_mask & (1 << i))) { - continue; - } + for (i = 0; i < DIMM_SOCKETS; i++) { + if (!(dimm_mask & (1 << i))) { + continue; + } - if(meminfo->sz.rank == 4) { + if (meminfo->sz.rank == 4) { value = 1; break; } } - if(value == 1) { + if (value == 1) { uint32_t dch; - dch = pci_read_config32(ctrl->f2, DRAM_CONFIG_HIGH); + dch = pci_read_config32(ctrl->f2, DRAM_CONFIG_HIGH); dch |= DCH_FourRankRDimm; - pci_write_config32(ctrl->f2, DRAM_CONFIG_HIGH, dch); + pci_write_config32(ctrl->f2, DRAM_CONFIG_HIGH, dch); } #endif } -static uint32_t get_extra_dimm_mask(const struct mem_controller *ctrl, struct mem_info *meminfo) +static uint32_t get_extra_dimm_mask(const struct mem_controller *ctrl, + struct mem_info *meminfo) { - int i; + int i; - uint32_t mask_x4; + uint32_t mask_x4; uint32_t mask_x16; uint32_t mask_single_rank; uint32_t mask_page_1k; int value; #if QRANK_DIMM_SUPPORT == 1 - int rank; + int rank; #endif long dimm_mask = meminfo->dimm_mask; - mask_x4 = 0; + mask_x4 = 0; mask_x16 = 0; mask_single_rank = 0; mask_page_1k = 0; - for(i = 0; i < DIMM_SOCKETS; i++) { - - if (!(dimm_mask & (1 << i))) { - continue; - } + for (i = 0; i < DIMM_SOCKETS; i++) { + if (!(dimm_mask & (1 << i))) { + continue; + } - if(meminfo->sz[i].rank == 1) { + if (meminfo->sz[i].rank == 1) { mask_single_rank |= 1<sz[i].col==10) { - mask_page_1k |= 1<sz[i].col==10) { + mask_page_1k |= 1<channel0[i], SPD_PRI_WIDTH); + value = spd_read_byte(ctrl->channel0[i], SPD_PRI_WIDTH); #if QRANK_DIMM_SUPPORT == 1 - rank = meminfo->sz[i].rank; + rank = meminfo->sz[i].rank; #endif - if(value==4) { + if (value==4) { mask_x4 |= (1<x4_mask= mask_x4; + + } + + meminfo->x4_mask= mask_x4; meminfo->x16_mask = mask_x16; - + meminfo->single_rank_mask = mask_single_rank; meminfo->page_1k_mask = mask_page_1k; - return mask_x4; + return mask_x4; } @@ -2040,155 +2150,168 @@ static void set_dimm_x4(const struct mem_controller *ctrl, const struct mem_para pci_write_config32(ctrl->f2, DRAM_CONFIG_LOW, dcl); } + static int count_ones(uint32_t dimm_mask) { - int dimms; - unsigned index; - dimms = 0; - for(index = 0; index < DIMM_SOCKETS; index++, dimm_mask>>=1) { - if (dimm_mask & 1) { - dimms++; - } - } - return dimms; + int dimms; + unsigned index; + dimms = 0; + for (index = 0; index < DIMM_SOCKETS; index++, dimm_mask>>=1) { + if (dimm_mask & 1) { + dimms++; + } + } + return dimms; } -static void set_DramTerm(const struct mem_controller *ctrl, const struct mem_param *param, struct mem_info *meminfo) +static void set_DramTerm(const struct mem_controller *ctrl, + const struct mem_param *param, struct mem_info *meminfo) { - uint32_t dcl; + uint32_t dcl; unsigned odt; odt = 1; // 75 ohms - if(param->divisor == 100) { //DDR2 800 - if(meminfo->is_Width128) { - if(count_ones(meminfo->dimm_mask & 0x0f)==2) { + if (param->divisor == 100) { //DDR2 800 + if (meminfo->is_Width128) { + if (count_ones(meminfo->dimm_mask & 0x0f)==2) { odt = 3; //50 ohms } } - } + } #if DIMM_SUPPORT == 0x0204 odt = 0x2; /* 150 ohms */ #endif - dcl = pci_read_config32(ctrl->f2, DRAM_CONFIG_LOW); - dcl &= ~(DCL_DramTerm_MASK<f2, DRAM_CONFIG_LOW, dcl); + dcl = pci_read_config32(ctrl->f2, DRAM_CONFIG_LOW); + dcl &= ~(DCL_DramTerm_MASK<f2, DRAM_CONFIG_LOW, dcl); } -static void set_ecc(const struct mem_controller *ctrl,const struct mem_param *param, long dimm_mask, struct mem_info *meminfo) +static void set_ecc(const struct mem_controller *ctrl, + const struct mem_param *param, long dimm_mask, struct mem_info *meminfo) { int i; int value; - - uint32_t dcl, nbcap; - nbcap = pci_read_config32(ctrl->f3, NORTHBRIDGE_CAP); - dcl = pci_read_config32(ctrl->f2, DRAM_CONFIG_LOW); - dcl &= ~DCL_DimmEccEn; - if (nbcap & NBCAP_ECC) { - dcl |= DCL_DimmEccEn; - } - if (read_option(CMOS_VSTART_ECC_memory, CMOS_VLEN_ECC_memory, 1) == 0) { - dcl &= ~DCL_DimmEccEn; - } - pci_write_config32(ctrl->f2, DRAM_CONFIG_LOW, dcl); + + uint32_t dcl, nbcap; + nbcap = pci_read_config32(ctrl->f3, NORTHBRIDGE_CAP); + dcl = pci_read_config32(ctrl->f2, DRAM_CONFIG_LOW); + dcl &= ~DCL_DimmEccEn; + if (nbcap & NBCAP_ECC) { + dcl |= DCL_DimmEccEn; + } + if (read_option(CMOS_VSTART_ECC_memory, CMOS_VLEN_ECC_memory, 1) == 0) { + dcl &= ~DCL_DimmEccEn; + } + pci_write_config32(ctrl->f2, DRAM_CONFIG_LOW, dcl); meminfo->is_ecc = 1; - if(!(dcl & DCL_DimmEccEn)) { + if (!(dcl & DCL_DimmEccEn)) { meminfo->is_ecc = 0; return; // already disabled the ECC, so don't need to read SPD any more } - for(i = 0; i < DIMM_SOCKETS; i++) { - - if (!(dimm_mask & (1 << i))) { - continue; - } + for (i = 0; i < DIMM_SOCKETS; i++) { + + if (!(dimm_mask & (1 << i))) { + continue; + } value = spd_read_byte(ctrl->channel0[i], SPD_DIMM_CONF_TYPE); - if(!(value & SPD_DIMM_CONF_TYPE_ECC)) { - dcl &= ~DCL_DimmEccEn; - pci_write_config32(ctrl->f2, DRAM_CONFIG_LOW, dcl); + if (!(value & SPD_DIMM_CONF_TYPE_ECC)) { + dcl &= ~DCL_DimmEccEn; + pci_write_config32(ctrl->f2, DRAM_CONFIG_LOW, dcl); meminfo->is_ecc = 0; return; } - } + } } -static int update_dimm_Twtr(const struct mem_controller *ctrl, const struct mem_param *param, int i) + +static int update_dimm_Twtr(const struct mem_controller *ctrl, + const struct mem_param *param, int i) { return update_dimm_TT_1_4(ctrl, param, i, DRAM_TIMING_HIGH, SPD_TWTR, DTH_TWTR_SHIFT, DTH_TWTR_MASK, DTH_TWTR_BASE, DTH_TWTR_MIN, DTH_TWTR_MAX); - } -static void set_TT(const struct mem_controller *ctrl, const struct mem_param *param, unsigned TT_REG, - unsigned TT_SHIFT, unsigned TT_MASK, unsigned TT_BASE, unsigned TT_MIN, unsigned TT_MAX, unsigned val, const char *str) + +static void set_TT(const struct mem_controller *ctrl, + const struct mem_param *param, unsigned TT_REG, unsigned TT_SHIFT, + unsigned TT_MASK, unsigned TT_BASE, unsigned TT_MIN, unsigned TT_MAX, + unsigned val, const char *str) { - uint32_t reg; + uint32_t reg; - if ((val < TT_MIN) || (val > TT_MAX)) { - print_err(str); - die(" Unknown\r\n"); - } + if ((val < TT_MIN) || (val > TT_MAX)) { + print_err(str); + die(" Unknown\r\n"); + } - reg = pci_read_config32(ctrl->f2, TT_REG); - reg &= ~(TT_MASK << TT_SHIFT); - reg |= ((val - TT_BASE) << TT_SHIFT); - pci_write_config32(ctrl->f2, TT_REG, reg); - return; + reg = pci_read_config32(ctrl->f2, TT_REG); + reg &= ~(TT_MASK << TT_SHIFT); + reg |= ((val - TT_BASE) << TT_SHIFT); + pci_write_config32(ctrl->f2, TT_REG, reg); + return; } -static void set_TrwtTO(const struct mem_controller *ctrl, const struct mem_param *param) + +static void set_TrwtTO(const struct mem_controller *ctrl, + const struct mem_param *param) { set_TT(ctrl, param, DRAM_TIMING_HIGH, DTH_TRWTTO_SHIFT, DTH_TRWTTO_MASK,DTH_TRWTTO_BASE, DTH_TRWTTO_MIN, DTH_TRWTTO_MAX, param->TrwtTO, "TrwtTO"); } + static void set_Twrrd(const struct mem_controller *ctrl, const struct mem_param *param) { - set_TT(ctrl, param, DRAM_TIMING_HIGH, DTH_TWRRD_SHIFT, DTH_TWRRD_MASK,DTH_TWRRD_BASE, DTH_TWRRD_MIN, DTH_TWRRD_MAX, param->Twrrd, "Twrrd"); + set_TT(ctrl, param, DRAM_TIMING_HIGH, DTH_TWRRD_SHIFT, DTH_TWRRD_MASK,DTH_TWRRD_BASE, DTH_TWRRD_MIN, DTH_TWRRD_MAX, param->Twrrd, "Twrrd"); } + static void set_Twrwr(const struct mem_controller *ctrl, const struct mem_param *param) { - set_TT(ctrl, param, DRAM_TIMING_HIGH, DTH_TWRWR_SHIFT, DTH_TWRWR_MASK,DTH_TWRWR_BASE, DTH_TWRWR_MIN, DTH_TWRWR_MAX, param->Twrwr, "Twrwr"); + set_TT(ctrl, param, DRAM_TIMING_HIGH, DTH_TWRWR_SHIFT, DTH_TWRWR_MASK,DTH_TWRWR_BASE, DTH_TWRWR_MIN, DTH_TWRWR_MAX, param->Twrwr, "Twrwr"); } + static void set_Trdrd(const struct mem_controller *ctrl, const struct mem_param *param) { - set_TT(ctrl, param, DRAM_TIMING_HIGH, DTH_TRDRD_SHIFT, DTH_TRDRD_MASK,DTH_TRDRD_BASE, DTH_TRDRD_MIN, DTH_TRDRD_MAX, param->Trdrd, "Trdrd"); + set_TT(ctrl, param, DRAM_TIMING_HIGH, DTH_TRDRD_SHIFT, DTH_TRDRD_MASK,DTH_TRDRD_BASE, DTH_TRDRD_MIN, DTH_TRDRD_MAX, param->Trdrd, "Trdrd"); } + static void set_DcqBypassMax(const struct mem_controller *ctrl, const struct mem_param *param) { - set_TT(ctrl, param, DRAM_CONFIG_HIGH, DCH_DcqBypassMax_SHIFT, DCH_DcqBypassMax_MASK,DCH_DcqBypassMax_BASE, DCH_DcqBypassMax_MIN, DCH_DcqBypassMax_MAX, param->DcqByPassMax, "DcqBypassMax"); // value need to be in CMOS + set_TT(ctrl, param, DRAM_CONFIG_HIGH, DCH_DcqBypassMax_SHIFT, DCH_DcqBypassMax_MASK,DCH_DcqBypassMax_BASE, DCH_DcqBypassMax_MIN, DCH_DcqBypassMax_MAX, param->DcqByPassMax, "DcqBypassMax"); // value need to be in CMOS } + static void set_Tfaw(const struct mem_controller *ctrl, const struct mem_param *param, struct mem_info *meminfo) { - static const uint8_t faw_1k[] = {8, 10, 13, 14}; - static const uint8_t faw_2k[] = {10, 14, 17, 18}; - unsigned memclkfreq_index; - unsigned faw; + static const uint8_t faw_1k[] = {8, 10, 13, 14}; + static const uint8_t faw_2k[] = {10, 14, 17, 18}; + unsigned memclkfreq_index; + unsigned faw; - memclkfreq_index = param->dch_memclk; + memclkfreq_index = param->dch_memclk; - if(meminfo->page_1k_mask != 0) { //1k page - faw = faw_1k[memclkfreq_index]; - } - else { - faw = faw_2k[memclkfreq_index]; - } + if (meminfo->page_1k_mask != 0) { //1k page + faw = faw_1k[memclkfreq_index]; + } else { + faw = faw_2k[memclkfreq_index]; + } - set_TT(ctrl, param, DRAM_CONFIG_HIGH, DCH_FourActWindow_SHIFT, DCH_FourActWindow_MASK, DCH_FourActWindow_BASE, DCH_FourActWindow_MIN, DCH_FourActWindow_MAX, faw, "FourActWindow"); + set_TT(ctrl, param, DRAM_CONFIG_HIGH, DCH_FourActWindow_SHIFT, DCH_FourActWindow_MASK, DCH_FourActWindow_BASE, DCH_FourActWindow_MIN, DCH_FourActWindow_MAX, faw, "FourActWindow"); } @@ -2203,22 +2326,23 @@ static void set_max_async_latency(const struct mem_controller *ctrl, const struc dch &= ~(DCH_MaxAsyncLat_MASK << DCH_MaxAsyncLat_SHIFT); //FIXME: We need to use Max of DqsRcvEnDelay + 6ns here: After trainning and get that from index reg 0x10, 0x13, 0x16, 0x19, 0x30, 0x33, 0x36, 0x39 - async_lat = 6+6; - - + async_lat = 6 + 6; + + dch |= ((async_lat - DCH_MaxAsyncLat_BASE) << DCH_MaxAsyncLat_SHIFT); pci_write_config32(ctrl->f2, DRAM_CONFIG_HIGH, dch); } + static void set_SlowAccessMode(const struct mem_controller *ctrl) { - uint32_t dch; + uint32_t dch; - dch = pci_read_config32(ctrl->f2, DRAM_CONFIG_HIGH); + dch = pci_read_config32(ctrl->f2, DRAM_CONFIG_HIGH); - dch |= (1<<20); + dch |= (1<<20); - pci_write_config32(ctrl->f2, DRAM_CONFIG_HIGH, dch); + pci_write_config32(ctrl->f2, DRAM_CONFIG_HIGH, dch); } @@ -2228,32 +2352,32 @@ static void set_SlowAccessMode(const struct mem_controller *ctrl) */ static void set_misc_timing(const struct mem_controller *ctrl, struct mem_info *meminfo) { - uint32_t dword; + uint32_t dword; uint32_t dwordx; unsigned SlowAccessMode = 0; long dimm_mask = meminfo->dimm_mask & 0x0f; #if DIMM_SUPPORT==0x0104 /* DDR2 and REG */ - /* for REG DIMM */ - dword = 0x00111222; - dwordx = 0x002f0000; - switch (meminfo->memclk_set) { - case DCH_MemClkFreq_266MHz: - if( (dimm_mask == 0x03) || (dimm_mask == 0x02) || (dimm_mask == 0x01)) { - dwordx = 0x002f2700; - } - break; - case DCH_MemClkFreq_333MHz: - if( (dimm_mask == 0x03) || (dimm_mask == 0x02) || (dimm_mask == 0x01)) { - if ((meminfo->single_rank_mask & 0x03)!=0x03) { //any double rank there? - dwordx = 0x002f2f00; - } - } - break; - case DCH_MemClkFreq_400MHz: - dwordx = 0x002f3300; - break; + /* for REG DIMM */ + dword = 0x00111222; + dwordx = 0x002f0000; + switch (meminfo->memclk_set) { + case DCH_MemClkFreq_266MHz: + if ( (dimm_mask == 0x03) || (dimm_mask == 0x02) || (dimm_mask == 0x01)) { + dwordx = 0x002f2700; + } + break; + case DCH_MemClkFreq_333MHz: + if ( (dimm_mask == 0x03) || (dimm_mask == 0x02) || (dimm_mask == 0x01)) { + if ((meminfo->single_rank_mask & 0x03)!=0x03) { //any double rank there? + dwordx = 0x002f2f00; + } + } + break; + case DCH_MemClkFreq_400MHz: + dwordx = 0x002f3300; + break; } #endif @@ -2276,7 +2400,7 @@ static void set_misc_timing(const struct mem_controller *ctrl, struct mem_info * && (meminfo->x16_mask == 1)) /* SR x16 */ dwordx = 0x00272700; else if ((meminfo->x4_mask == 0) && (meminfo->x16_mask == 0) - && (meminfo->single_rank_mask == 0)) { /* DR x8 */ + && (meminfo->single_rank_mask == 0)) { /* DR x8 */ SlowAccessMode = 1; dwordx = 0x00002800; } else { /* SR x8, DR x16 */ @@ -2288,7 +2412,7 @@ static void set_misc_timing(const struct mem_controller *ctrl, struct mem_info * && (meminfo->x16_mask == 1)) /* SR x16 */ dwordx = 0x00292900; else if ((meminfo->x4_mask == 0) && (meminfo->x16_mask == 0) - && (meminfo->single_rank_mask == 0)) { /* DR x8 */ + && (meminfo->single_rank_mask == 0)) { /* DR x8 */ SlowAccessMode = 1; dwordx = 0x00002A00; } else { /* SR x8, DR x16 */ @@ -2299,21 +2423,21 @@ static void set_misc_timing(const struct mem_controller *ctrl, struct mem_info * #endif #if DIMM_SUPPORT==0x0004 /* DDR2 and unbuffered */ - /* for UNBUF DIMM */ - dword = 0x00111222; + /* for UNBUF DIMM */ + dword = 0x00111222; dwordx = 0x002f2f00; switch (meminfo->memclk_set) { case DCH_MemClkFreq_200MHz: - if(dimm_mask == 0x03) { + if (dimm_mask == 0x03) { SlowAccessMode = 1; dword = 0x00111322; } break; case DCH_MemClkFreq_266MHz: - if(dimm_mask == 0x03) { + if (dimm_mask == 0x03) { SlowAccessMode = 1; dword = 0x00111322; - if((meminfo->x4_mask == 0 ) && (meminfo->x16_mask == 0)) { + if ((meminfo->x4_mask == 0 ) && (meminfo->x16_mask == 0)) { switch (meminfo->single_rank_mask) { case 0x03: dwordx = 0x00002f00; //x8 single Rank @@ -2321,18 +2445,17 @@ static void set_misc_timing(const struct mem_controller *ctrl, struct mem_info * case 0x00: dwordx = 0x00342f00; //x8 double Rank break; - default: + default: dwordx = 0x00372f00; //x8 single Rank and double Rank mixed } - } else if((meminfo->x4_mask == 0 ) && (meminfo->x16_mask == 0x01) && (meminfo->single_rank_mask == 0x01)) { - dwordx = 0x00382f00; //x8 Double Rank and x16 single Rank mixed - } else if((meminfo->x4_mask == 0 ) && (meminfo->x16_mask == 0x02) && (meminfo->single_rank_mask == 0x02)) { - dwordx = 0x00382f00; //x16 single Rank and x8 double Rank mixed + } else if ((meminfo->x4_mask == 0 ) && (meminfo->x16_mask == 0x01) && (meminfo->single_rank_mask == 0x01)) { + dwordx = 0x00382f00; //x8 Double Rank and x16 single Rank mixed + } else if ((meminfo->x4_mask == 0 ) && (meminfo->x16_mask == 0x02) && (meminfo->single_rank_mask == 0x02)) { + dwordx = 0x00382f00; //x16 single Rank and x8 double Rank mixed } - } - else { - if((meminfo->x4_mask == 0 ) && (meminfo->x16_mask == 0x00) && ((meminfo->single_rank_mask == 0x01)||(meminfo->single_rank_mask == 0x02))) { //x8 single rank + } else { + if ((meminfo->x4_mask == 0 ) && (meminfo->x16_mask == 0x00) && ((meminfo->single_rank_mask == 0x01)||(meminfo->single_rank_mask == 0x02))) { //x8 single rank dwordx = 0x002f2f00; } else { dwordx = 0x002b2f00; @@ -2341,37 +2464,37 @@ static void set_misc_timing(const struct mem_controller *ctrl, struct mem_info * break; case DCH_MemClkFreq_333MHz: dwordx = 0x00202220; - if(dimm_mask == 0x03) { - SlowAccessMode = 1; - dword = 0x00111322; - if((meminfo->x4_mask == 0 ) && (meminfo->x16_mask == 0)) { - switch (meminfo->single_rank_mask) { - case 0x03: - dwordx = 0x00302220; //x8 single Rank - break; - case 0x00: - dwordx = 0x002b2220; //x8 double Rank - break; - default: - dwordx = 0x002a2220; //x8 single Rank and double Rank mixed - } - } else if((meminfo->x4_mask == 0) && (meminfo->x16_mask == 0x01) && (meminfo->single_rank_mask == 0x01)) { - dwordx = 0x002c2220; //x8 Double Rank and x16 single Rank mixed - } else if((meminfo->x4_mask == 0) && (meminfo->x16_mask == 0x02) && (meminfo->single_rank_mask == 0x02)) { - dwordx = 0x002c2220; //x16 single Rank and x8 double Rank mixed - } - } - break; + if (dimm_mask == 0x03) { + SlowAccessMode = 1; + dword = 0x00111322; + if ((meminfo->x4_mask == 0 ) && (meminfo->x16_mask == 0)) { + switch (meminfo->single_rank_mask) { + case 0x03: + dwordx = 0x00302220; //x8 single Rank + break; + case 0x00: + dwordx = 0x002b2220; //x8 double Rank + break; + default: + dwordx = 0x002a2220; //x8 single Rank and double Rank mixed + } + } else if ((meminfo->x4_mask == 0) && (meminfo->x16_mask == 0x01) && (meminfo->single_rank_mask == 0x01)) { + dwordx = 0x002c2220; //x8 Double Rank and x16 single Rank mixed + } else if ((meminfo->x4_mask == 0) && (meminfo->x16_mask == 0x02) && (meminfo->single_rank_mask == 0x02)) { + dwordx = 0x002c2220; //x16 single Rank and x8 double Rank mixed + } + } + break; case DCH_MemClkFreq_400MHz: - dwordx = 0x00202520; + dwordx = 0x00202520; SlowAccessMode = 1; - if(dimm_mask == 0x03) { - dword = 0x00113322; - } else { - dword = 0x00113222; + if (dimm_mask == 0x03) { + dword = 0x00113322; + } else { + dword = 0x00113222; } - break; - } + break; + } print_raminit("\tdimm_mask = ", meminfo->dimm_mask); print_raminit("\tx4_mask = ", meminfo->x4_mask); @@ -2382,45 +2505,47 @@ static void set_misc_timing(const struct mem_controller *ctrl, struct mem_info * #endif #if (DIMM_SUPPORT & 0x0100)==0x0000 /* 2T mode only used for unbuffered DIMM */ - if(SlowAccessMode) { + if (SlowAccessMode) { set_SlowAccessMode(ctrl); } #endif - /* Program the Output Driver Compensation Control Registers (Function 2:Offset 0x9c, index 0, 0x20) */ - pci_write_config32_index_wait(ctrl->f2, 0x98, 0, dword); - if(meminfo->is_Width128) { - pci_write_config32_index_wait(ctrl->f2, 0x98, 0x20, dword); + /* Program the Output Driver Compensation Control Registers (Function 2:Offset 0x9c, index 0, 0x20) */ + pci_write_config32_index_wait(ctrl->f2, 0x98, 0, dword); + if (meminfo->is_Width128) { + pci_write_config32_index_wait(ctrl->f2, 0x98, 0x20, dword); } - /* Program the Address Timing Control Registers (Function 2:Offset 0x9c, index 4, 0x24) */ - pci_write_config32_index_wait(ctrl->f2, 0x98, 4, dwordx); - if(meminfo->is_Width128) { - pci_write_config32_index_wait(ctrl->f2, 0x98, 0x24, dwordx); + /* Program the Address Timing Control Registers (Function 2:Offset 0x9c, index 4, 0x24) */ + pci_write_config32_index_wait(ctrl->f2, 0x98, 4, dwordx); + if (meminfo->is_Width128) { + pci_write_config32_index_wait(ctrl->f2, 0x98, 0x24, dwordx); } } -static void set_RDqsEn(const struct mem_controller *ctrl, const struct mem_param *param, struct mem_info *meminfo) +static void set_RDqsEn(const struct mem_controller *ctrl, + const struct mem_param *param, struct mem_info *meminfo) { #if CPU_SOCKET_TYPE==0x10 //only need to set for reg and x8 - uint32_t dch; + uint32_t dch; - dch = pci_read_config32(ctrl->f2, DRAM_CONFIG_HIGH); + dch = pci_read_config32(ctrl->f2, DRAM_CONFIG_HIGH); dch &= ~DCH_RDqsEn; - if((!meminfo->x4_mask) && (!meminfo->x16_mask)) { - dch |= DCH_RDqsEn; + if ((!meminfo->x4_mask) && (!meminfo->x16_mask)) { + dch |= DCH_RDqsEn; } - pci_write_config32(ctrl->f2, DRAM_CONFIG_HIGH, dch); + pci_write_config32(ctrl->f2, DRAM_CONFIG_HIGH, dch); #endif } -static void set_idle_cycle_limit(const struct mem_controller *ctrl, const struct mem_param *param) +static void set_idle_cycle_limit(const struct mem_controller *ctrl, + const struct mem_param *param) { uint32_t dcm; /* AMD says to Hardcode this */ @@ -2431,18 +2556,19 @@ static void set_idle_cycle_limit(const struct mem_controller *ctrl, const struct pci_write_config32(ctrl->f2, DRAM_CTRL_MISC, dcm); } -static void set_RdWrQByp(const struct mem_controller *ctrl, const struct mem_param *param) + +static void set_RdWrQByp(const struct mem_controller *ctrl, + const struct mem_param *param) { set_TT(ctrl, param, DRAM_CTRL_MISC, DCM_RdWrQByp_SHIFT, DCM_RdWrQByp_MASK,0, 0, 3, 2, "RdWrQByp"); } - static long spd_set_dram_timing(const struct mem_controller *ctrl, const struct mem_param *param, long dimm_mask, struct mem_info *meminfo) { int i; - for(i = 0; i < DIMM_SOCKETS; i++) { + for (i = 0; i < DIMM_SOCKETS; i++) { int rc; if (!(dimm_mask & (1 << i))) { continue; @@ -2500,7 +2626,7 @@ static long spd_set_dram_timing(const struct mem_controller *ctrl, const struct set_Twrrd (ctrl, param); set_Twrwr (ctrl, param); set_Trdrd (ctrl, param); - + set_4RankRDimm(ctrl, param, meminfo); /* DRAM Config High */ @@ -2513,7 +2639,7 @@ static long spd_set_dram_timing(const struct mem_controller *ctrl, const struct set_ecc(ctrl, param, dimm_mask, meminfo); set_dimm_x4(ctrl, param, meminfo); set_DramTerm(ctrl, param, meminfo); - + /* DRAM Control Misc */ set_idle_cycle_limit(ctrl, param); set_RdWrQByp(ctrl, param); @@ -2521,7 +2647,8 @@ static long spd_set_dram_timing(const struct mem_controller *ctrl, const struct return dimm_mask; } -static void sdram_set_spd_registers(const struct mem_controller *ctrl, struct sys_info *sysinfo) +static void sdram_set_spd_registers(const struct mem_controller *ctrl, + struct sys_info *sysinfo) { struct spd_set_memclk_result result; const struct mem_param *param; @@ -2536,39 +2663,39 @@ static void sdram_set_spd_registers(const struct mem_controller *ctrl, struct sy meminfo = &sysinfo->meminfo[ctrl->node_id]; print_debug_addr("sdram_set_spd_registers: paramx :", ¶mx); - + activate_spd_rom(ctrl); dimm_mask = spd_detect_dimms(ctrl); if (!(dimm_mask & ((1 << DIMM_SOCKETS) - 1))) { print_debug("No memory for this cpu\r\n"); return; } - dimm_mask = spd_enable_2channels(ctrl, dimm_mask, meminfo); - if (dimm_mask < 0) + dimm_mask = spd_enable_2channels(ctrl, dimm_mask, meminfo); + if (dimm_mask < 0) goto hw_spd_err; - dimm_mask = spd_set_ram_size(ctrl , dimm_mask, meminfo); - if (dimm_mask < 0) + dimm_mask = spd_set_ram_size(ctrl , dimm_mask, meminfo); + if (dimm_mask < 0) goto hw_spd_err; - dimm_mask = spd_handle_unbuffered_dimms(ctrl, dimm_mask, meminfo); - if (dimm_mask < 0) + dimm_mask = spd_handle_unbuffered_dimms(ctrl, dimm_mask, meminfo); + if (dimm_mask < 0) goto hw_spd_err; result = spd_set_memclk(ctrl, dimm_mask, meminfo); param = result.param; dimm_mask = result.dimm_mask; - if (dimm_mask < 0) + if (dimm_mask < 0) goto hw_spd_err; //store memclk set to sysinfo, incase we need rebuilt param again meminfo->memclk_set = param->dch_memclk; memcpy(¶mx, param, sizeof(paramx)); - + paramx.divisor = get_exact_divisor(param->dch_memclk, paramx.divisor); dimm_mask = spd_set_dram_timing(ctrl, ¶mx , dimm_mask, meminfo); // dimm_mask will be stored to meminfo->dimm_mask if (dimm_mask < 0) goto hw_spd_err; - + order_dimms(ctrl, meminfo); return; @@ -2586,120 +2713,121 @@ static void sdram_set_spd_registers(const struct mem_controller *ctrl, struct sy #if HW_MEM_HOLE_SIZEK != 0 static uint32_t hoist_memory(int controllers, const struct mem_controller *ctrl,unsigned hole_startk, int i) { - int ii; - uint32_t carry_over; - device_t dev; - uint32_t base, limit; - uint32_t basek; - uint32_t hoist; + int ii; + uint32_t carry_over; + device_t dev; + uint32_t base, limit; + uint32_t basek; + uint32_t hoist; int j; - carry_over = (4*1024*1024) - hole_startk; + carry_over = (4*1024*1024) - hole_startk; - for(ii=controllers - 1;ii>i;ii--) { - base = pci_read_config32(ctrl[0].f1, 0x40 + (ii << 3)); - if ((base & ((1<<1)|(1<<0))) != ((1<<1)|(1<<0))) { - continue; - } + for (ii=controllers - 1;ii>i;ii--) { + base = pci_read_config32(ctrl[0].f1, 0x40 + (ii << 3)); + if ((base & ((1<<1)|(1<<0))) != ((1<<1)|(1<<0))) { + continue; + } limit = pci_read_config32(ctrl[0].f1, 0x44 + (ii << 3)); limit += (carry_over << 2 ); base += (carry_over << 2 ); - for(j = 0; j < controllers; j++) { - pci_write_config32(ctrl[j].f1, 0x44 + (ii << 3), limit); - pci_write_config32(ctrl[j].f1, 0x40 + (ii << 3), base ); + for (j = 0; j < controllers; j++) { + pci_write_config32(ctrl[j].f1, 0x44 + (ii << 3), limit); + pci_write_config32(ctrl[j].f1, 0x40 + (ii << 3), base ); } - } - limit = pci_read_config32(ctrl[0].f1, 0x44 + (i << 3)); + } + limit = pci_read_config32(ctrl[0].f1, 0x44 + (i << 3)); limit += (carry_over << 2); - for(j = 0; j < controllers; j++) { - pci_write_config32(ctrl[j].f1, 0x44 + (i << 3), limit); - } - dev = ctrl[i].f1; - base = pci_read_config32(dev, 0x40 + (i << 3)); - basek = (base & 0xffff0000) >> 2; - if(basek == hole_startk) { - //don't need set memhole here, because hole off set will be 0, overflow - //so need to change base reg instead, new basek will be 4*1024*1024 - base &= 0x0000ffff; - base |= (4*1024*1024)<<2; - for(j = 0; j < controllers; j++) { - pci_write_config32(ctrl[j].f1, 0x40 + (i<<3), base); - } - } - else - { - hoist = /* hole start address */ - ((hole_startk << 10) & 0xff000000) + - /* hole address to memory controller address */ - (((basek + carry_over) >> 6) & 0x0000ff00) + - /* enable */ - 1; - pci_write_config32(dev, 0xf0, hoist); - } - - return carry_over; + for (j = 0; j < controllers; j++) { + pci_write_config32(ctrl[j].f1, 0x44 + (i << 3), limit); + } + dev = ctrl[i].f1; + base = pci_read_config32(dev, 0x40 + (i << 3)); + basek = (base & 0xffff0000) >> 2; + if (basek == hole_startk) { + //don't need set memhole here, because hole off set will be 0, overflow + //so need to change base reg instead, new basek will be 4*1024*1024 + base &= 0x0000ffff; + base |= (4*1024*1024)<<2; + for (j = 0; j < controllers; j++) { + pci_write_config32(ctrl[j].f1, 0x40 + (i<<3), base); + } + } else { + hoist = /* hole start address */ + ((hole_startk << 10) & 0xff000000) + + /* hole address to memory controller address */ + (((basek + carry_over) >> 6) & 0x0000ff00) + + /* enable */ + 1; + pci_write_config32(dev, 0xf0, hoist); + } + + return carry_over; } static void set_hw_mem_hole(int controllers, const struct mem_controller *ctrl) { - uint32_t hole_startk; + uint32_t hole_startk; int i; - hole_startk = 4*1024*1024 - HW_MEM_HOLE_SIZEK; + hole_startk = 4*1024*1024 - HW_MEM_HOLE_SIZEK; #if HW_MEM_HOLE_SIZE_AUTO_INC == 1 - //We need to double check if the hole_startk is valid, if it is equal to basek, we need to decrease it some + /* We need to double check if the hole_startk is valid, if it is equal + to basek, we need to decrease it some */ uint32_t basek_pri; - for(i=0; i> 2; - if(base_k == hole_startk) { - hole_startk -= (base_k - basek_pri)>>1; // decrease mem hole startk to make sure it is on middle of previous node - break; //only one hole - } + for (i=0; i> 2; + if (base_k == hole_startk) { + /* decrease mem hole startk to make sure it is + on middle of previous node */ + hole_startk -= (base_k - basek_pri) >> 1; + break; //only one hole + } basek_pri = base_k; - } + } #endif - //find node index that need do set hole - for(i=0; i> 2; - limit_k = ((limit + 0x00010000) & 0xffff0000) >> 2; - if ((base_k <= hole_startk) && (limit_k > hole_startk)) { - unsigned end_k; - hoist_memory(controllers, ctrl, hole_startk, i); - end_k = memory_end_k(ctrl, controllers); - set_top_mem(end_k, hole_startk); - break; //only one hole - } - } + /* find node index that need do set hole */ + for (i=0; i < controllers; i++) { + uint32_t base, limit; + unsigned base_k, limit_k; + base = pci_read_config32(ctrl[0].f1, 0x40 + (i << 3)); + if ((base & ((1 << 1) | (1 << 0))) != ((1 << 1) | (1 << 0))) { + continue; + } + limit = pci_read_config32(ctrl[0].f1, 0x44 + (i << 3)); + base_k = (base & 0xffff0000) >> 2; + limit_k = ((limit + 0x00010000) & 0xffff0000) >> 2; + if ((base_k <= hole_startk) && (limit_k > hole_startk)) { + unsigned end_k; + hoist_memory(controllers, ctrl, hole_startk, i); + end_k = memory_end_k(ctrl, controllers); + set_top_mem(end_k, hole_startk); + break; //only one hole + } + } } - #endif -static void sdram_enable(int controllers, const struct mem_controller *ctrl, struct sys_info *sysinfo) + +static void sdram_enable(int controllers, const struct mem_controller *ctrl, + struct sys_info *sysinfo) { int i; - #if K8_REV_F_SUPPORT_F0_F1_WORKAROUND == 1 - unsigned cpu_f0_f1[8]; + unsigned cpu_f0_f1[8]; /* FIXME: How about 32 node machine later? */ tsc_t tsc, tsc0[8]; - + print_debug_addr("sdram_enable: tsc0[8]: ", &tsc0[0]); #endif uint32_t dword; @@ -2710,23 +2838,22 @@ static void sdram_enable(int controllers, const struct mem_controller *ctrl, str } /* Before enabling memory start the memory clocks */ - for(i = 0; i < controllers; i++) { + for (i = 0; i < controllers; i++) { uint32_t dtl, dch; if (!sysinfo->ctrl_present[ i ]) continue; - dch = pci_read_config32(ctrl[i].f2, DRAM_CONFIG_HIGH); + dch = pci_read_config32(ctrl[i].f2, DRAM_CONFIG_HIGH); - // if no memory installed, disabled the interface - if(sysinfo->meminfo[i].dimm_mask==0x00){ - dch |= DCH_DisDramInterface; - pci_write_config32(ctrl[i].f2, DRAM_CONFIG_HIGH, dch); + /* if no memory installed, disabled the interface */ + if (sysinfo->meminfo[i].dimm_mask==0x00){ + dch |= DCH_DisDramInterface; + pci_write_config32(ctrl[i].f2, DRAM_CONFIG_HIGH, dch); - } - else { - dch |= DCH_MemClkFreqVal; - pci_write_config32(ctrl[i].f2, DRAM_CONFIG_HIGH, dch); - /* address timing and Output driver comp Control */ - set_misc_timing(ctrl+i, sysinfo->meminfo+i ); + } else { + dch |= DCH_MemClkFreqVal; + pci_write_config32(ctrl[i].f2, DRAM_CONFIG_HIGH, dch); + /* address timing and Output driver comp Control */ + set_misc_timing(ctrl+i, sysinfo->meminfo+i ); } } @@ -2734,14 +2861,14 @@ static void sdram_enable(int controllers, const struct mem_controller *ctrl, str memreset(controllers, ctrl); #if 0 print_debug("prepare to InitDram:"); - for(i=0; i<10; i++) { + for (i=0; i<10; i++) { print_debug_hex32(i); print_debug("\b\b\b\b\b\b\b\b"); } print_debug("\r\n"); #endif - for(i = 0; i < controllers; i++) { + for (i = 0; i < controllers; i++) { uint32_t dcl, dch; if (!sysinfo->ctrl_present[ i ]) continue; @@ -2765,38 +2892,37 @@ static void sdram_enable(int controllers, const struct mem_controller *ctrl, str } #if K8_REV_F_SUPPORT_F0_F1_WORKAROUND == 1 - cpu_f0_f1[i] = is_cpu_pre_f2_in_bsp(i); - if(cpu_f0_f1[i]) { + cpu_f0_f1[i] = is_cpu_pre_f2_in_bsp(i); + if (cpu_f0_f1[i]) { //Rev F0/F1 workaround #if 1 - /* Set the DqsRcvEnTrain bit */ - dword = pci_read_config32(ctrl[i].f2, DRAM_CTRL); - dword |= DC_DqsRcvEnTrain; - pci_write_config32(ctrl[i].f2, DRAM_CTRL, dword); + /* Set the DqsRcvEnTrain bit */ + dword = pci_read_config32(ctrl[i].f2, DRAM_CTRL); + dword |= DC_DqsRcvEnTrain; + pci_write_config32(ctrl[i].f2, DRAM_CTRL, dword); #endif - tsc0[i] = rdtsc(); + tsc0[i] = rdtsc(); } #endif #if 0 - /* Set the DqsRcvEnTrain bit */ - dword = pci_read_config32(ctrl[i].f2, DRAM_CTRL); - dword |= DC_DqsRcvEnTrain; - pci_write_config32(ctrl[i].f2, DRAM_CTRL, dword); + /* Set the DqsRcvEnTrain bit */ + dword = pci_read_config32(ctrl[i].f2, DRAM_CTRL); + dword |= DC_DqsRcvEnTrain; + pci_write_config32(ctrl[i].f2, DRAM_CTRL, dword); #endif pci_write_config32(ctrl[i].f2, DRAM_CONFIG_LOW, dcl); dcl |= DCL_InitDram; pci_write_config32(ctrl[i].f2, DRAM_CONFIG_LOW, dcl); - } - for(i = 0; i < controllers; i++) { + for (i = 0; i < controllers; i++) { uint32_t dcl, dch, dcm; if (!sysinfo->ctrl_present[ i ]) continue; /* Skip everything if I don't have any memory on this controller */ - if(sysinfo->meminfo[i].dimm_mask==0x00) continue; + if (sysinfo->meminfo[i].dimm_mask==0x00) continue; print_debug("Initializing memory: "); int loops = 0; @@ -2818,57 +2944,57 @@ static void sdram_enable(int controllers, const struct mem_controller *ctrl, str } while(((dcm & DCM_MemClrStatus) == 0) /* || ((dcm & DCM_DramEnabled) == 0)*/ ); #if K8_REV_F_SUPPORT_F0_F1_WORKAROUND == 1 - if(cpu_f0_f1[i]) { - tsc= rdtsc(); + if (cpu_f0_f1[i]) { + tsc= rdtsc(); - print_debug_dqs_tsc("\r\nbegin tsc0", i, tsc0[i].hi, tsc0[i].lo, 2); - print_debug_dqs_tsc("end tsc ", i, tsc.hi, tsc.lo, 2); + print_debug_dqs_tsc("\r\nbegin tsc0", i, tsc0[i].hi, tsc0[i].lo, 2); + print_debug_dqs_tsc("end tsc ", i, tsc.hi, tsc.lo, 2); - if(tsc.lotom_k = ((msr.hi<<24) | (msr.lo>>8))>>2; - - //[4G, TOM2) - msr = rdmsr(TOP_MEM2); - sysinfo->tom2_k = ((msr.hi<<24)| (msr.lo>>8))>>2; - } - - for(i = 0; i < controllers; i++) { - sysinfo->mem_trained[i] = 0; - - if (!sysinfo->ctrl_present[ i ]) - continue; - - /* Skip everything if I don't have any memory on this controller */ - if(sysinfo->meminfo[i].dimm_mask==0x00) + + /* store tom to sysinfo, and it will be used by dqs_timing */ + { + msr_t msr; + //[1M, TOM) + msr = rdmsr(TOP_MEM); + sysinfo->tom_k = ((msr.hi<<24) | (msr.lo>>8))>>2; + + //[4G, TOM2) + msr = rdmsr(TOP_MEM2); + sysinfo->tom2_k = ((msr.hi<<24)| (msr.lo>>8))>>2; + } + + for (i = 0; i < controllers; i++) { + sysinfo->mem_trained[i] = 0; + + if (!sysinfo->ctrl_present[ i ]) continue; - sysinfo->mem_trained[i] = 0x80; // mem need to be trained - } + /* Skip everything if I don't have any memory on this controller */ + if (sysinfo->meminfo[i].dimm_mask==0x00) + continue; + + sysinfo->mem_trained[i] = 0x80; // mem need to be trained + } #if MEM_TRAIN_SEQ == 0 @@ -2879,26 +3005,26 @@ static void sdram_enable(int controllers, const struct mem_controller *ctrl, str #endif #else - #if MEM_TRAIN_SEQ == 2 - //need to enable mtrr, so dqs training could access the test address - setup_mtrr_dqs(sysinfo->tom_k, sysinfo->tom2_k); - #endif +#if MEM_TRAIN_SEQ == 2 + /* need to enable mtrr, so dqs training could access the test address */ + setup_mtrr_dqs(sysinfo->tom_k, sysinfo->tom2_k); +#endif - for(i = 0; i < controllers; i++) { - /* Skip everything if I don't have any memory on this controller */ - if(sysinfo->mem_trained[i]!=0x80) + for (i = 0; i < controllers; i++) { + /* Skip everything if I don't have any memory on this controller */ + if (sysinfo->mem_trained[i]!=0x80) continue; - dqs_timing(i, &ctrl[i], sysinfo, 1); + dqs_timing(i, &ctrl[i], sysinfo, 1); - #if MEM_TRAIN_SEQ == 1 - break; // only train the first node with ram - #endif - } +#if MEM_TRAIN_SEQ == 1 + break; // only train the first node with ram +#endif + } - #if MEM_TRAIN_SEQ == 2 - clear_mtrr_dqs(sysinfo->tom2_k); - #endif +#if MEM_TRAIN_SEQ == 2 + clear_mtrr_dqs(sysinfo->tom2_k); +#endif #endif @@ -2907,24 +3033,27 @@ static void sdram_enable(int controllers, const struct mem_controller *ctrl, str #endif } -static void fill_mem_ctrl(int controllers, struct mem_controller *ctrl_a, const uint16_t *spd_addr) + + +static void fill_mem_ctrl(int controllers, struct mem_controller *ctrl_a, + const uint16_t *spd_addr) { - int i; + int i; int j; struct mem_controller *ctrl; - for(i=0;inode_id = i; - ctrl->f0 = PCI_DEV(0, 0x18+i, 0); - ctrl->f1 = PCI_DEV(0, 0x18+i, 1); - ctrl->f2 = PCI_DEV(0, 0x18+i, 2); - ctrl->f3 = PCI_DEV(0, 0x18+i, 3); - - if(spd_addr == (void *)0) continue; - - for(j=0;jchannel0[j] = spd_addr[(i*2+0)*DIMM_SOCKETS + j]; - ctrl->channel1[j] = spd_addr[(i*2+1)*DIMM_SOCKETS + j]; - } - } + for (i=0;inode_id = i; + ctrl->f0 = PCI_DEV(0, 0x18+i, 0); + ctrl->f1 = PCI_DEV(0, 0x18+i, 1); + ctrl->f2 = PCI_DEV(0, 0x18+i, 2); + ctrl->f3 = PCI_DEV(0, 0x18+i, 3); + + if (spd_addr == (void *)0) continue; + + for (j=0;jchannel0[j] = spd_addr[(i*2+0)*DIMM_SOCKETS + j]; + ctrl->channel1[j] = spd_addr[(i*2+1)*DIMM_SOCKETS + j]; + } + } } -- cgit v1.2.3