/* * This file is part of the coreboot project. * * Copyright (C) 2013 ChromeOS Authors * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; version 2 of * the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, * MA 02110-1301 USA */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "haswell.h" /* This needs to match the layout in the .module_parametrs section. */ struct sipi_params { u16 gdtlimit; u32 gdt; u16 unused; u32 idt_ptr; u32 stack_top; u32 stack_size; u32 microcode_ptr; u32 msr_table_ptr; u32 msr_count; u32 c_handler; u32 c_handler_arg; u8 apic_to_cpu_num[CONFIG_MAX_CPUS]; } __attribute__((packed)); /* This also needs to match the assembly code for saved MSR encoding. */ struct saved_msr { u32 index; u32 lo; u32 hi; } __attribute__((packed)); /* The sipi vector rmodule is included in the ramstage using 'objdump -B'. */ extern char _binary_sipi_vector_start[]; /* These symbols are defined in c_start.S. */ extern char gdt[]; extern char gdt_end[]; extern char idtarg[]; /* This table keeps track of each CPU's APIC id. */ static u8 apic_id_table[CONFIG_MAX_CPUS]; static device_t cpu_devs[CONFIG_MAX_CPUS]; /* Number of APs checked that have checked in. */ static atomic_t num_aps; /* Number of APs that have relocated their SMM handler. */ static atomic_t num_aps_relocated_smm; /* Barrier to stop APs from performing SMM relocation. */ static int smm_relocation_barrier_begin __attribute__ ((aligned (64))); /* Determine if hyperthreading is disabled. */ int ht_disabled; static inline void mfence(void) { __asm__ __volatile__("mfence\t\n": : :"memory"); } static inline void wait_for_barrier(volatile int *barrier) { while (*barrier == 0) { asm ("pause"); } } static inline void release_barrier(volatile int *barrier) { *barrier = 1; } static void ap_wait_for_smm_relocation_begin(void) { wait_for_barrier(&smm_relocation_barrier_begin); } /* This function pointer is used by the non-BSP CPUs to initiate relocation. It * points to either a serial or parallel SMM initiation. */ static void (*ap_initiate_smm_relocation)(void) = &smm_initiate_relocation; /* Returns 1 if timeout waiting for APs. 0 if target aps found. */ static int wait_for_aps(atomic_t *val, int target, int total_delay, int delay_step) { int timeout = 0; int delayed = 0; while (atomic_read(val) != target) { udelay(delay_step); delayed += delay_step; if (delayed >= total_delay) { timeout = 1; break; } } return timeout; } void release_aps_for_smm_relocation(int do_parallel) { /* Change the AP SMM initiation function, and ensure it is visible * before releasing the APs. */ if (do_parallel) { ap_initiate_smm_relocation = &smm_initiate_relocation_parallel; mfence(); } release_barrier(&smm_relocation_barrier_begin); /* Wait for CPUs to relocate their SMM handler up to 100ms. */ if (wait_for_aps(&num_aps_relocated_smm, atomic_read(&num_aps), 100000 /* 100 ms */, 200 /* us */)) printk(BIOS_DEBUG, "Timed out waiting for AP SMM relocation\n"); } /* The mtrr code sets up ROM caching on the BSP, but not the others. However, * the boot loader payload disables this. In order for Linux not to complain * ensure the caching is disabled for the APs before going to sleep. */ static void cleanup_rom_caching(void) { x86_mtrr_disable_rom_caching(); } /* By the time APs call ap_init() caching has been setup, and microcode has * been loaded. */ static void asmlinkage ap_init(unsigned int cpu, void *microcode_ptr) { struct cpu_info *info; /* Signal that the AP has arrived. */ atomic_inc(&num_aps); /* Ensure the local apic is enabled */ enable_lapic(); info = cpu_info(); info->index = cpu; info->cpu = cpu_devs[cpu]; thread_init_cpu_info_non_bsp(info); apic_id_table[info->index] = lapicid(); info->cpu->path.apic.apic_id = apic_id_table[info->index]; /* Call through the cpu driver's initialization. */ cpu_initialize(info->index); ap_wait_for_smm_relocation_begin(); ap_initiate_smm_relocation(); /* Indicate that SMM relocation has occurred on this thread. */ atomic_inc(&num_aps_relocated_smm); /* After SMM relocation a 2nd microcode load is required. */ intel_microcode_load_unlocked(microcode_ptr); /* The MTRR resources are core scoped. Therefore, there is no need * to do the same work twice. Additionally, this check keeps the * ROM cache enabled on the BSP since its hyperthread sibling won't * call cleanup_rom_caching(). */ if ((lapicid() & 1) == 0) cleanup_rom_caching(); /* FIXME(adurbin): park CPUs properly -- preferably somewhere in a * reserved part of memory that the OS cannot get to. */ stop_this_cpu(); } static void setup_default_sipi_vector_params(struct sipi_params *sp) { int i; u8 apic_id; u8 apic_id_inc; sp->gdt = (u32)&gdt; sp->gdtlimit = (u32)&gdt_end - (u32)&gdt - 1; sp->idt_ptr = (u32)&idtarg; sp->stack_size = CONFIG_STACK_SIZE; sp->stack_top = (u32)&_estack; /* Adjust the stack top to take into account cpu_info. */ sp->stack_top -= sizeof(struct cpu_info); /* Default to linear APIC id space if HT is enabled. If it is * disabled the APIC ids increase by 2 as the odd numbered APIC * ids are not present.*/ apic_id_inc = (ht_disabled) ? 2 : 1; for (i = 0, apic_id = 0; i < CONFIG_MAX_CPUS; i++) { sp->apic_to_cpu_num[i] = apic_id; apic_id += apic_id_inc; } } #define NUM_FIXED_MTRRS 11 static unsigned int fixed_mtrrs[NUM_FIXED_MTRRS] = { MTRRfix64K_00000_MSR, MTRRfix16K_80000_MSR, MTRRfix16K_A0000_MSR, MTRRfix4K_C0000_MSR, MTRRfix4K_C8000_MSR, MTRRfix4K_D0000_MSR, MTRRfix4K_D8000_MSR, MTRRfix4K_E0000_MSR, MTRRfix4K_E8000_MSR, MTRRfix4K_F0000_MSR, MTRRfix4K_F8000_MSR, }; static inline struct saved_msr *save_msr(int index, struct saved_msr *entry) { msr_t msr; msr = rdmsr(index); entry->index = index; entry->lo = msr.lo; entry->hi = msr.hi; /* Return the next entry. */ entry++; return entry; } static int save_bsp_msrs(char *start, int size) { int msr_count; int num_var_mtrrs; struct saved_msr *msr_entry; int i; msr_t msr; /* Determine number of MTRRs need to be saved. */ msr = rdmsr(MTRRcap_MSR); num_var_mtrrs = msr.lo & 0xff; /* 2 * num_var_mtrrs for base and mask. +1 for IA32_MTRR_DEF_TYPE. */ msr_count = 2 * num_var_mtrrs + NUM_FIXED_MTRRS + 1; if ((msr_count * sizeof(struct saved_msr)) > size) { printk(BIOS_CRIT, "Cannot mirror all %d msrs.\n", msr_count); return -1; } msr_entry = (void *)start; for (i = 0; i < NUM_FIXED_MTRRS; i++) { msr_entry = save_msr(fixed_mtrrs[i], msr_entry); } for (i = 0; i < num_var_mtrrs; i++) { msr_entry = save_msr(MTRRphysBase_MSR(i), msr_entry); msr_entry = save_msr(MTRRphysMask_MSR(i), msr_entry); } msr_entry = save_msr(MTRRdefType_MSR, msr_entry); return msr_count; } /* The SIPI vector is loaded at the SMM_DEFAULT_BASE. The reason is at the * memory range is already reserved so the OS cannot use it. That region is * free to use for AP bringup before SMM is initialized. */ static u32 sipi_vector_location = SMM_DEFAULT_BASE; static int sipi_vector_location_size = SMM_DEFAULT_SIZE; static int load_sipi_vector(const void *microcode_patch) { struct rmodule sipi_mod; int module_size; int num_msrs; struct sipi_params *sp; char *mod_loc = (void *)sipi_vector_location; const int loc_size = sipi_vector_location_size; if (rmodule_parse(&_binary_sipi_vector_start, &sipi_mod)) { printk(BIOS_CRIT, "Unable to parse sipi module.\n"); return -1; } if (rmodule_entry_offset(&sipi_mod) != 0) { printk(BIOS_CRIT, "SIPI module entry offset is not 0!\n"); return -1; } if (rmodule_load_alignment(&sipi_mod) != 4096) { printk(BIOS_CRIT, "SIPI module load alignment(%d) != 4096.\n", rmodule_load_alignment(&sipi_mod)); return -1; } module_size = rmodule_memory_size(&sipi_mod); /* Align to 4 bytes. */ module_size += 3; module_size &= ~3; if (module_size > loc_size) { printk(BIOS_CRIT, "SIPI module size (%d) > region size (%d).\n", module_size, loc_size); return -1; } num_msrs = save_bsp_msrs(&mod_loc[module_size], loc_size - module_size); if (num_msrs < 0) { printk(BIOS_CRIT, "Error mirroring BSP's msrs.\n"); return -1; } if (rmodule_load(mod_loc, &sipi_mod)) { printk(BIOS_CRIT, "Unable to load SIPI module.\n"); return -1; } sp = rmodule_parameters(&sipi_mod); if (sp == NULL) { printk(BIOS_CRIT, "SIPI module has no parameters.\n"); return -1; } setup_default_sipi_vector_params(sp); /* Setup MSR table. */ sp->msr_table_ptr = (u32)&mod_loc[module_size]; sp->msr_count = num_msrs; /* Provide pointer to microcode patch. */ sp->microcode_ptr = (u32)microcode_patch; /* The microcode pointer is passed on through to the c handler so * that it can be loaded again after SMM relocation. */ sp->c_handler_arg = (u32)microcode_patch; sp->c_handler = (u32)&ap_init; /* Make sure SIPI vector hits RAM so the APs that come up will see * the startup code even if the caches are disabled. */ wbinvd(); return 0; } static int allocate_cpu_devices(struct bus *cpu_bus, int *total_hw_threads) { int i; int num_threads; int num_cores; int max_cpus; struct cpu_info *info; msr_t msr; info = cpu_info(); cpu_devs[info->index] = info->cpu; apic_id_table[info->index] = info->cpu->path.apic.apic_id; msr = rdmsr(CORE_THREAD_COUNT_MSR); num_threads = (msr.lo >> 0) & 0xffff; num_cores = (msr.lo >> 16) & 0xffff; printk(BIOS_DEBUG, "CPU has %u cores, %u threads enabled.\n", num_cores, num_threads); max_cpus = num_threads; *total_hw_threads = num_threads; if (num_threads > CONFIG_MAX_CPUS) { printk(BIOS_CRIT, "CPU count(%d) exceeds CONFIG_MAX_CPUS(%d)\n", num_threads, CONFIG_MAX_CPUS); max_cpus = CONFIG_MAX_CPUS; } /* Determine if hyperthreading is enabled. If not, the APIC id space * is sparse with ids incrementing by 2 instead of 1. */ ht_disabled = num_threads == num_cores; for (i = 1; i < max_cpus; i++) { struct device_path cpu_path; device_t new; /* Build the cpu device path */ cpu_path.type = DEVICE_PATH_APIC; cpu_path.apic.apic_id = info->cpu->path.apic.apic_id + i; if (ht_disabled) cpu_path.apic.apic_id = cpu_path.apic.apic_id * 2; /* Allocate the new cpu device structure */ new = alloc_find_dev(cpu_bus, &cpu_path); if (new == NULL) { printk(BIOS_CRIT, "Could not allocate cpu device\n"); max_cpus--; } cpu_devs[i] = new; } return max_cpus; } int setup_ap_init(struct bus *cpu_bus, int *max_cpus, const void *microcode_patch) { int num_cpus; int hw_threads; /* Default to currently running CPU. */ num_cpus = allocate_cpu_devices(cpu_bus, &hw_threads); /* Load the SIPI vector. */ if (load_sipi_vector(microcode_patch)) return -1; *max_cpus = num_cpus; if (num_cpus < hw_threads) { printk(BIOS_CRIT, "ERROR: More HW threads (%d) than support (%d).\n", hw_threads, num_cpus); return -1; } return 0; } /* Returns 1 for timeout. 0 on success. */ static int apic_wait_timeout(int total_delay, int delay_step) { int total = 0; int timeout = 0; while (lapic_read(LAPIC_ICR) & LAPIC_ICR_BUSY) { udelay(delay_step); total += delay_step; if (total >= total_delay) { timeout = 1; break; } } return timeout; } int start_aps(struct bus *cpu_bus, int ap_count) { int sipi_vector; if (ap_count == 0) return 0; /* The vector is sent as a 4k aligned address in one byte. */ sipi_vector = sipi_vector_location >> 12; if (sipi_vector > 256) { printk(BIOS_CRIT, "SIPI vector too large! 0x%08x\n", sipi_vector); return -1; } printk(BIOS_DEBUG, "Attempting to start %d APs\n", ap_count); if ((lapic_read(LAPIC_ICR) & LAPIC_ICR_BUSY)) { printk(BIOS_DEBUG, "Waiting for ICR not to be busy..."); if (apic_wait_timeout(1000 /* 1 ms */, 50)) { printk(BIOS_DEBUG, "timed out. Aborting.\n"); return -1; } else printk(BIOS_DEBUG, "done.\n"); } /* Send INIT IPI to all but self. */ lapic_write_around(LAPIC_ICR2, SET_LAPIC_DEST_FIELD(0)); lapic_write_around(LAPIC_ICR, LAPIC_DEST_ALLBUT | LAPIC_INT_ASSERT | LAPIC_DM_INIT); printk(BIOS_DEBUG, "Waiting for 10ms after sending INIT.\n"); mdelay(10); /* Send 1st SIPI */ if ((lapic_read(LAPIC_ICR) & LAPIC_ICR_BUSY)) { printk(BIOS_DEBUG, "Waiting for ICR not to be busy..."); if (apic_wait_timeout(1000 /* 1 ms */, 50)) { printk(BIOS_DEBUG, "timed out. Aborting.\n"); return -1; } else printk(BIOS_DEBUG, "done.\n"); } lapic_write_around(LAPIC_ICR2, SET_LAPIC_DEST_FIELD(0)); lapic_write_around(LAPIC_ICR, LAPIC_DEST_ALLBUT | LAPIC_INT_ASSERT | LAPIC_DM_STARTUP | sipi_vector); printk(BIOS_DEBUG, "Waiting for 1st SIPI to complete..."); if (apic_wait_timeout(10000 /* 10 ms */, 50 /* us */)) { printk(BIOS_DEBUG, "timed out.\n"); return -1; } else { printk(BIOS_DEBUG, "done.\n"); } /* Wait for CPUs to check in up to 200 us. */ wait_for_aps(&num_aps, ap_count, 200 /* us */, 15 /* us */); /* Send 2nd SIPI */ if ((lapic_read(LAPIC_ICR) & LAPIC_ICR_BUSY)) { printk(BIOS_DEBUG, "Waiting for ICR not to be busy..."); if (apic_wait_timeout(1000 /* 1 ms */, 50)) { printk(BIOS_DEBUG, "timed out. Aborting.\n"); return -1; } else printk(BIOS_DEBUG, "done.\n"); } lapic_write_around(LAPIC_ICR2, SET_LAPIC_DEST_FIELD(0)); lapic_write_around(LAPIC_ICR, LAPIC_DEST_ALLBUT | LAPIC_INT_ASSERT | LAPIC_DM_STARTUP | sipi_vector); printk(BIOS_DEBUG, "Waiting for 2nd SIPI to complete..."); if (apic_wait_timeout(10000 /* 10 ms */, 50 /* us */)) { printk(BIOS_DEBUG, "timed out.\n"); return -1; } else { printk(BIOS_DEBUG, "done.\n"); } /* Wait for CPUs to check in. */ if (wait_for_aps(&num_aps, ap_count, 10000 /* 10 ms */, 50 /* us */)) { printk(BIOS_DEBUG, "Not all APs checked in: %d/%d.\n", atomic_read(&num_aps), ap_count); return -1; } return 0; } void smm_initiate_relocation_parallel(void) { if ((lapic_read(LAPIC_ICR) & LAPIC_ICR_BUSY)) { printk(BIOS_DEBUG, "Waiting for ICR not to be busy..."); if (apic_wait_timeout(1000 /* 1 ms */, 50)) { printk(BIOS_DEBUG, "timed out. Aborting.\n"); return; } else printk(BIOS_DEBUG, "done.\n"); } lapic_write_around(LAPIC_ICR2, SET_LAPIC_DEST_FIELD(lapicid())); lapic_write_around(LAPIC_ICR, LAPIC_INT_ASSERT | LAPIC_DM_SMI); if (apic_wait_timeout(1000 /* 1 ms */, 100 /* us */)) { printk(BIOS_DEBUG, "SMI Relocation timed out.\n"); } else printk(BIOS_DEBUG, "Relocation complete.\n"); } DECLARE_SPIN_LOCK(smm_relocation_lock); void smm_initiate_relocation(void) { spin_lock(&smm_relocation_lock); smm_initiate_relocation_parallel(); spin_unlock(&smm_relocation_lock); }