/* * This file is part of the coreboot project. * * Copyright 2015 Google Inc * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include <console/console.h> #include <commonlib/endian.h> #include <commonlib/fsp1_1.h> #include <commonlib/helpers.h> #include <stdlib.h> #include <stdint.h> #include <string.h> #define FSP_DBG_LVL BIOS_NEVER /* * UEFI defines everything as little endian. However, this piece of code * can be integrated in a userland tool. That tool could be on a big endian * machine so one needs to access the fields within UEFI structures using * endian-aware accesses. */ /* Return 0 if equal. Non-zero if not equal. */ static int guid_compare(const EFI_GUID *le_guid, const EFI_GUID *native_guid) { if (read_le32(&le_guid->Data1) != native_guid->Data1) return 1; if (read_le16(&le_guid->Data2) != native_guid->Data2) return 1; if (read_le16(&le_guid->Data3) != native_guid->Data3) return 1; return memcmp(le_guid->Data4, native_guid->Data4, ARRAY_SIZE(le_guid->Data4)); } static const EFI_GUID ffs2_guid = EFI_FIRMWARE_FILE_SYSTEM2_GUID; static const EFI_GUID fih_guid = FSP_INFO_HEADER_GUID; struct fsp_patch_table { uint32_t signature; uint16_t header_length; uint8_t header_revision; uint8_t reserved; uint32_t patch_entry_num; uint32_t patch_entries[0]; } __attribute__((packed)); #define FSPP_SIG 0x50505346 static void *relative_offset(void *base, ssize_t offset) { uintptr_t loc; loc = (uintptr_t)base; loc += offset; return (void *)loc; } static uint32_t *fspp_reloc(void *fsp, size_t fsp_size, uint32_t e) { size_t offset; /* Offsets live in bits 23:0. */ offset = e & 0xffffff; /* If bit 31 is set then the offset is considered a negative value * relative to the end of the image using 16MiB as the offset's * reference. */ if (e & (1 << 31)) offset = fsp_size - (16 * MiB - offset); /* Determine if offset falls within fsp_size for a 32 bit relocation. */ if (offset > fsp_size - sizeof(uint32_t)) return NULL; return relative_offset(fsp, offset); } static int reloc_type(uint16_t reloc_entry) { /* Reloc type in upper 4 bits */ return reloc_entry >> 12; } static size_t reloc_offset(uint16_t reloc_entry) { /* Offsets are in low 12 bits. */ return reloc_entry & ((1 << 12) - 1); } static int te_relocate(uintptr_t new_addr, void *te) { EFI_TE_IMAGE_HEADER *teih; EFI_IMAGE_DATA_DIRECTORY *relocd; EFI_IMAGE_BASE_RELOCATION *relocb; uintptr_t image_base; size_t fixup_offset; size_t num_relocs; uint16_t *reloc; size_t relocd_offset; uint8_t *te_base; uint32_t adj; teih = te; if (read_le16(&teih->Signature) != EFI_TE_IMAGE_HEADER_SIGNATURE) { printk(BIOS_ERR, "TE Signature mismatch: %x vs %x\n", read_le16(&teih->Signature), EFI_TE_IMAGE_HEADER_SIGNATURE); return -1; } /* * A TE image is created by converting a PE file. Because of this * the offsets within the headers are off. In order to calculate * the correct releative offets one needs to subtract fixup_offset * from the encoded offets. Similarly, the linked address of the * program is found by adding the fixup_offset to the ImageBase. */ fixup_offset = read_le16(&teih->StrippedSize); fixup_offset -= sizeof(EFI_TE_IMAGE_HEADER); /* Keep track of a base that is correctly adjusted so that offsets * can be used directly. */ te_base = te; te_base -= fixup_offset; image_base = read_le64(&teih->ImageBase); adj = new_addr - (image_base + fixup_offset); printk(FSP_DBG_LVL, "TE Image %p -> %p adjust value: %x\n", (void *)image_base, (void *)new_addr, adj); /* Adjust ImageBase for consistency. */ write_le64(&teih->ImageBase, (uint32_t)(image_base + adj)); relocd = &teih->DataDirectory[EFI_TE_IMAGE_DIRECTORY_ENTRY_BASERELOC]; relocd_offset = 0; /* Though the field name is VirtualAddress it's actually relative to * the beginning of the image which is linked at ImageBase. */ relocb = relative_offset(te, read_le32(&relocd->VirtualAddress) - fixup_offset); while (relocd_offset < read_le32(&relocd->Size)) { size_t rva_offset = read_le32(&relocb->VirtualAddress); printk(FSP_DBG_LVL, "Relocs for RVA offset %zx\n", rva_offset); num_relocs = read_le32(&relocb->SizeOfBlock) - sizeof(*relocb); num_relocs /= sizeof(uint16_t); reloc = relative_offset(relocb, sizeof(*relocb)); printk(FSP_DBG_LVL, "Num relocs in block: %zx\n", num_relocs); while (num_relocs > 0) { uint16_t reloc_val = read_le16(reloc); int type = reloc_type(reloc_val); size_t offset = reloc_offset(reloc_val); printk(FSP_DBG_LVL, "reloc type %x offset %zx\n", type, offset); if (type == EFI_IMAGE_REL_BASED_HIGHLOW) { uint32_t *reloc_addr; uint32_t val; offset += rva_offset; reloc_addr = (void *)&te_base[offset]; val = read_le32(reloc_addr); printk(FSP_DBG_LVL, "Adjusting %p %x -> %x\n", reloc_addr, val, val + adj); write_le32(reloc_addr, val + adj); } else if (type != EFI_IMAGE_REL_BASED_ABSOLUTE) { printk(BIOS_ERR, "Unknown reloc type: %x\n", type); return -1; } num_relocs--; reloc++; } /* Track consumption of relocation directory contents. */ relocd_offset += read_le32(&relocb->SizeOfBlock); /* Get next relocation block to process. */ relocb = relative_offset(relocb, read_le32(&relocb->SizeOfBlock)); } return 0; } static size_t csh_size(const EFI_COMMON_SECTION_HEADER *csh) { size_t size; /* Unpack the array into a type that can be used. */ size = 0; size |= read_le8(&csh->Size[0]) << 0; size |= read_le8(&csh->Size[1]) << 8; size |= read_le8(&csh->Size[2]) << 16; return size; } static size_t section_data_offset(const EFI_COMMON_SECTION_HEADER *csh) { if (csh_size(csh) == 0x00ffffff) return sizeof(EFI_COMMON_SECTION_HEADER2); else return sizeof(EFI_COMMON_SECTION_HEADER); } static size_t section_data_size(const EFI_COMMON_SECTION_HEADER *csh) { size_t section_size; if (csh_size(csh) == 0x00ffffff) section_size = read_le32(&SECTION2_SIZE(csh)); else section_size = csh_size(csh); return section_size - section_data_offset(csh); } static size_t file_section_offset(const EFI_FFS_FILE_HEADER *ffsfh) { if (IS_FFS_FILE2(ffsfh)) return sizeof(EFI_FFS_FILE_HEADER2); else return sizeof(EFI_FFS_FILE_HEADER); } static size_t ffs_file_size(const EFI_FFS_FILE_HEADER *ffsfh) { size_t size; if (IS_FFS_FILE2(ffsfh)) size = read_le32(&FFS_FILE2_SIZE(ffsfh)); else { size = read_le8(&ffsfh->Size[0]) << 0; size |= read_le8(&ffsfh->Size[1]) << 8; size |= read_le8(&ffsfh->Size[2]) << 16; } return size; } static int relocate_patch_table(void *fsp, size_t size, size_t offset, ssize_t adjustment) { struct fsp_patch_table *table; size_t num; size_t num_entries; table = relative_offset(fsp, offset); if ((offset + sizeof(*table) > size) || (read_le16(&table->header_length) + offset) > size) { printk(BIOS_ERR, "FSPP not entirely contained in region.\n"); return -1; } num_entries = read_le32(&table->patch_entry_num); printk(FSP_DBG_LVL, "FSPP relocs: %zx\n", num_entries); for (num = 0; num < num_entries; num++) { uint32_t *reloc; uint32_t reloc_val; reloc = fspp_reloc(fsp, size, read_le32(&table->patch_entries[num])); if (reloc == NULL) { printk(BIOS_ERR, "Ignoring FSPP entry: %x\n", read_le32(&table->patch_entries[num])); continue; } reloc_val = read_le32(reloc); printk(FSP_DBG_LVL, "Adjusting %p %x -> %x\n", reloc, reloc_val, (unsigned int)(reloc_val + adjustment)); write_le32(reloc, reloc_val + adjustment); } return 0; } static ssize_t relocate_remaining_items(void *fsp, size_t size, uintptr_t new_addr, size_t fih_offset) { EFI_FFS_FILE_HEADER *ffsfh; EFI_COMMON_SECTION_HEADER *csh; FSP_INFO_HEADER *fih; ssize_t adjustment; size_t offset; printk(FSP_DBG_LVL, "FSP_INFO_HEADER offset is %zx\n", fih_offset); if (fih_offset == 0) { printk(BIOS_ERR, "FSP_INFO_HEADER offset is 0.\n"); return -1; } /* FSP_INFO_HEADER at first file in FV within first RAW section. */ ffsfh = relative_offset(fsp, fih_offset); fih_offset += file_section_offset(ffsfh); csh = relative_offset(fsp, fih_offset); fih_offset += section_data_offset(csh); fih = relative_offset(fsp, fih_offset); if (guid_compare(&ffsfh->Name, &fih_guid)) { printk(BIOS_ERR, "Bad FIH GUID.\n"); return -1; } if (read_le8(&csh->Type) != EFI_SECTION_RAW) { printk(BIOS_ERR, "FIH file should have raw section: %x\n", read_le8(&csh->Type)); return -1; } if (read_le32(&fih->Signature) != FSP_SIG) { printk(BIOS_ERR, "Unexpected FIH signature: %08x\n", read_le32(&fih->Signature)); return -1; } adjustment = (intptr_t)new_addr - read_le32(&fih->ImageBase); /* Update ImageBase to reflect FSP's new home. */ write_le32(&fih->ImageBase, adjustment + read_le32(&fih->ImageBase)); /* Need to find patch table and adjust each entry. The tables * following FSP_INFO_HEADER have a 32-bit signature and header * length. The patch table is denoted as having a 'FSPP' signature; * the table format doesn't follow the other tables. */ offset = fih_offset + read_le32(&fih->HeaderLength); while (offset + 2 * sizeof(uint32_t) <= size) { uint32_t *table_headers; table_headers = relative_offset(fsp, offset); printk(FSP_DBG_LVL, "Checking offset %zx for 'FSPP'\n", offset); if (read_le32(&table_headers[0]) != FSPP_SIG) { offset += read_le32(&table_headers[1]); continue; } if (relocate_patch_table(fsp, size, offset, adjustment)) { printk(BIOS_ERR, "FSPP relocation failed.\n"); return -1; } return fih_offset; } printk(BIOS_ERR, "Could not find the FSP patch table.\n"); return -1; } static ssize_t relocate_fvh(uintptr_t new_addr, void *fsp, size_t fsp_size, size_t fvh_offset, size_t *fih_offset) { EFI_FIRMWARE_VOLUME_HEADER *fvh; EFI_FFS_FILE_HEADER *ffsfh; EFI_COMMON_SECTION_HEADER *csh; size_t offset; size_t file_offset; size_t size; size_t fv_length; offset = fvh_offset; fvh = relative_offset(fsp, offset); if (read_le32(&fvh->Signature) != EFI_FVH_SIGNATURE) return -1; fv_length = read_le64(&fvh->FvLength); printk(FSP_DBG_LVL, "FVH length: %zx Offset: %zx Mapping length: %zx\n", fv_length, offset, fsp_size); if (fv_length + offset > fsp_size) return -1; /* Parse only this FV. However, the algorithm uses offsets into the * entire FSP region so make size include the starting offset. */ size = fv_length + offset; if (guid_compare(&fvh->FileSystemGuid, &ffs2_guid)) { printk(BIOS_ERR, "FVH not an FFS2 type.\n"); return -1; } if (read_le16(&fvh->ExtHeaderOffset) != 0) { EFI_FIRMWARE_VOLUME_EXT_HEADER *fveh; offset += read_le16(&fvh->ExtHeaderOffset); fveh = relative_offset(fsp, offset); printk(FSP_DBG_LVL, "Extended Header Offset: %zx Size: %zx\n", (size_t)read_le16(&fvh->ExtHeaderOffset), (size_t)read_le32(&fveh->ExtHeaderSize)); offset += read_le32(&fveh->ExtHeaderSize); /* FFS files are 8 byte aligned after extended header. */ offset = ALIGN_UP(offset, 8); } else { offset += read_le16(&fvh->HeaderLength); } file_offset = offset; while (file_offset + sizeof(*ffsfh) < size) { offset = file_offset; printk(FSP_DBG_LVL, "file offset: %zx\n", file_offset); /* First file and section should be FSP info header. */ if (fih_offset != NULL && *fih_offset == 0) *fih_offset = file_offset; ffsfh = relative_offset(fsp, file_offset); printk(FSP_DBG_LVL, "file type = %x\n", read_le8(&ffsfh->Type)); printk(FSP_DBG_LVL, "file attribs = %x\n", read_le8(&ffsfh->Attributes)); /* Exit FV relocation when empty space found */ if (read_le8(&ffsfh->Type) == EFI_FV_FILETYPE_FFS_MAX) break; /* Next file on 8 byte alignment. */ file_offset += ffs_file_size(ffsfh); file_offset = ALIGN_UP(file_offset, 8); /* Padding files have no section information. */ if (read_le8(&ffsfh->Type) == EFI_FV_FILETYPE_FFS_PAD) continue; offset += file_section_offset(ffsfh); while (offset + sizeof(*csh) < file_offset) { size_t data_size; size_t data_offset; csh = relative_offset(fsp, offset); printk(FSP_DBG_LVL, "section offset: %zx\n", offset); printk(FSP_DBG_LVL, "section type: %x\n", read_le8(&csh->Type)); data_size = section_data_size(csh); data_offset = section_data_offset(csh); if (data_size + data_offset + offset > file_offset) { printk(BIOS_ERR, "Section exceeds FV size.\n"); return -1; } /* * The entire FSP 1.1 image can be thought of as one * program with a single link address even though there * are multiple TEs linked separately. The reason is * that each TE is linked for XIP. So in order to * relocate the TE properly we need to form the * relocated address based on the TE offset within * FSP proper. */ if (read_le8(&csh->Type) == EFI_SECTION_TE) { void *te; size_t te_offset = offset + data_offset; uintptr_t te_addr = new_addr + te_offset; printk(FSP_DBG_LVL, "TE image at offset %zx\n", te_offset); te = relative_offset(fsp, te_offset); te_relocate(te_addr, te); } offset += data_size + data_offset; /* Sections are aligned to 4 bytes. */ offset = ALIGN_UP(offset, 4); } } /* Return amount of buffer parsed: FV size. */ return fv_length; } ssize_t fsp1_1_relocate(uintptr_t new_addr, void *fsp, size_t size) { size_t offset; size_t fih_offset; offset = 0; fih_offset = 0; while (offset < size) { ssize_t nparsed; /* Relocate each FV within the FSP region. The FSP_INFO_HEADER * should only be located in the first FV. */ if (offset == 0) nparsed = relocate_fvh(new_addr, fsp, size, offset, &fih_offset); else nparsed = relocate_fvh(new_addr, fsp, size, offset, NULL); /* FV should be larger than 0 or failed to parse. */ if (nparsed <= 0) { printk(BIOS_ERR, "FV @ offset %zx relocation failed\n", offset); return -1; } offset += nparsed; } return relocate_remaining_items(fsp, size, new_addr, fih_offset); }