/* * This file is part of the coreboot project. * * Copyright (C) 2003 Eric W. Biederman * Copyright (C) 2009 Ron Minnich * Copyright (C) 2016 George Trudeau * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #include static const unsigned long lb_start = (unsigned long)&_program; static const unsigned long lb_end = (unsigned long)&_eprogram; struct segment { struct segment *next; struct segment *prev; unsigned long s_dstaddr; unsigned long s_srcaddr; unsigned long s_memsz; unsigned long s_filesz; int compression; }; static void segment_insert_before(struct segment *seg, struct segment *new) { new->next = seg; new->prev = seg->prev; seg->prev->next = new; seg->prev = new; } static void segment_insert_after(struct segment *seg, struct segment *new) { new->next = seg->next; new->prev = seg; seg->next->prev = new; seg->next = new; } /* The problem: * Static executables all want to share the same addresses * in memory because only a few addresses are reliably present on * a machine, and implementing general relocation is hard. * * The solution: * - Allocate a buffer the size of the coreboot image plus additional * required space. * - Anything that would overwrite coreboot copy into the lower part of * the buffer. * - After loading an ELF image copy coreboot to the top of the buffer. * - Then jump to the loaded image. * * Benefits: * - Nearly arbitrary standalone executables can be loaded. * - Coreboot is preserved, so it can be returned to. * - The implementation is still relatively simple, * and much simpler than the general case implemented in kexec. */ static unsigned long bounce_size, bounce_buffer; static void get_bounce_buffer(unsigned long req_size) { unsigned long lb_size; void *buffer; /* When the ramstage is relocatable there is no need for a bounce * buffer. All payloads should not overlap the ramstage. */ if (IS_ENABLED(CONFIG_RELOCATABLE_RAMSTAGE) || !arch_supports_bounce_buffer()) { bounce_buffer = ~0UL; bounce_size = 0; return; } lb_size = lb_end - lb_start; /* Plus coreboot size so I have somewhere * to place a copy to return to. */ lb_size = req_size + lb_size; buffer = bootmem_allocate_buffer(lb_size); printk(BIOS_SPEW, "Bounce Buffer at %p, %lu bytes\n", buffer, lb_size); bounce_buffer = (uintptr_t)buffer; bounce_size = req_size; } static int overlaps_coreboot(struct segment *seg) { unsigned long start, end; start = seg->s_dstaddr; end = start + seg->s_memsz; return !((end <= lb_start) || (start >= lb_end)); } static int relocate_segment(unsigned long buffer, struct segment *seg) { /* Modify all segments that want to load onto coreboot * to load onto the bounce buffer instead. */ /* ret: 1 : A new segment is inserted before the seg. * 0 : A new segment is inserted after the seg, or no new one. */ unsigned long start, middle, end, ret = 0; printk(BIOS_SPEW, "lb: [0x%016lx, 0x%016lx)\n", lb_start, lb_end); /* I don't conflict with coreboot so get out of here */ if (!overlaps_coreboot(seg)) return 0; if (!arch_supports_bounce_buffer()) die ("bounce buffer not supported"); start = seg->s_dstaddr; middle = start + seg->s_filesz; end = start + seg->s_memsz; printk(BIOS_SPEW, "segment: [0x%016lx, 0x%016lx, 0x%016lx)\n", start, middle, end); if (seg->compression == CBFS_COMPRESS_NONE) { /* Slice off a piece at the beginning * that doesn't conflict with coreboot. */ if (start < lb_start) { struct segment *new; unsigned long len = lb_start - start; new = malloc(sizeof(*new)); *new = *seg; new->s_memsz = len; seg->s_memsz -= len; seg->s_dstaddr += len; seg->s_srcaddr += len; if (seg->s_filesz > len) { new->s_filesz = len; seg->s_filesz -= len; } else { seg->s_filesz = 0; } /* Order by stream offset */ segment_insert_before(seg, new); /* compute the new value of start */ start = seg->s_dstaddr; printk(BIOS_SPEW, " early: [0x%016lx, 0x%016lx, 0x%016lx)\n", new->s_dstaddr, new->s_dstaddr + new->s_filesz, new->s_dstaddr + new->s_memsz); ret = 1; } /* Slice off a piece at the end * that doesn't conflict with coreboot */ if (end > lb_end) { unsigned long len = lb_end - start; struct segment *new; new = malloc(sizeof(*new)); *new = *seg; seg->s_memsz = len; new->s_memsz -= len; new->s_dstaddr += len; new->s_srcaddr += len; if (seg->s_filesz > len) { seg->s_filesz = len; new->s_filesz -= len; } else { new->s_filesz = 0; } /* Order by stream offset */ segment_insert_after(seg, new); printk(BIOS_SPEW, " late: [0x%016lx, 0x%016lx, 0x%016lx)\n", new->s_dstaddr, new->s_dstaddr + new->s_filesz, new->s_dstaddr + new->s_memsz); } } /* Now retarget this segment onto the bounce buffer */ /* sort of explanation: the buffer is a 1:1 mapping to coreboot. * so you will make the dstaddr be this buffer, and it will get copied * later to where coreboot lives. */ seg->s_dstaddr = buffer + (seg->s_dstaddr - lb_start); printk(BIOS_SPEW, " bounce: [0x%016lx, 0x%016lx, 0x%016lx)\n", seg->s_dstaddr, seg->s_dstaddr + seg->s_filesz, seg->s_dstaddr + seg->s_memsz); return ret; } /* Decode a serialized cbfs payload segment * from memory into native endianness. */ static void cbfs_decode_payload_segment(struct cbfs_payload_segment *segment, const struct cbfs_payload_segment *src) { segment->type = read_be32(&src->type); segment->compression = read_be32(&src->compression); segment->offset = read_be32(&src->offset); segment->load_addr = read_be64(&src->load_addr); segment->len = read_be32(&src->len); segment->mem_len = read_be32(&src->mem_len); } static int build_self_segment_list( struct segment *head, struct cbfs_payload *cbfs_payload, uintptr_t *entry) { struct segment *new; struct cbfs_payload_segment *current_segment, *first_segment, segment; memset(head, 0, sizeof(*head)); head->next = head->prev = head; first_segment = &cbfs_payload->segments; for (current_segment = first_segment;; ++current_segment) { printk(BIOS_DEBUG, "Loading segment from ROM address 0x%p\n", current_segment); cbfs_decode_payload_segment(&segment, current_segment); switch (segment.type) { case PAYLOAD_SEGMENT_PARAMS: printk(BIOS_DEBUG, " parameter section (skipped)\n"); continue; case PAYLOAD_SEGMENT_CODE: case PAYLOAD_SEGMENT_DATA: printk(BIOS_DEBUG, " %s (compression=%x)\n", segment.type == PAYLOAD_SEGMENT_CODE ? "code" : "data", segment.compression); new = malloc(sizeof(*new)); new->s_dstaddr = segment.load_addr; new->s_memsz = segment.mem_len; new->compression = segment.compression; new->s_srcaddr = (uintptr_t) ((unsigned char *)first_segment) + segment.offset; new->s_filesz = segment.len; printk(BIOS_DEBUG, " New segment dstaddr 0x%lx memsize 0x%lx srcaddr 0x%lx filesize 0x%lx\n", new->s_dstaddr, new->s_memsz, new->s_srcaddr, new->s_filesz); /* Clean up the values */ if (new->s_filesz > new->s_memsz) { new->s_filesz = new->s_memsz; printk(BIOS_DEBUG, " cleaned up filesize 0x%lx\n", new->s_filesz); } break; case PAYLOAD_SEGMENT_BSS: printk(BIOS_DEBUG, " BSS 0x%p (%d byte)\n", (void *) (intptr_t)segment.load_addr, segment.mem_len); new = malloc(sizeof(*new)); new->s_filesz = 0; new->s_srcaddr = (uintptr_t) ((unsigned char *)first_segment) + segment.offset; new->s_dstaddr = segment.load_addr; new->s_memsz = segment.mem_len; new->compression = CBFS_COMPRESS_NONE; break; case PAYLOAD_SEGMENT_ENTRY: printk(BIOS_DEBUG, " Entry Point 0x%p\n", (void *) (intptr_t)segment.load_addr); *entry = segment.load_addr; /* Per definition, a payload always has the entry point * as last segment. Thus, we use the occurrence of the * entry point as break condition for the loop. * Can we actually just look at the number of section? */ return 1; default: /* We found something that we don't know about. Throw * hands into the sky and run away! */ printk(BIOS_EMERG, "Bad segment type %x\n", segment.type); return -1; } /* We have found another CODE, DATA or BSS segment */ /* Insert new segment at the end of the list */ segment_insert_before(head, new); } return 1; } static int payload_targets_usable_ram(struct segment *head) { const unsigned long one_meg = (1UL << 20); struct segment *ptr; for (ptr = head->next; ptr != head; ptr = ptr->next) { if (bootmem_region_targets_usable_ram(ptr->s_dstaddr, ptr->s_memsz)) continue; if (ptr->s_dstaddr < one_meg && (ptr->s_dstaddr + ptr->s_memsz) <= one_meg) { printk(BIOS_DEBUG, "Payload being loaded at below 1MiB " "without region being marked as RAM usable.\n"); continue; } /* Payload segment not targeting RAM. */ printk(BIOS_ERR, "SELF Payload doesn't target RAM:\n"); printk(BIOS_ERR, "Failed Segment: 0x%lx, %lu bytes\n", ptr->s_dstaddr, ptr->s_memsz); bootmem_dump_ranges(); return 0; } return 1; } static int load_self_segments(struct segment *head, struct prog *payload, bool check_regions) { struct segment *ptr; unsigned long bounce_high = lb_end; if (check_regions) { if (!payload_targets_usable_ram(head)) return 0; } for(ptr = head->next; ptr != head; ptr = ptr->next) { /* * Add segments to bootmem memory map before a bounce buffer is * allocated so that there aren't conflicts with the actual * payload. */ if (check_regions) { bootmem_add_range(ptr->s_dstaddr, ptr->s_memsz, LB_MEM_UNUSABLE); } if (!overlaps_coreboot(ptr)) continue; if (ptr->s_dstaddr + ptr->s_memsz > bounce_high) bounce_high = ptr->s_dstaddr + ptr->s_memsz; } get_bounce_buffer(bounce_high - lb_start); if (!bounce_buffer) { printk(BIOS_ERR, "Could not find a bounce buffer...\n"); return 0; } for(ptr = head->next; ptr != head; ptr = ptr->next) { unsigned char *dest, *src, *middle, *end; size_t len, memsz; printk(BIOS_DEBUG, "Loading Segment: addr: 0x%016lx memsz: 0x%016lx filesz: 0x%016lx\n", ptr->s_dstaddr, ptr->s_memsz, ptr->s_filesz); /* Modify the segment to load onto the bounce_buffer if necessary. */ if (relocate_segment(bounce_buffer, ptr)) { ptr = (ptr->prev)->prev; continue; } printk(BIOS_DEBUG, "Post relocation: addr: 0x%016lx memsz: 0x%016lx filesz: 0x%016lx\n", ptr->s_dstaddr, ptr->s_memsz, ptr->s_filesz); /* Compute the boundaries of the segment */ dest = (unsigned char *)(ptr->s_dstaddr); src = (unsigned char *)(ptr->s_srcaddr); len = ptr->s_filesz; memsz = ptr->s_memsz; end = dest + memsz; /* Copy data from the initial buffer */ switch(ptr->compression) { case CBFS_COMPRESS_LZMA: { printk(BIOS_DEBUG, "using LZMA\n"); timestamp_add_now(TS_START_ULZMA); len = ulzman(src, len, dest, memsz); timestamp_add_now(TS_END_ULZMA); if (!len) /* Decompression Error. */ return 0; break; } case CBFS_COMPRESS_LZ4: { printk(BIOS_DEBUG, "using LZ4\n"); timestamp_add_now(TS_START_ULZ4F); len = ulz4fn(src, len, dest, memsz); timestamp_add_now(TS_END_ULZ4F); if (!len) /* Decompression Error. */ return 0; break; } case CBFS_COMPRESS_NONE: { printk(BIOS_DEBUG, "it's not compressed!\n"); memcpy(dest, src, len); break; } default: printk(BIOS_INFO, "CBFS: Unknown compression type %d\n", ptr->compression); return -1; } /* Calculate middle after any changes to len. */ middle = dest + len; printk(BIOS_SPEW, "[ 0x%08lx, %08lx, 0x%08lx) <- %08lx\n", (unsigned long)dest, (unsigned long)middle, (unsigned long)end, (unsigned long)src); /* Zero the extra bytes between middle & end */ if (middle < end) { printk(BIOS_DEBUG, "Clearing Segment: addr: 0x%016lx memsz: 0x%016lx\n", (unsigned long)middle, (unsigned long)(end - middle)); /* Zero the extra bytes */ memset(middle, 0, end - middle); } /* Copy the data that's outside the area that shadows ramstage */ printk(BIOS_DEBUG, "dest %p, end %p, bouncebuffer %lx\n", dest, end, bounce_buffer); if ((unsigned long)end > bounce_buffer) { if ((unsigned long)dest < bounce_buffer) { unsigned char *from = dest; unsigned char *to = (unsigned char*)(lb_start-(bounce_buffer-(unsigned long)dest)); unsigned long amount = bounce_buffer-(unsigned long)dest; printk(BIOS_DEBUG, "move prefix around: from %p, to %p, amount: %lx\n", from, to, amount); memcpy(to, from, amount); } if ((unsigned long)end > bounce_buffer + (lb_end - lb_start)) { unsigned long from = bounce_buffer + (lb_end - lb_start); unsigned long to = lb_end; unsigned long amount = (unsigned long)end - from; printk(BIOS_DEBUG, "move suffix around: from %lx, to %lx, amount: %lx\n", from, to, amount); memcpy((char*)to, (char*)from, amount); } } /* * Each architecture can perform additonal operations * on the loaded segment */ prog_segment_loaded((uintptr_t)dest, ptr->s_memsz, ptr->next == head ? SEG_FINAL : 0); } return 1; } void *selfload(struct prog *payload, bool check_regions) { uintptr_t entry = 0; struct segment head; void *data; data = rdev_mmap_full(prog_rdev(payload)); if (data == NULL) return NULL; /* Preprocess the self segments */ if (!build_self_segment_list(&head, data, &entry)) goto out; /* Load the segments */ if (!load_self_segments(&head, payload, check_regions)) goto out; printk(BIOS_SPEW, "Loaded segments\n"); rdev_munmap(prog_rdev(payload), data); /* Update the payload's area with the bounce buffer information. */ prog_set_area(payload, (void *)(uintptr_t)bounce_buffer, bounce_size); return (void *)entry; out: rdev_munmap(prog_rdev(payload), data); return NULL; }