/* * This file is part of the libpayload project. * * Copyright (C) 2015 Google, Inc. */ #include #include #include "bitmap.h" /* * 'canvas' is the drawing area located in the center of the screen. It's a * square area, stretching vertically to the edges of the screen, leaving * non-drawing areas on the left and right. The screen is assumed to be * landscape. */ static struct vector canvas; static uint32_t canvas_offset; /* horizontal position of canvas */ /* * Framebuffer is assumed to assign a higher coordinate (larger x, y) to * a higher address */ static struct cb_framebuffer *fbinfo; static uint8_t *fbaddr; static char initialized = 0; #define LOG(x...) printf("CBGFX: " x) /* * This is the range used internally to scale bitmap images. (e.g. 128 = 50%, * 512 = 200%). We choose 256 so that division and multiplication become bit * shift operation. */ #define BITMAP_SCALE_BASE 256 #define ROUNDUP(x, y) ((x) + ((y) - ((x) % (y)))) #define ABS(x) ((x) < 0 ? -(x) : (x)) static void add_vectors(struct vector *out, const struct vector *v1, const struct vector *v2) { out->x = v1->x + v2->x; out->y = v1->y + v2->y; } static void scale_vector(struct vector *out, const struct vector *in, size_t scale, size_t base) { out->x = in->x * scale / base; out->y = in->y * scale / base; } static void to_canvas(const struct vector *relative, struct vector *absolute) { absolute->x = canvas.width * relative->x / CANVAS_SCALE; absolute->y = canvas.height * relative->y / CANVAS_SCALE; } /* * Returns 1 if exclusively within canvas, or 0 if inclusively within canvas. */ static int within_canvas(const struct vector *v) { if (v->x < canvas.width && v->y < canvas.height) return 1; else if (v->x <= canvas.width && v->y <= canvas.height) return 0; else return -1; } static inline uint32_t calculate_color(const struct rgb_color *rgb) { uint32_t color = 0; color |= (rgb->red >> (8 - fbinfo->red_mask_size)) << fbinfo->red_mask_pos; color |= (rgb->green >> (8 - fbinfo->green_mask_size)) << fbinfo->green_mask_pos; color |= (rgb->blue >> (8 - fbinfo->blue_mask_size)) << fbinfo->blue_mask_pos; return color; } /* * Plot a pixel in a framebuffer. This is called from tight loops. Keep it slim * and do the validation at callers' site. */ static inline void set_pixel(struct vector *coord, uint32_t color) { const int bpp = fbinfo->bits_per_pixel; int i; uint8_t * const pixel = fbaddr + (coord->x + canvas_offset + coord->y * fbinfo->x_resolution) * bpp / 8; for (i = 0; i < bpp / 8; i++) pixel[i] = (color >> (i * 8)); } /* * Initializes the library. Automatically called by APIs. It sets up * the canvas and the framebuffer. */ static int cbgfx_init(void) { if (initialized) return 0; fbinfo = lib_sysinfo.framebuffer; if (!fbinfo) return -1; fbaddr = phys_to_virt((uint8_t *)(uintptr_t)(fbinfo->physical_address)); if (!fbaddr) return -1; /* calculate canvas size, assuming the screen is landscape */ canvas.height = fbinfo->y_resolution; canvas.width = canvas.height; canvas_offset = (fbinfo->x_resolution - canvas.width) / 2; if (canvas_offset < 0) { LOG("Portrait screens are not supported\n"); return -1; } initialized = 1; LOG("cbgfx initialized: canvas width=%d, height=%d, offset=%d\n", canvas.width, canvas.height, canvas_offset); return 0; } int draw_box(const struct vector *top_left_rel, const struct vector *size_rel, const struct rgb_color *rgb) { struct vector top_left; struct vector size; struct vector p, t; const uint32_t color = calculate_color(rgb); if (cbgfx_init()) return CBGFX_ERROR_INIT; to_canvas(top_left_rel, &top_left); to_canvas(size_rel, &size); add_vectors(&t, &top_left, &size); if (within_canvas(&t) < 0) { LOG("Box exceeds canvas boundary\n"); return CBGFX_ERROR_BOUNDARY; } for (p.y = top_left.y; p.y < t.y; p.y++) for (p.x = top_left.x; p.x < t.x; p.x++) set_pixel(&p, color); return CBGFX_SUCCESS; } int clear_canvas(struct rgb_color *rgb) { const struct vector coord = { .x = 0, .y = 0, }; const struct vector size = { .width = CANVAS_SCALE, .height = CANVAS_SCALE, }; if (cbgfx_init()) return CBGFX_ERROR_INIT; return draw_box(&coord, &size, rgb); } static int draw_bitmap_v3(const struct vector *top_left, size_t scale, const struct vector *image, const struct bitmap_header_v3 *header, const struct bitmap_palette_element_v3 *palette, const uint8_t *pixel_array) { const int bpp = header->bits_per_pixel; int32_t dir; struct vector p; if (header->compression) { LOG("Compressed bitmaps are not supported\n"); return CBGFX_ERROR_BITMAP_FORMAT; } if (bpp >= 16) { LOG("Non-palette bitmaps are not supported\n"); return CBGFX_ERROR_BITMAP_FORMAT; } if (bpp != 8) { LOG("Unsupported bits per pixel: %d\n", bpp); return CBGFX_ERROR_BITMAP_FORMAT; } if (scale == 0) { LOG("Scaling out of range\n"); return CBGFX_ERROR_SCALE_OUT_OF_RANGE; } const int32_t y_stride = ROUNDUP(header->width * bpp / 8, 4); /* * header->height can be positive or negative. * * If it's negative, pixel data is stored from top to bottom. We render * image from the lowest row to the highest row. * * If it's positive, pixel data is stored from bottom to top. We render * image from the highest row to the lowest row. */ p.y = top_left->y; if (header->height < 0) { dir = 1; } else { p.y += image->height - 1; dir = -1; } /* * Plot pixels scaled by the nearest neighbor interpolation. We scan * over the image on canvas (using d) and find the corresponding pixel * in the bitmap data (using s). */ struct vector s, d; for (d.y = 0; d.y < image->height; d.y++, p.y += dir) { s.y = d.y * BITMAP_SCALE_BASE / scale; const uint8_t *data = pixel_array + s.y * y_stride; p.x = top_left->x; for (d.x = 0; d.x < image->width; d.x++, p.x++) { s.x = d.x * BITMAP_SCALE_BASE / scale; if (s.y * y_stride + s.x > header->size) /* * Because we're handling integers rounded by * divisions, we might get here legitimately * when rendering the last row of a sane image. */ return CBGFX_SUCCESS; uint8_t index = data[s.x]; if (index >= header->colors_used) { LOG("Color index exceeds palette boundary\n"); return CBGFX_ERROR_BITMAP_DATA; } const struct rgb_color rgb = { .red = palette[index].red, .green = palette[index].green, .blue = palette[index].blue, }; set_pixel(&p, calculate_color(&rgb)); } } return CBGFX_SUCCESS; } static int get_bitmap_file_header(const void *bitmap, size_t size, struct bitmap_file_header *file_header) { const struct bitmap_file_header *fh; if (sizeof(*file_header) > size) { LOG("Invalid bitmap data\n"); return CBGFX_ERROR_BITMAP_DATA; } fh = (struct bitmap_file_header *)bitmap; if (fh->signature[0] != 'B' || fh->signature[1] != 'M') { LOG("Bitmap signature mismatch\n"); return CBGFX_ERROR_BITMAP_SIGNATURE; } file_header->file_size = le32toh(fh->file_size); if (file_header->file_size != size) { LOG("Bitmap file size does not match cbfs file size\n"); return CBGFX_ERROR_BITMAP_DATA; } file_header->bitmap_offset = le32toh(fh->bitmap_offset); return CBGFX_SUCCESS; } static int parse_bitmap_header_v3(const uint8_t *bitmap, const struct bitmap_file_header *file_header, /* ^--- IN / OUT ---v */ struct bitmap_header_v3 *header, const struct bitmap_palette_element_v3 **palette, const uint8_t **pixel_array) { struct bitmap_header_v3 *h; size_t header_offset = sizeof(struct bitmap_file_header); size_t header_size = sizeof(struct bitmap_header_v3); size_t palette_offset = header_offset + header_size; size_t file_size = file_header->file_size; h = (struct bitmap_header_v3 *)(bitmap + header_offset); header->header_size = le32toh(h->header_size); if (header->header_size != header_size) { LOG("Unsupported bitmap format\n"); return CBGFX_ERROR_BITMAP_FORMAT; } header->width = le32toh(h->width); header->height = le32toh(h->height); header->bits_per_pixel = le16toh(h->bits_per_pixel); header->compression = le32toh(h->compression); header->size = le32toh(h->size); header->colors_used = le32toh(h->colors_used); size_t palette_size = header->colors_used * sizeof(struct bitmap_palette_element_v3); size_t pixel_offset = file_header->bitmap_offset; if (pixel_offset > file_size) { LOG("Bitmap pixel data exceeds buffer boundary\n"); return CBGFX_ERROR_BITMAP_DATA; } if (palette_offset + palette_size > pixel_offset) { LOG("Bitmap palette data exceeds palette boundary\n"); return CBGFX_ERROR_BITMAP_DATA; } *palette = (struct bitmap_palette_element_v3 *)(bitmap + palette_offset); size_t pixel_size = header->size; if (pixel_size != header->height * ROUNDUP(header->width * header->bits_per_pixel / 8, 4)) { LOG("Bitmap pixel array size does not match expected size\n"); return CBGFX_ERROR_BITMAP_DATA; } if (pixel_offset + pixel_size > file_size) { LOG("Bitmap pixel array exceeds buffer boundary\n"); return CBGFX_ERROR_BITMAP_DATA; } *pixel_array = bitmap + pixel_offset; return CBGFX_SUCCESS; } int draw_bitmap(const struct vector *top_left_rel, size_t scale_rel, const void *bitmap, size_t size) { struct bitmap_file_header file_header; struct bitmap_header_v3 header; const struct bitmap_palette_element_v3 *palette; const uint8_t *pixel_array; struct vector top_left, t, image; size_t scale; int rv; if (cbgfx_init()) return CBGFX_ERROR_INIT; rv = get_bitmap_file_header(bitmap, size, &file_header); if (rv) return rv; /* only v3 is supported now */ rv = parse_bitmap_header_v3(bitmap, &file_header, &header, &palette, &pixel_array); if (rv) return rv; /* convert relative coordinate to canvas coordinate */ to_canvas(top_left_rel, &top_left); /* convert canvas scale to self scale (relative to image width) */ scale = scale_rel * canvas.width * BITMAP_SCALE_BASE / (CANVAS_SCALE * header.width); /* calculate height and width of the image on canvas */ image.width = header.width; image.height = ABS(header.height); scale_vector(&image, &image, scale, BITMAP_SCALE_BASE); /* check whether right bottom corner exceeds canvas boundaries or not */ add_vectors(&t, &image, &top_left); if (within_canvas(&t) < 0) { LOG("Bitmap image exceeds canvas boundary\n"); return CBGFX_ERROR_BOUNDARY; } return draw_bitmap_v3(&top_left, scale, &image, &header, palette, pixel_array); }