/* * This file is part of the coreboot project. * * Copyright (C) 2003-2004 Linux Networx * (Written by Eric Biederman for Linux Networx) * Copyright (C) 2003 Greg Watson * Copyright (C) 2004 Li-Ta Lo * Copyright (C) 2005-2006 Tyan * (Written by Yinghai Lu for Tyan) * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include /** * See if a device structure exists for path. * * @param parent The bus to find the device on. * @param path The relative path from the bus to the appropriate device. * @return Pointer to a device structure for the device on bus at path * or 0/NULL if no device is found. */ device_t find_dev_path(struct bus *parent, struct device_path *path) { device_t child; for (child = parent->children; child; child = child->sibling) { if (path_eq(path, &child->path)) break; } return child; } /** * Given a PCI bus and a devfn number, find the device structure. * * @param bus The bus number. * @param devfn A device/function number. * @return Pointer to the device structure (if found), 0 otherwise. */ struct device *dev_find_slot(unsigned int bus, unsigned int devfn) { struct device *dev, *result; result = 0; for (dev = all_devices; dev; dev = dev->next) { if ((dev->path.type == DEVICE_PATH_PCI) && (dev->bus->secondary == bus) && (dev->path.pci.devfn == devfn)) { result = dev; break; } } return result; } /** * Given an SMBus bus and a device number, find the device structure. * * @param bus The bus number. * @param addr A device number. * @return Pointer to the device structure (if found), 0 otherwise. */ struct device *dev_find_slot_on_smbus(unsigned int bus, unsigned int addr) { struct device *dev, *result; result = 0; for (dev = all_devices; dev; dev = dev->next) { if ((dev->path.type == DEVICE_PATH_I2C) && (dev->bus->secondary == bus) && (dev->path.i2c.device == addr)) { result = dev; break; } } return result; } /** * Given a PnP port and a device number, find the device structure. * * @param port The I/O port. * @param device Logical device number. * @return Pointer to the device structure (if found), 0 otherwise. */ struct device *dev_find_slot_pnp(u16 port, u16 device) { struct device *dev; for (dev = all_devices; dev; dev = dev->next) { if ((dev->path.type == DEVICE_PATH_PNP) && (dev->path.pnp.port == port) && (dev->path.pnp.device == device)) { return dev; } } return 0; } /** * Given a Local APIC ID, find the device structure. * * @param apic_id The Local APIC ID number. * @return Pointer to the device structure (if found), 0 otherwise. */ device_t dev_find_lapic(unsigned apic_id) { device_t dev, result = NULL; for (dev = all_devices; dev; dev = dev->next) { if (dev->path.type == DEVICE_PATH_APIC && dev->path.apic.apic_id == apic_id) { result = dev; break; } } return result; } /** * Find a device of a given vendor and type. * * @param vendor A PCI vendor ID (e.g. 0x8086 for Intel). * @param device A PCI device ID. * @param from Pointer to the device structure, used as a starting point in * the linked list of all_devices, which can be 0 to start at the * head of the list (i.e. all_devices). * @return Pointer to the device struct. */ struct device *dev_find_device(u16 vendor, u16 device, struct device *from) { if (!from) from = all_devices; else from = from->next; while (from && (from->vendor != vendor || from->device != device)) from = from->next; return from; } /** * Find a device of a given class. * * @param class Class of the device. * @param from Pointer to the device structure, used as a starting point in * the linked list of all_devices, which can be 0 to start at the * head of the list (i.e. all_devices). * @return Pointer to the device struct. */ struct device *dev_find_class(unsigned int class, struct device *from) { if (!from) from = all_devices; else from = from->next; while (from && (from->class & 0xffffff00) != class) from = from->next; return from; } /** * Encode the device path into 3 bytes for logging to CMOS. * * @param dev The device path to encode. * @return Device path encoded into lower 3 bytes of dword. */ u32 dev_path_encode(device_t dev) { u32 ret; if (!dev) return 0; /* Store the device type in 3rd byte. */ ret = dev->path.type << 16; /* Encode the device specific path in the low word. */ switch (dev->path.type) { case DEVICE_PATH_ROOT: break; case DEVICE_PATH_PCI: ret |= dev->bus->secondary << 8 | dev->path.pci.devfn; break; case DEVICE_PATH_PNP: ret |= dev->path.pnp.port << 8 | dev->path.pnp.device; break; case DEVICE_PATH_I2C: ret |= dev->path.i2c.mode_10bit << 8 | dev->path.i2c.device; break; case DEVICE_PATH_APIC: ret |= dev->path.apic.apic_id; break; case DEVICE_PATH_DOMAIN: ret |= dev->path.domain.domain; break; case DEVICE_PATH_CPU_CLUSTER: ret |= dev->path.cpu_cluster.cluster; break; case DEVICE_PATH_CPU: ret |= dev->path.cpu.id; break; case DEVICE_PATH_CPU_BUS: ret |= dev->path.cpu_bus.id; break; case DEVICE_PATH_IOAPIC: ret |= dev->path.ioapic.ioapic_id; break; case DEVICE_PATH_NONE: default: break; } return ret; } /* * Warning: This function uses a static buffer. Don't call it more than once * from the same print statement! */ const char *dev_path(device_t dev) { static char buffer[DEVICE_PATH_MAX]; buffer[0] = '\0'; if (!dev) { memcpy(buffer, "", 7); } else { switch(dev->path.type) { case DEVICE_PATH_ROOT: memcpy(buffer, "Root Device", 12); break; case DEVICE_PATH_PCI: snprintf(buffer, sizeof (buffer), "PCI: %02x:%02x.%01x", dev->bus->secondary, PCI_SLOT(dev->path.pci.devfn), PCI_FUNC(dev->path.pci.devfn)); break; case DEVICE_PATH_PNP: snprintf(buffer, sizeof (buffer), "PNP: %04x.%01x", dev->path.pnp.port, dev->path.pnp.device); break; case DEVICE_PATH_I2C: snprintf(buffer, sizeof (buffer), "I2C: %02x:%02x", dev->bus->secondary, dev->path.i2c.device); break; case DEVICE_PATH_APIC: snprintf(buffer, sizeof (buffer), "APIC: %02x", dev->path.apic.apic_id); break; case DEVICE_PATH_IOAPIC: snprintf(buffer, sizeof (buffer), "IOAPIC: %02x", dev->path.ioapic.ioapic_id); break; case DEVICE_PATH_DOMAIN: snprintf(buffer, sizeof (buffer), "DOMAIN: %04x", dev->path.domain.domain); break; case DEVICE_PATH_CPU_CLUSTER: snprintf(buffer, sizeof (buffer), "CPU_CLUSTER: %01x", dev->path.cpu_cluster.cluster); break; case DEVICE_PATH_CPU: snprintf(buffer, sizeof (buffer), "CPU: %02x", dev->path.cpu.id); break; case DEVICE_PATH_CPU_BUS: snprintf(buffer, sizeof (buffer), "CPU_BUS: %02x", dev->path.cpu_bus.id); break; default: printk(BIOS_ERR, "Unknown device path type: %d\n", dev->path.type); break; } } return buffer; } const char *dev_name(device_t dev) { if (dev->name) return dev->name; else if (dev->chip_ops && dev->chip_ops->name) return dev->chip_ops->name; else return "unknown"; } const char *bus_path(struct bus *bus) { static char buffer[BUS_PATH_MAX]; snprintf(buffer, sizeof (buffer), "%s,%d", dev_path(bus->dev), bus->link_num); return buffer; } int path_eq(struct device_path *path1, struct device_path *path2) { int equal = 0; if (path1->type != path2->type) return 0; switch (path1->type) { case DEVICE_PATH_NONE: break; case DEVICE_PATH_ROOT: equal = 1; break; case DEVICE_PATH_PCI: equal = (path1->pci.devfn == path2->pci.devfn); break; case DEVICE_PATH_PNP: equal = (path1->pnp.port == path2->pnp.port) && (path1->pnp.device == path2->pnp.device); break; case DEVICE_PATH_I2C: equal = (path1->i2c.device == path2->i2c.device) && (path1->i2c.mode_10bit == path2->i2c.mode_10bit); break; case DEVICE_PATH_APIC: equal = (path1->apic.apic_id == path2->apic.apic_id); break; case DEVICE_PATH_DOMAIN: equal = (path1->domain.domain == path2->domain.domain); break; case DEVICE_PATH_CPU_CLUSTER: equal = (path1->cpu_cluster.cluster == path2->cpu_cluster.cluster); break; case DEVICE_PATH_CPU: equal = (path1->cpu.id == path2->cpu.id); break; case DEVICE_PATH_CPU_BUS: equal = (path1->cpu_bus.id == path2->cpu_bus.id); break; default: printk(BIOS_ERR, "Unknown device type: %d\n", path1->type); break; } return equal; } /** * Allocate 64 more resources to the free list. * * @return TODO. */ static int allocate_more_resources(void) { int i; struct resource *new_res_list; new_res_list = malloc(64 * sizeof(*new_res_list)); if (new_res_list == NULL) return 0; memset(new_res_list, 0, 64 * sizeof(*new_res_list)); for (i = 0; i < 64 - 1; i++) new_res_list[i].next = &new_res_list[i+1]; free_resources = new_res_list; return 1; } /** * Remove resource res from the device's list and add it to the free list. * * @param dev TODO * @param res TODO * @param prev TODO * @return TODO. */ static void free_resource(device_t dev, struct resource *res, struct resource *prev) { if (prev) prev->next = res->next; else dev->resource_list = res->next; res->next = free_resources; free_resources = res; } /** * See if we have unused but allocated resource structures. * * If so remove the allocation. * * @param dev The device to find the resource on. */ void compact_resources(device_t dev) { struct resource *res, *next, *prev = NULL; /* Move all of the free resources to the end */ for (res = dev->resource_list; res; res = next) { next = res->next; if (!res->flags) free_resource(dev, res, prev); else prev = res; } } /** * See if a resource structure already exists for a given index. * * @param dev The device to find the resource on. * @param index The index of the resource on the device. * @return The resource, if it already exists. */ struct resource *probe_resource(device_t dev, unsigned index) { struct resource *res; /* See if there is a resource with the appropriate index */ for (res = dev->resource_list; res; res = res->next) { if (res->index == index) break; } return res; } /** * See if a resource structure already exists for a given index and if not * allocate one. * * Then initialize the resource to default values. * * @param dev The device to find the resource on. * @param index The index of the resource on the device. * @return TODO. */ struct resource *new_resource(device_t dev, unsigned index) { struct resource *resource, *tail; /* First move all of the free resources to the end. */ compact_resources(dev); /* See if there is a resource with the appropriate index. */ resource = probe_resource(dev, index); if (!resource) { if (free_resources == NULL && !allocate_more_resources()) die("Couldn't allocate more resources."); resource = free_resources; free_resources = free_resources->next; memset(resource, 0, sizeof(*resource)); resource->next = NULL; tail = dev->resource_list; if (tail) { while (tail->next) tail = tail->next; tail->next = resource; } else { dev->resource_list = resource; } } /* Initialize the resource values. */ if (!(resource->flags & IORESOURCE_FIXED)) { resource->flags = 0; resource->base = 0; } resource->size = 0; resource->limit = 0; resource->index = index; resource->align = 0; resource->gran = 0; return resource; } /** * Return an existing resource structure for a given index. * * @param dev The device to find the resource on. * @param index The index of the resource on the device. * return TODO. */ struct resource *find_resource(device_t dev, unsigned index) { struct resource *resource; /* See if there is a resource with the appropriate index. */ resource = probe_resource(dev, index); if (!resource) { printk(BIOS_EMERG, "%s missing resource: %02x\n", dev_path(dev), index); die(""); } return resource; } /** * Round a number up to the next multiple of gran. * * @param val The starting value. * @param gran Granularity we are aligning the number to. * @return The aligned value. */ static resource_t align_up(resource_t val, unsigned long gran) { resource_t mask; mask = (1ULL << gran) - 1ULL; val += mask; val &= ~mask; return val; } /** * Round a number up to the previous multiple of gran. * * @param val The starting value. * @param gran Granularity we are aligning the number to. * @return The aligned value. */ static resource_t align_down(resource_t val, unsigned long gran) { resource_t mask; mask = (1ULL << gran) - 1ULL; val &= ~mask; return val; } /** * Compute the maximum address that is part of a resource. * * @param resource The resource whose limit is desired. * @return The end. */ resource_t resource_end(struct resource *resource) { resource_t base, end; /* Get the base address. */ base = resource->base; /* * For a non bridge resource granularity and alignment are the same. * For a bridge resource align is the largest needed alignment below * the bridge. While the granularity is simply how many low bits of * the address cannot be set. */ /* Get the end (rounded up). */ end = base + align_up(resource->size, resource->gran) - 1; return end; } /** * Compute the maximum legal value for resource->base. * * @param resource The resource whose maximum is desired. * @return The maximum. */ resource_t resource_max(struct resource *resource) { resource_t max; max = align_down(resource->limit - resource->size + 1, resource->align); return max; } /** * Return the resource type of a resource. * * @param resource The resource type to decode. * @return TODO. */ const char *resource_type(struct resource *resource) { static char buffer[RESOURCE_TYPE_MAX]; snprintf(buffer, sizeof (buffer), "%s%s%s%s", ((resource->flags & IORESOURCE_READONLY) ? "ro" : ""), ((resource->flags & IORESOURCE_PREFETCH) ? "pref" : ""), ((resource->flags == 0) ? "unused" : (resource->flags & IORESOURCE_IO) ? "io" : (resource->flags & IORESOURCE_DRQ) ? "drq" : (resource->flags & IORESOURCE_IRQ) ? "irq" : (resource->flags & IORESOURCE_MEM) ? "mem" : "??????"), ((resource->flags & IORESOURCE_PCI64) ? "64" : "")); return buffer; } /** * Print the resource that was just stored. * * @param dev The device the stored resource lives on. * @param resource The resource that was just stored. * @param comment TODO */ void report_resource_stored(device_t dev, struct resource *resource, const char *comment) { char buf[10]; unsigned long long base, end; if (!(resource->flags & IORESOURCE_STORED)) return; base = resource->base; end = resource_end(resource); buf[0] = '\0'; if (resource->flags & IORESOURCE_PCI_BRIDGE) { snprintf(buf, sizeof (buf), "bus %02x ", dev->link_list->secondary); } printk(BIOS_DEBUG, "%s %02lx <- [0x%010llx - 0x%010llx] size 0x%08llx " "gran 0x%02x %s%s%s\n", dev_path(dev), resource->index, base, end, resource->size, resource->gran, buf, resource_type(resource), comment); } void search_bus_resources(struct bus *bus, unsigned long type_mask, unsigned long type, resource_search_t search, void *gp) { struct device *curdev; for (curdev = bus->children; curdev; curdev = curdev->sibling) { struct resource *res; /* Ignore disabled devices. */ if (!curdev->enabled) continue; for (res = curdev->resource_list; res; res = res->next) { /* If it isn't the right kind of resource ignore it. */ if ((res->flags & type_mask) != type) continue; /* If it is a subtractive resource recurse. */ if (res->flags & IORESOURCE_SUBTRACTIVE) { struct bus * subbus; for (subbus = curdev->link_list; subbus; subbus = subbus->next) if (subbus->link_num == IOINDEX_SUBTRACTIVE_LINK(res->index)) break; if (!subbus) /* Why can subbus be NULL? */ break; search_bus_resources(subbus, type_mask, type, search, gp); continue; } search(gp, curdev, res); } } } void search_global_resources(unsigned long type_mask, unsigned long type, resource_search_t search, void *gp) { struct device *curdev; for (curdev = all_devices; curdev; curdev = curdev->next) { struct resource *res; /* Ignore disabled devices. */ if (!curdev->enabled) continue; for (res = curdev->resource_list; res; res = res->next) { /* If it isn't the right kind of resource ignore it. */ if ((res->flags & type_mask) != type) continue; /* If it is a subtractive resource ignore it. */ if (res->flags & IORESOURCE_SUBTRACTIVE) continue; search(gp, curdev, res); } } } void dev_set_enabled(device_t dev, int enable) { if (dev->enabled == enable) return; dev->enabled = enable; if (dev->ops && dev->ops->enable) { dev->ops->enable(dev); } else if (dev->chip_ops && dev->chip_ops->enable_dev) { dev->chip_ops->enable_dev(dev); } } void disable_children(struct bus *bus) { device_t child; for (child = bus->children; child; child = child->sibling) { struct bus *link; for (link = child->link_list; link; link = link->next) disable_children(link); dev_set_enabled(child, 0); } } static void resource_tree(struct device *root, int debug_level, int depth) { int i = 0; struct device *child; struct bus *link; struct resource *res; char indent[30]; /* If your tree has more levels, it's wrong. */ for (i = 0; i < depth + 1 && i < 29; i++) indent[i] = ' '; indent[i] = '\0'; do_printk(BIOS_DEBUG, "%s%s", indent, dev_path(root)); if (root->link_list && root->link_list->children) do_printk(BIOS_DEBUG, " child on link 0 %s", dev_path(root->link_list->children)); do_printk(BIOS_DEBUG, "\n"); for (res = root->resource_list; res; res = res->next) { do_printk(debug_level, "%s%s resource base %llx size %llx " "align %d gran %d limit %llx flags %lx index %lx\n", indent, dev_path(root), res->base, res->size, res->align, res->gran, res->limit, res->flags, res->index); } for (link = root->link_list; link; link = link->next) { for (child = link->children; child; child = child->sibling) resource_tree(child, debug_level, depth + 1); } } void print_resource_tree(struct device *root, int debug_level, const char *msg) { /* Bail if root is null. */ if (!root) { do_printk(debug_level, "%s passed NULL for root!\n", __func__); return; } /* Bail if not printing to screen. */ if (!do_printk(debug_level, "Show resources in subtree (%s)...%s\n", dev_path(root), msg)) return; resource_tree(root, debug_level, 0); } void show_devs_tree(struct device *dev, int debug_level, int depth, int linknum) { char depth_str[20]; int i; struct device *sibling; struct bus *link; for (i = 0; i < depth; i++) depth_str[i] = ' '; depth_str[i] = '\0'; do_printk(debug_level, "%s%s: enabled %d\n", depth_str, dev_path(dev), dev->enabled); for (link = dev->link_list; link; link = link->next) { for (sibling = link->children; sibling; sibling = sibling->sibling) show_devs_tree(sibling, debug_level, depth + 1, i); } } void show_all_devs_tree(int debug_level, const char *msg) { /* Bail if not printing to screen. */ if (!do_printk(debug_level, "Show all devs in tree form... %s\n", msg)) return; show_devs_tree(all_devices, debug_level, 0, -1); } void show_devs_subtree(struct device *root, int debug_level, const char *msg) { /* Bail if not printing to screen. */ if (!do_printk(debug_level, "Show all devs in subtree %s... %s\n", dev_path(root), msg)) return; do_printk(debug_level, "%s\n", msg); show_devs_tree(root, debug_level, 0, -1); } void show_all_devs(int debug_level, const char *msg) { struct device *dev; /* Bail if not printing to screen. */ if (!do_printk(debug_level, "Show all devs... %s\n", msg)) return; for (dev = all_devices; dev; dev = dev->next) { do_printk(debug_level, "%s: enabled %d\n", dev_path(dev), dev->enabled); } } void show_one_resource(int debug_level, struct device *dev, struct resource *resource, const char *comment) { char buf[10]; unsigned long long base, end; base = resource->base; end = resource_end(resource); buf[0] = '\0'; do_printk(debug_level, "%s %02lx <- [0x%010llx - 0x%010llx] " "size 0x%08llx gran 0x%02x %s%s%s\n", dev_path(dev), resource->index, base, end, resource->size, resource->gran, buf, resource_type(resource), comment); } void show_all_devs_resources(int debug_level, const char* msg) { struct device *dev; if (!do_printk(debug_level, "Show all devs with resources... %s\n", msg)) return; for (dev = all_devices; dev; dev = dev->next) { struct resource *res; do_printk(debug_level, "%s: enabled %d\n", dev_path(dev), dev->enabled); for (res = dev->resource_list; res; res = res->next) show_one_resource(debug_level, dev, res, ""); } } void fixed_mem_resource(device_t dev, unsigned long index, unsigned long basek, unsigned long sizek, unsigned long type) { struct resource *resource; if (!sizek) return; resource = new_resource(dev, index); resource->base = ((resource_t)basek) << 10; resource->size = ((resource_t)sizek) << 10; resource->flags = IORESOURCE_MEM | IORESOURCE_FIXED | IORESOURCE_STORED | IORESOURCE_ASSIGNED; resource->flags |= type; } void tolm_test(void *gp, struct device *dev, struct resource *new) { struct resource **best_p = gp; struct resource *best; best = *best_p; if (!best || (best->base > new->base)) best = new; *best_p = best; } u32 find_pci_tolm(struct bus *bus) { struct resource *min = NULL; u32 tolm; search_bus_resources(bus, IORESOURCE_MEM, IORESOURCE_MEM, tolm_test, &min); tolm = 0xffffffffUL; if (min && tolm > min->base) tolm = min->base; return tolm; } /* Count of enabled CPUs */ int dev_count_cpu(void) { device_t cpu; int count = 0; for (cpu = all_devices; cpu; cpu = cpu->next) { if ((cpu->path.type != DEVICE_PATH_APIC) || (cpu->bus->dev->path.type != DEVICE_PATH_CPU_CLUSTER)) continue; if (!cpu->enabled) continue; count++; } return count; } /* Get device path name */ const char *dev_path_name(enum device_path_type type) { static const char *const type_names[] = DEVICE_PATH_NAMES; const char *type_name = "Unknown"; /* Translate the type value into a string */ if (type < ARRAY_SIZE(type_names)) type_name = type_names[type]; return type_name; }