/* * This file is part of the coreboot project. * * Copyright (C) 2013 Google, Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ /* * C Bootstrap code for the coreboot */ #include #include #include #include #include #include #include #include #include #include #include #include #if CONFIG_HAVE_ACPI_RESUME #include #endif #include #include #if BOOT_STATE_DEBUG #define BS_DEBUG_LVL BIOS_DEBUG #else #define BS_DEBUG_LVL BIOS_NEVER #endif static boot_state_t bs_pre_device(void *arg); static boot_state_t bs_dev_init_chips(void *arg); static boot_state_t bs_dev_enumerate(void *arg); static boot_state_t bs_dev_resources(void *arg); static boot_state_t bs_dev_eanble(void *arg); static boot_state_t bs_dev_init(void *arg); static boot_state_t bs_post_device(void *arg); static boot_state_t bs_os_resume_check(void *arg); static boot_state_t bs_os_resume(void *arg); static boot_state_t bs_write_tables(void *arg); static boot_state_t bs_payload_load(void *arg); static boot_state_t bs_payload_boot(void *arg); /* * Typically a state will take 4 time samples: * 1. Before state entry callbacks * 2. After state entry callbacks / Before state function. * 3. After state function / Before state exit callbacks. * 4. After state exit callbacks. */ #define MAX_TIME_SAMPLES 4 struct boot_state_times { int num_samples; struct mono_time samples[MAX_TIME_SAMPLES]; }; struct boot_state { const char *name; boot_state_t id; struct boot_state_callback *seq_callbacks[2]; boot_state_t (*run_state)(void *arg); void *arg; int complete : 1; int timers_drain : 1; #if CONFIG_HAVE_MONOTONIC_TIMER struct boot_state_times times; #endif }; #define BS_INIT(state_, run_func_, drain_timers_) \ { \ .name = #state_, \ .id = state_, \ .seq_callbacks = { NULL, NULL }, \ .run_state = run_func_, \ .arg = NULL, \ .complete = 0, \ .timers_drain = drain_timers_, \ } #define BS_INIT_ENTRY(state_, run_func_) \ [state_] = BS_INIT(state_, run_func_, 0) #define BS_INIT_ENTRY_DRAIN_TIMERS(state_, run_func_) \ [state_] = BS_INIT(state_, run_func_, 1) static struct boot_state boot_states[] = { BS_INIT_ENTRY(BS_PRE_DEVICE, bs_pre_device), BS_INIT_ENTRY(BS_DEV_INIT_CHIPS, bs_dev_init_chips), BS_INIT_ENTRY(BS_DEV_ENUMERATE, bs_dev_enumerate), BS_INIT_ENTRY(BS_DEV_RESOURCES, bs_dev_resources), BS_INIT_ENTRY(BS_DEV_ENABLE, bs_dev_eanble), BS_INIT_ENTRY(BS_DEV_INIT, bs_dev_init), BS_INIT_ENTRY(BS_POST_DEVICE, bs_post_device), BS_INIT_ENTRY(BS_OS_RESUME_CHECK, bs_os_resume_check), BS_INIT_ENTRY_DRAIN_TIMERS(BS_OS_RESUME, bs_os_resume), BS_INIT_ENTRY_DRAIN_TIMERS(BS_WRITE_TABLES, bs_write_tables), BS_INIT_ENTRY_DRAIN_TIMERS(BS_PAYLOAD_LOAD, bs_payload_load), BS_INIT_ENTRY_DRAIN_TIMERS(BS_PAYLOAD_BOOT, bs_payload_boot), }; static boot_state_t bs_pre_device(void *arg) { return BS_DEV_INIT_CHIPS; } static boot_state_t bs_dev_init_chips(void *arg) { timestamp_stash(TS_DEVICE_ENUMERATE); /* Initialize chips early, they might disable unused devices. */ dev_initialize_chips(); return BS_DEV_ENUMERATE; } static boot_state_t bs_dev_enumerate(void *arg) { /* Find the devices we don't have hard coded knowledge about. */ dev_enumerate(); post_code(POST_DEVICE_ENUMERATION_COMPLETE); return BS_DEV_RESOURCES; } static boot_state_t bs_dev_resources(void *arg) { timestamp_stash(TS_DEVICE_CONFIGURE); /* Now compute and assign the bus resources. */ dev_configure(); post_code(POST_DEVICE_CONFIGURATION_COMPLETE); return BS_DEV_ENABLE; } static boot_state_t bs_dev_eanble(void *arg) { timestamp_stash(TS_DEVICE_ENABLE); /* Now actually enable devices on the bus */ dev_enable(); post_code(POST_DEVICES_ENABLED); return BS_DEV_INIT; } static boot_state_t bs_dev_init(void *arg) { timestamp_stash(TS_DEVICE_INITIALIZE); /* And of course initialize devices on the bus */ dev_initialize(); post_code(POST_DEVICES_INITIALIZED); return BS_POST_DEVICE; } static boot_state_t bs_post_device(void *arg) { timestamp_stash(TS_DEVICE_DONE); timestamp_sync(); return BS_OS_RESUME_CHECK; } static boot_state_t bs_os_resume_check(void *arg) { #if CONFIG_HAVE_ACPI_RESUME void *wake_vector; wake_vector = acpi_find_wakeup_vector(); if (wake_vector != NULL) { boot_states[BS_OS_RESUME].arg = wake_vector; return BS_OS_RESUME; } post_code(0x8a); #endif timestamp_add_now(TS_CBMEM_POST); return BS_WRITE_TABLES; } static boot_state_t bs_os_resume(void *wake_vector) { #if CONFIG_HAVE_ACPI_RESUME acpi_resume(wake_vector); #endif return BS_WRITE_TABLES; } static boot_state_t bs_write_tables(void *arg) { timestamp_add_now(TS_WRITE_TABLES); /* Now that we have collected all of our information * write our configuration tables. */ write_tables(); return BS_PAYLOAD_LOAD; } static boot_state_t bs_payload_load(void *arg) { void *payload; void *entry; timestamp_add_now(TS_LOAD_PAYLOAD); payload = cbfs_load_payload(CBFS_DEFAULT_MEDIA, CONFIG_CBFS_PREFIX "/payload"); if (! payload) die("Could not find a payload\n"); entry = selfload(get_lb_mem(), payload); if (! entry) die("Could not load payload\n"); /* Pass the payload to the next state. */ boot_states[BS_PAYLOAD_BOOT].arg = entry; return BS_PAYLOAD_BOOT; } static boot_state_t bs_payload_boot(void *entry) { selfboot(entry); printk(BIOS_EMERG, "Boot failed"); /* Returning from this state will fail because the following signals * return to a completed state. */ return BS_PAYLOAD_BOOT; } #if CONFIG_HAVE_MONOTONIC_TIMER static void bs_sample_time(struct boot_state *state) { struct mono_time *mt; mt = &state->times.samples[state->times.num_samples]; timer_monotonic_get(mt); state->times.num_samples++; } static void bs_report_time(struct boot_state *state) { struct rela_time entry_time; struct rela_time run_time; struct rela_time exit_time; struct boot_state_times *times; times = &state->times; entry_time = mono_time_diff(×->samples[0], ×->samples[1]); run_time = mono_time_diff(×->samples[1], ×->samples[2]); exit_time = mono_time_diff(×->samples[2], ×->samples[3]); printk(BIOS_DEBUG, "BS: %s times (us): entry %ld run %ld exit %ld\n", state->name, rela_time_in_microseconds(&entry_time), rela_time_in_microseconds(&run_time), rela_time_in_microseconds(&exit_time)); } #else static inline void bs_sample_time(struct boot_state *state) {} static inline void bs_report_time(struct boot_state *state) {} #endif #if CONFIG_TIMER_QUEUE static void bs_run_timers(int drain) { /* Drain all timer callbacks until none are left, if directed. * Otherwise run the timers only once. */ do { if (!timers_run()) break; } while (drain); } #else static void bs_run_timers(int drain) {} #endif static void bs_call_callbacks(struct boot_state *state, boot_state_sequence_t seq) { while (state->seq_callbacks[seq] != NULL) { struct boot_state_callback *bscb; /* Remove the first callback. */ bscb = state->seq_callbacks[seq]; state->seq_callbacks[seq] = bscb->next; bscb->next = NULL; #if BOOT_STATE_DEBUG printk(BS_DEBUG_LVL, "BS: callback (%p) @ %s.\n", bscb, bscb->location); #endif bscb->callback(bscb->arg); } } static void bs_walk_state_machine(boot_state_t current_state_id) { while (1) { struct boot_state *state; state = &boot_states[current_state_id]; if (state->complete) { printk(BIOS_EMERG, "BS: %s state already executed.\n", state->name); break; } printk(BS_DEBUG_LVL, "BS: Entering %s state.\n", state->name); bs_run_timers(state->timers_drain); bs_sample_time(state); bs_call_callbacks(state, BS_ON_ENTRY); bs_sample_time(state); current_state_id = state->run_state(state->arg); printk(BS_DEBUG_LVL, "BS: Exiting %s state.\n", state->name); bs_sample_time(state); bs_call_callbacks(state, BS_ON_EXIT); bs_sample_time(state); bs_report_time(state); state->complete = 1; } } static int boot_state_sched_callback(struct boot_state *state, struct boot_state_callback *bscb, boot_state_sequence_t seq) { if (state->complete) { printk(BIOS_WARNING, "Tried to schedule callback on completed state %s.\n", state->name); return -1; } bscb->next = state->seq_callbacks[seq]; state->seq_callbacks[seq] = bscb; return 0; } int boot_state_sched_on_entry(struct boot_state_callback *bscb, boot_state_t state_id) { struct boot_state *state = &boot_states[state_id]; return boot_state_sched_callback(state, bscb, BS_ON_ENTRY); } int boot_state_sched_on_exit(struct boot_state_callback *bscb, boot_state_t state_id) { struct boot_state *state = &boot_states[state_id]; return boot_state_sched_callback(state, bscb, BS_ON_EXIT); } static void boot_state_schedule_static_entries(void) { extern struct boot_state_init_entry _bs_init_begin; extern struct boot_state_init_entry _bs_init_end; struct boot_state_init_entry *cur; cur = &_bs_init_begin; while (cur != &_bs_init_end) { if (cur->when == BS_ON_ENTRY) boot_state_sched_on_entry(&cur->bscb, cur->state); else boot_state_sched_on_exit(&cur->bscb, cur->state); cur++; } } void hardwaremain(int boot_complete) { timestamp_stash(TS_START_RAMSTAGE); post_code(POST_ENTRY_RAMSTAGE); /* console_init() MUST PRECEDE ALL printk()! */ console_init(); post_code(POST_CONSOLE_READY); printk(BIOS_NOTICE, "coreboot-%s%s %s %s...\n", coreboot_version, coreboot_extra_version, coreboot_build, (boot_complete)?"rebooting":"booting"); post_code(POST_CONSOLE_BOOT_MSG); /* If we have already booted attempt a hard reboot */ if (boot_complete) { hard_reset(); } /* Schedule the static boot state entries. */ boot_state_schedule_static_entries(); /* FIXME: Is there a better way to handle this? */ init_timer(); bs_walk_state_machine(BS_PRE_DEVICE); die("Boot state machine failure.\n"); }