/* * This file is part of the coreboot project. * * Copyright (C) 2003 Eric W. Biederman * Copyright (C) 2009 Ron Minnich * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA, 02110-1301 USA */ #include #include #include #include #include #include #include #include #include #include #include #include /* Maximum physical address we can use for the coreboot bounce buffer. */ #ifndef MAX_ADDR #define MAX_ADDR -1UL #endif extern unsigned char _ram_seg; extern unsigned char _eram_seg; struct segment { struct segment *next; struct segment *prev; struct segment *phdr_next; struct segment *phdr_prev; unsigned long s_dstaddr; unsigned long s_srcaddr; unsigned long s_memsz; unsigned long s_filesz; int compression; }; struct verify_callback { struct verify_callback *next; int (*callback)(struct verify_callback *vcb, Elf_ehdr *ehdr, Elf_phdr *phdr, struct segment *head); unsigned long desc_offset; unsigned long desc_addr; }; struct ip_checksum_vcb { struct verify_callback data; unsigned short ip_checksum; }; static int selfboot(struct lb_memory *mem, struct cbfs_payload *payload); void * cbfs_load_payload(struct lb_memory *lb_mem, const char *name) { struct cbfs_payload *payload; payload = (struct cbfs_payload *)cbfs_find_file(name, CBFS_TYPE_PAYLOAD); if (payload == NULL) return (void *) -1; printk(BIOS_DEBUG, "Got a payload\n"); selfboot(lb_mem, payload); printk(BIOS_EMERG, "SELFBOOT RETURNED!\n"); return (void *) -1; } /* The problem: * Static executables all want to share the same addresses * in memory because only a few addresses are reliably present on * a machine, and implementing general relocation is hard. * * The solution: * - Allocate a buffer the size of the coreboot image plus additional * required space. * - Anything that would overwrite coreboot copy into the lower part of * the buffer. * - After loading an ELF image copy coreboot to the top of the buffer. * - Then jump to the loaded image. * * Benefits: * - Nearly arbitrary standalone executables can be loaded. * - Coreboot is preserved, so it can be returned to. * - The implementation is still relatively simple, * and much simpler than the general case implemented in kexec. * */ static unsigned long bounce_size, bounce_buffer; static void get_bounce_buffer(struct lb_memory *mem, unsigned long req_size) { unsigned long lb_size; unsigned long mem_entries; unsigned long buffer; int i; lb_size = (unsigned long)(&_eram_seg - &_ram_seg); /* Double coreboot size so I have somewhere to place a copy to return to */ lb_size = req_size + lb_size; mem_entries = (mem->size - sizeof(*mem))/sizeof(mem->map[0]); buffer = 0; for(i = 0; i < mem_entries; i++) { unsigned long mstart, mend; unsigned long msize; unsigned long tbuffer; if (mem->map[i].type != LB_MEM_RAM) continue; if (unpack_lb64(mem->map[i].start) > MAX_ADDR) continue; if (unpack_lb64(mem->map[i].size) < lb_size) continue; mstart = unpack_lb64(mem->map[i].start); msize = MAX_ADDR - mstart +1; if (msize > unpack_lb64(mem->map[i].size)) msize = unpack_lb64(mem->map[i].size); mend = mstart + msize; tbuffer = mend - lb_size; if (tbuffer < buffer) continue; buffer = tbuffer; } bounce_buffer = buffer; bounce_size = req_size; } static int valid_area(struct lb_memory *mem, unsigned long buffer, unsigned long start, unsigned long len) { /* Check through all of the memory segments and ensure * the segment that was passed in is completely contained * in RAM. */ int i; unsigned long end = start + len; unsigned long mem_entries = (mem->size - sizeof(*mem))/sizeof(mem->map[0]); /* See if I conflict with the bounce buffer */ if (end >= buffer) { return 0; } /* Walk through the table of valid memory ranges and see if I * have a match. */ for(i = 0; i < mem_entries; i++) { uint64_t mstart, mend; uint32_t mtype; mtype = mem->map[i].type; mstart = unpack_lb64(mem->map[i].start); mend = mstart + unpack_lb64(mem->map[i].size); if ((mtype == LB_MEM_RAM) && (start < mend) && (end > mstart)) { break; } if ((mtype == LB_MEM_TABLE) && (start < mend) && (end > mstart)) { printk(BIOS_ERR, "Payload is overwriting coreboot tables.\n"); break; } } if (i == mem_entries) { printk(BIOS_ERR, "No matching ram area found for range:\n"); printk(BIOS_ERR, " [0x%016lx, 0x%016lx)\n", start, end); printk(BIOS_ERR, "Ram areas\n"); for(i = 0; i < mem_entries; i++) { uint64_t mstart, mend; uint32_t mtype; mtype = mem->map[i].type; mstart = unpack_lb64(mem->map[i].start); mend = mstart + unpack_lb64(mem->map[i].size); printk(BIOS_ERR, " [0x%016lx, 0x%016lx) %s\n", (unsigned long)mstart, (unsigned long)mend, (mtype == LB_MEM_RAM)?"RAM":"Reserved"); } return 0; } return 1; } static const unsigned long lb_start = (unsigned long)&_ram_seg; static const unsigned long lb_end = (unsigned long)&_eram_seg; static int overlaps_coreboot(struct segment *seg) { unsigned long start, end; start = seg->s_dstaddr; end = start + seg->s_memsz; return !((end <= lb_start) || (start >= lb_end)); } static int relocate_segment(unsigned long buffer, struct segment *seg) { /* Modify all segments that want to load onto coreboot * to load onto the bounce buffer instead. */ /* ret: 1 : A new segment is inserted before the seg. * 0 : A new segment is inserted after the seg, or no new one. */ unsigned long start, middle, end, ret = 0; printk(BIOS_SPEW, "lb: [0x%016lx, 0x%016lx)\n", lb_start, lb_end); /* I don't conflict with coreboot so get out of here */ if (!overlaps_coreboot(seg)) return 0; start = seg->s_dstaddr; middle = start + seg->s_filesz; end = start + seg->s_memsz; printk(BIOS_SPEW, "segment: [0x%016lx, 0x%016lx, 0x%016lx)\n", start, middle, end); if (seg->compression == CBFS_COMPRESS_NONE) { /* Slice off a piece at the beginning * that doesn't conflict with coreboot. */ if (start < lb_start) { struct segment *new; unsigned long len = lb_start - start; new = malloc(sizeof(*new)); *new = *seg; new->s_memsz = len; seg->s_memsz -= len; seg->s_dstaddr += len; seg->s_srcaddr += len; if (seg->s_filesz > len) { new->s_filesz = len; seg->s_filesz -= len; } else { seg->s_filesz = 0; } /* Order by stream offset */ new->next = seg; new->prev = seg->prev; seg->prev->next = new; seg->prev = new; /* Order by original program header order */ new->phdr_next = seg; new->phdr_prev = seg->phdr_prev; seg->phdr_prev->phdr_next = new; seg->phdr_prev = new; /* compute the new value of start */ start = seg->s_dstaddr; printk(BIOS_SPEW, " early: [0x%016lx, 0x%016lx, 0x%016lx)\n", new->s_dstaddr, new->s_dstaddr + new->s_filesz, new->s_dstaddr + new->s_memsz); ret = 1; } /* Slice off a piece at the end * that doesn't conflict with coreboot */ if (end > lb_end) { unsigned long len = lb_end - start; struct segment *new; new = malloc(sizeof(*new)); *new = *seg; seg->s_memsz = len; new->s_memsz -= len; new->s_dstaddr += len; new->s_srcaddr += len; if (seg->s_filesz > len) { seg->s_filesz = len; new->s_filesz -= len; } else { new->s_filesz = 0; } /* Order by stream offset */ new->next = seg->next; new->prev = seg; seg->next->prev = new; seg->next = new; /* Order by original program header order */ new->phdr_next = seg->phdr_next; new->phdr_prev = seg; seg->phdr_next->phdr_prev = new; seg->phdr_next = new; printk(BIOS_SPEW, " late: [0x%016lx, 0x%016lx, 0x%016lx)\n", new->s_dstaddr, new->s_dstaddr + new->s_filesz, new->s_dstaddr + new->s_memsz); } } /* Now retarget this segment onto the bounce buffer */ /* sort of explanation: the buffer is a 1:1 mapping to coreboot. * so you will make the dstaddr be this buffer, and it will get copied * later to where coreboot lives. */ seg->s_dstaddr = buffer + (seg->s_dstaddr - lb_start); printk(BIOS_SPEW, " bounce: [0x%016lx, 0x%016lx, 0x%016lx)\n", seg->s_dstaddr, seg->s_dstaddr + seg->s_filesz, seg->s_dstaddr + seg->s_memsz); return ret; } static int build_self_segment_list( struct segment *head, struct lb_memory *mem, struct cbfs_payload *payload, u32 *entry) { struct segment *new; struct segment *ptr; struct cbfs_payload_segment *segment, *first_segment; memset(head, 0, sizeof(*head)); head->phdr_next = head->phdr_prev = head; head->next = head->prev = head; first_segment = segment = &payload->segments; while(1) { printk(BIOS_DEBUG, "Loading segment from rom address 0x%p\n", segment); switch(segment->type) { case PAYLOAD_SEGMENT_PARAMS: printk(BIOS_DEBUG, " parameter section (skipped)\n"); segment++; continue; case PAYLOAD_SEGMENT_CODE: case PAYLOAD_SEGMENT_DATA: printk(BIOS_DEBUG, " %s (compression=%x)\n", segment->type == PAYLOAD_SEGMENT_CODE ? "code" : "data", ntohl(segment->compression)); new = malloc(sizeof(*new)); new->s_dstaddr = ntohl((u32) segment->load_addr); new->s_memsz = ntohl(segment->mem_len); new->compression = ntohl(segment->compression); new->s_srcaddr = (u32) ((unsigned char *) first_segment) + ntohl(segment->offset); new->s_filesz = ntohl(segment->len); printk(BIOS_DEBUG, " New segment dstaddr 0x%lx memsize 0x%lx srcaddr 0x%lx filesize 0x%lx\n", new->s_dstaddr, new->s_memsz, new->s_srcaddr, new->s_filesz); /* Clean up the values */ if (new->s_filesz > new->s_memsz) { new->s_filesz = new->s_memsz; } printk(BIOS_DEBUG, " (cleaned up) New segment addr 0x%lx size 0x%lx offset 0x%lx filesize 0x%lx\n", new->s_dstaddr, new->s_memsz, new->s_srcaddr, new->s_filesz); break; case PAYLOAD_SEGMENT_BSS: printk(BIOS_DEBUG, " BSS 0x%p (%d byte)\n", (void *) ntohl((u32) segment->load_addr), ntohl(segment->mem_len)); new = malloc(sizeof(*new)); new->s_filesz = 0; new->s_dstaddr = ntohl((u32) segment->load_addr); new->s_memsz = ntohl(segment->mem_len); break; case PAYLOAD_SEGMENT_ENTRY: printk(BIOS_DEBUG, " Entry Point 0x%p\n", (void *) ntohl((u32) segment->load_addr)); *entry = ntohl((u32) segment->load_addr); /* Per definition, a payload always has the entry point * as last segment. Thus, we use the occurence of the * entry point as break condition for the loop. * Can we actually just look at the number of section? */ return 1; default: /* We found something that we don't know about. Throw * hands into the sky and run away! */ printk(BIOS_EMERG, "Bad segment type %x\n", segment->type); return -1; } segment++; // FIXME: Explain what this is for(ptr = head->next; ptr != head; ptr = ptr->next) { if (new->s_srcaddr < ntohl((u32) segment->load_addr)) break; } /* Order by stream offset */ new->next = ptr; new->prev = ptr->prev; ptr->prev->next = new; ptr->prev = new; /* Order by original program header order */ new->phdr_next = head; new->phdr_prev = head->phdr_prev; head->phdr_prev->phdr_next = new; head->phdr_prev = new; } return 1; } static int load_self_segments( struct segment *head, struct lb_memory *mem, struct cbfs_payload *payload) { struct segment *ptr; unsigned long bounce_high = lb_end; for(ptr = head->next; ptr != head; ptr = ptr->next) { if (!overlaps_coreboot(ptr)) continue; if (ptr->s_dstaddr + ptr->s_memsz > bounce_high) bounce_high = ptr->s_dstaddr + ptr->s_memsz; } get_bounce_buffer(mem, bounce_high - lb_start); if (!bounce_buffer) { printk(BIOS_ERR, "Could not find a bounce buffer...\n"); return 0; } for(ptr = head->next; ptr != head; ptr = ptr->next) { /* Verify the memory addresses in the segment are valid */ if (!valid_area(mem, bounce_buffer, ptr->s_dstaddr, ptr->s_memsz)) return 0; } for(ptr = head->next; ptr != head; ptr = ptr->next) { unsigned char *dest, *src; printk(BIOS_DEBUG, "Loading Segment: addr: 0x%016lx memsz: 0x%016lx filesz: 0x%016lx\n", ptr->s_dstaddr, ptr->s_memsz, ptr->s_filesz); /* Modify the segment to load onto the bounce_buffer if necessary. */ if (relocate_segment(bounce_buffer, ptr)) { ptr = (ptr->prev)->prev; continue; } printk(BIOS_DEBUG, "Post relocation: addr: 0x%016lx memsz: 0x%016lx filesz: 0x%016lx\n", ptr->s_dstaddr, ptr->s_memsz, ptr->s_filesz); /* Compute the boundaries of the segment */ dest = (unsigned char *)(ptr->s_dstaddr); src = (unsigned char *)(ptr->s_srcaddr); /* Copy data from the initial buffer */ if (ptr->s_filesz) { unsigned char *middle, *end; size_t len; len = ptr->s_filesz; switch(ptr->compression) { case CBFS_COMPRESS_LZMA: { printk(BIOS_DEBUG, "using LZMA\n"); len = ulzma(src, dest); if (!len) /* Decompression Error. */ return 0; break; } #if CONFIG_COMPRESSED_PAYLOAD_NRV2B case CBFS_COMPRESS_NRV2B: { printk(BIOS_DEBUG, "using NRV2B\n"); unsigned long unrv2b(u8 *src, u8 *dst, unsigned long *ilen_p); unsigned long tmp; len = unrv2b(src, dest, &tmp); break; } #endif case CBFS_COMPRESS_NONE: { printk(BIOS_DEBUG, "it's not compressed!\n"); memcpy(dest, src, len); break; } default: printk(BIOS_INFO, "CBFS: Unknown compression type %d\n", ptr->compression); return -1; } end = dest + ptr->s_memsz; middle = dest + len; printk(BIOS_SPEW, "[ 0x%08lx, %08lx, 0x%08lx) <- %08lx\n", (unsigned long)dest, (unsigned long)middle, (unsigned long)end, (unsigned long)src); /* Zero the extra bytes between middle & end */ if (middle < end) { printk(BIOS_DEBUG, "Clearing Segment: addr: 0x%016lx memsz: 0x%016lx\n", (unsigned long)middle, (unsigned long)(end - middle)); /* Zero the extra bytes */ memset(middle, 0, end - middle); } /* Copy the data that's outside the area that shadows coreboot_ram */ printk(BIOS_DEBUG, "dest %p, end %p, bouncebuffer %lx\n", dest, end, bounce_buffer); if ((unsigned long)end > bounce_buffer) { if ((unsigned long)dest < bounce_buffer) { unsigned char *from = dest; unsigned char *to = (unsigned char*)(lb_start-(bounce_buffer-(unsigned long)dest)); unsigned long amount = bounce_buffer-(unsigned long)dest; printk(BIOS_DEBUG, "move prefix around: from %p, to %p, amount: %lx\n", from, to, amount); memcpy(to, from, amount); } if ((unsigned long)end > bounce_buffer + (lb_end - lb_start)) { unsigned long from = bounce_buffer + (lb_end - lb_start); unsigned long to = lb_end; unsigned long amount = (unsigned long)end - from; printk(BIOS_DEBUG, "move suffix around: from %lx, to %lx, amount: %lx\n", from, to, amount); memcpy((char*)to, (char*)from, amount); } } } } return 1; } static int selfboot(struct lb_memory *mem, struct cbfs_payload *payload) { u32 entry=0; struct segment head; /* Preprocess the self segments */ if (!build_self_segment_list(&head, mem, payload, &entry)) goto out; /* Load the segments */ if (!load_self_segments(&head, mem, payload)) goto out; printk(BIOS_SPEW, "Loaded segments\n"); /* Reset to booting from this image as late as possible */ boot_successful(); printk(BIOS_DEBUG, "Jumping to boot code at %x\n", entry); post_code(POST_ENTER_ELF_BOOT); /* Jump to kernel */ jmp_to_elf_entry((void*)entry, bounce_buffer, bounce_size); return 1; out: return 0; }