/* Copyright (c) 2013 The Chromium OS Authors. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following disclaimer * in the documentation and/or other materials provided with the * distribution. * * Neither the name of Google Inc. nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * Functions for querying, manipulating and locking rollback indices * stored in the TPM NVRAM. */ #include #include #include #include #include #include #include #include #ifdef FOR_TEST #include #define VBDEBUG(format, args...) printf(format, ## args) #else #define VBDEBUG(format, args...) \ printk(BIOS_INFO, "%s():%d: " format, __func__, __LINE__, ## args) #endif #define RETURN_ON_FAILURE(tpm_cmd) do { \ uint32_t result_; \ if ((result_ = (tpm_cmd)) != TPM_SUCCESS) { \ VBDEBUG("Antirollback: %08x returned by " #tpm_cmd \ "\n", (int)result_); \ return result_; \ } \ } while (0) static uint32_t safe_write(uint32_t index, const void *data, uint32_t length); static uint32_t read_space_firmware(struct vb2_context *ctx) { RETURN_ON_FAILURE(tlcl_read(FIRMWARE_NV_INDEX, ctx->secdata_firmware, VB2_SECDATA_FIRMWARE_SIZE)); return TPM_SUCCESS; } uint32_t antirollback_read_space_kernel(struct vb2_context *ctx) { if (!CONFIG(TPM2)) { /* * Before reading the kernel space, verify its permissions. If * the kernel space has the wrong permission, we give up. This * will need to be fixed by the recovery kernel. We will have * to worry about this because at any time (even with PP turned * off) the TPM owner can remove and redefine a PP-protected * space (but not write to it). */ uint32_t perms; RETURN_ON_FAILURE(tlcl_get_permissions(KERNEL_NV_INDEX, &perms)); if (perms != TPM_NV_PER_PPWRITE) { printk(BIOS_ERR, "TPM: invalid secdata_kernel permissions\n"); return TPM_E_CORRUPTED_STATE; } } uint8_t size = VB2_SECDATA_KERNEL_MIN_SIZE; RETURN_ON_FAILURE(tlcl_read(KERNEL_NV_INDEX, ctx->secdata_kernel, size)); if (vb2api_secdata_kernel_check(ctx, &size) == VB2_ERROR_SECDATA_KERNEL_INCOMPLETE) /* Re-read. vboot will run the check and handle errors. */ RETURN_ON_FAILURE(tlcl_read(KERNEL_NV_INDEX, ctx->secdata_kernel, size)); return TPM_SUCCESS; } static uint32_t read_space_rec_hash(uint8_t *data) { RETURN_ON_FAILURE(tlcl_read(REC_HASH_NV_INDEX, data, REC_HASH_NV_SIZE)); return TPM_SUCCESS; } /* * This is used to initialize the TPM space for recovery hash after defining * it. Since there is no data available to calculate hash at the point where TPM * space is defined, initialize it to all 0s. */ static const uint8_t rec_hash_data[REC_HASH_NV_SIZE] = { }; #if CONFIG(TPM2) /* * Different sets of NVRAM space attributes apply to the "ro" spaces, * i.e. those which should not be possible to delete or modify once * the RO exits, and the rest of the NVRAM spaces. */ static const TPMA_NV ro_space_attributes = { .TPMA_NV_PPWRITE = 1, .TPMA_NV_AUTHREAD = 1, .TPMA_NV_PPREAD = 1, .TPMA_NV_PLATFORMCREATE = 1, .TPMA_NV_WRITE_STCLEAR = 1, .TPMA_NV_POLICY_DELETE = 1, }; static const TPMA_NV rw_space_attributes = { .TPMA_NV_PPWRITE = 1, .TPMA_NV_AUTHREAD = 1, .TPMA_NV_PPREAD = 1, .TPMA_NV_PLATFORMCREATE = 1, }; /* * This policy digest was obtained using TPM2_PolicyPCR * selecting only PCR_0 with a value of all zeros. */ static const uint8_t pcr0_unchanged_policy[] = { 0x09, 0x93, 0x3C, 0xCE, 0xEB, 0xB4, 0x41, 0x11, 0x18, 0x81, 0x1D, 0xD4, 0x47, 0x78, 0x80, 0x08, 0x88, 0x86, 0x62, 0x2D, 0xD7, 0x79, 0x94, 0x46, 0x62, 0x26, 0x68, 0x8E, 0xEE, 0xE6, 0x6A, 0xA1}; /* Nothing special in the TPM2 path yet. */ static uint32_t safe_write(uint32_t index, const void *data, uint32_t length) { return tlcl_write(index, data, length); } static uint32_t set_space(const char *name, uint32_t index, const void *data, uint32_t length, const TPMA_NV nv_attributes, const uint8_t *nv_policy, size_t nv_policy_size) { uint32_t rv; rv = tlcl_define_space(index, length, nv_attributes, nv_policy, nv_policy_size); if (rv == TPM_E_NV_DEFINED) { /* * Continue with writing: it may be defined, but not written * to. In that case a subsequent tlcl_read() would still return * TPM_E_BADINDEX on TPM 2.0. The cases when some non-firmware * space is defined while the firmware space is not there * should be rare (interrupted initialization), so no big harm * in writing once again even if it was written already. */ VBDEBUG("%s: %s space already exists\n", __func__, name); rv = TPM_SUCCESS; } if (rv != TPM_SUCCESS) return rv; return safe_write(index, data, length); } static uint32_t set_firmware_space(const void *firmware_blob) { return set_space("firmware", FIRMWARE_NV_INDEX, firmware_blob, VB2_SECDATA_FIRMWARE_SIZE, ro_space_attributes, pcr0_unchanged_policy, sizeof(pcr0_unchanged_policy)); } static uint32_t set_kernel_space(const void *kernel_blob) { return set_space("kernel", KERNEL_NV_INDEX, kernel_blob, VB2_SECDATA_KERNEL_SIZE, rw_space_attributes, NULL, 0); } static uint32_t set_rec_hash_space(const uint8_t *data) { return set_space("MRC Hash", REC_HASH_NV_INDEX, data, REC_HASH_NV_SIZE, ro_space_attributes, pcr0_unchanged_policy, sizeof(pcr0_unchanged_policy)); } static uint32_t _factory_initialize_tpm(struct vb2_context *ctx) { vb2api_secdata_kernel_create(ctx); RETURN_ON_FAILURE(tlcl_force_clear()); /* * Of all NVRAM spaces defined by this function the firmware space * must be defined last, because its existence is considered an * indication that TPM factory initialization was successfully * completed. */ RETURN_ON_FAILURE(set_kernel_space(ctx->secdata_kernel)); if (CONFIG(VBOOT_HAS_REC_HASH_SPACE)) RETURN_ON_FAILURE(set_rec_hash_space(rec_hash_data)); RETURN_ON_FAILURE(set_firmware_space(ctx->secdata_firmware)); return TPM_SUCCESS; } uint32_t antirollback_lock_space_firmware(void) { return tlcl_lock_nv_write(FIRMWARE_NV_INDEX); } uint32_t antirollback_lock_space_rec_hash(void) { return tlcl_lock_nv_write(REC_HASH_NV_INDEX); } #else /** * Like tlcl_write(), but checks for write errors due to hitting the 64-write * limit and clears the TPM when that happens. This can only happen when the * TPM is unowned, so it is OK to clear it (and we really have no choice). * This is not expected to happen frequently, but it could happen. */ static uint32_t safe_write(uint32_t index, const void *data, uint32_t length) { uint32_t result = tlcl_write(index, data, length); if (result == TPM_E_MAXNVWRITES) { RETURN_ON_FAILURE(tpm_clear_and_reenable()); return tlcl_write(index, data, length); } else { return result; } } /** * Similarly to safe_write(), this ensures we don't fail a DefineSpace because * we hit the TPM write limit. This is even less likely to happen than with * writes because we only define spaces once at initialization, but we'd * rather be paranoid about this. */ static uint32_t safe_define_space(uint32_t index, uint32_t perm, uint32_t size) { uint32_t result = tlcl_define_space(index, perm, size); if (result == TPM_E_MAXNVWRITES) { RETURN_ON_FAILURE(tpm_clear_and_reenable()); return tlcl_define_space(index, perm, size); } else { return result; } } static uint32_t set_rec_hash_space(const uint8_t *data) { RETURN_ON_FAILURE(safe_define_space(REC_HASH_NV_INDEX, TPM_NV_PER_GLOBALLOCK | TPM_NV_PER_PPWRITE, REC_HASH_NV_SIZE)); RETURN_ON_FAILURE(safe_write(REC_HASH_NV_INDEX, data, REC_HASH_NV_SIZE)); return TPM_SUCCESS; } static uint32_t _factory_initialize_tpm(struct vb2_context *ctx) { TPM_PERMANENT_FLAGS pflags; uint32_t result; vb2api_secdata_kernel_create_v0(ctx); result = tlcl_get_permanent_flags(&pflags); if (result != TPM_SUCCESS) return result; /* * TPM may come from the factory without physical presence finalized. * Fix if necessary. */ VBDEBUG("TPM: physicalPresenceLifetimeLock=%d\n", pflags.physicalPresenceLifetimeLock); if (!pflags.physicalPresenceLifetimeLock) { VBDEBUG("TPM: Finalizing physical presence\n"); RETURN_ON_FAILURE(tlcl_finalize_physical_presence()); } /* * The TPM will not enforce the NV authorization restrictions until the * execution of a TPM_NV_DefineSpace with the handle of * TPM_NV_INDEX_LOCK. Here we create that space if it doesn't already * exist. */ VBDEBUG("TPM: nvLocked=%d\n", pflags.nvLocked); if (!pflags.nvLocked) { VBDEBUG("TPM: Enabling NV locking\n"); RETURN_ON_FAILURE(tlcl_set_nv_locked()); } /* Clear TPM owner, in case the TPM is already owned for some reason. */ VBDEBUG("TPM: Clearing owner\n"); RETURN_ON_FAILURE(tpm_clear_and_reenable()); /* Define and write secdata_kernel space. */ RETURN_ON_FAILURE(safe_define_space(KERNEL_NV_INDEX, TPM_NV_PER_PPWRITE, VB2_SECDATA_KERNEL_SIZE_V02)); RETURN_ON_FAILURE(safe_write(KERNEL_NV_INDEX, ctx->secdata_kernel, VB2_SECDATA_KERNEL_SIZE_V02)); /* Define and write secdata_firmware space. */ RETURN_ON_FAILURE(safe_define_space(FIRMWARE_NV_INDEX, TPM_NV_PER_GLOBALLOCK | TPM_NV_PER_PPWRITE, VB2_SECDATA_FIRMWARE_SIZE)); RETURN_ON_FAILURE(safe_write(FIRMWARE_NV_INDEX, ctx->secdata_firmware, VB2_SECDATA_FIRMWARE_SIZE)); /* Define and set rec hash space, if available. */ if (CONFIG(VBOOT_HAS_REC_HASH_SPACE)) RETURN_ON_FAILURE(set_rec_hash_space(rec_hash_data)); return TPM_SUCCESS; } uint32_t antirollback_lock_space_firmware(void) { return tlcl_set_global_lock(); } uint32_t antirollback_lock_space_rec_hash(void) { /* * Nothing needs to be done here, since global lock is already set while * locking firmware space. */ return TPM_SUCCESS; } #endif /** * Perform one-time initializations. * * Create the NVRAM spaces, and set their initial values as needed. Sets the * nvLocked bit and ensures the physical presence command is enabled and * locked. */ static uint32_t factory_initialize_tpm(struct vb2_context *ctx) { uint32_t result; /* * Set initial values of secdata_firmware space. * kernel space is created in _factory_initialize_tpm(). */ vb2api_secdata_firmware_create(ctx); VBDEBUG("TPM: factory initialization\n"); /* * Do a full test. This only happens the first time the device is * turned on in the factory, so performance is not an issue. This is * almost certainly not necessary, but it gives us more confidence * about some code paths below that are difficult to * test---specifically the ones that set lifetime flags, and are only * executed once per physical TPM. */ result = tlcl_self_test_full(); if (result != TPM_SUCCESS) return result; result = _factory_initialize_tpm(ctx); if (result != TPM_SUCCESS) return result; /* _factory_initialize_tpm() writes initial secdata values to TPM immediately, so let vboot know that it's up to date now. */ ctx->flags &= ~(VB2_CONTEXT_SECDATA_FIRMWARE_CHANGED | VB2_CONTEXT_SECDATA_KERNEL_CHANGED); VBDEBUG("TPM: factory initialization successful\n"); return TPM_SUCCESS; } uint32_t antirollback_read_space_firmware(struct vb2_context *ctx) { uint32_t rv; /* Read the firmware space. */ rv = read_space_firmware(ctx); if (rv == TPM_E_BADINDEX) { /* This seems the first time we've run. Initialize the TPM. */ VBDEBUG("TPM: Not initialized yet.\n"); RETURN_ON_FAILURE(factory_initialize_tpm(ctx)); } else if (rv != TPM_SUCCESS) { VBDEBUG("TPM: Firmware space in a bad state; giving up.\n"); return TPM_E_CORRUPTED_STATE; } return TPM_SUCCESS; } uint32_t antirollback_write_space_firmware(struct vb2_context *ctx) { if (CONFIG(CR50_IMMEDIATELY_COMMIT_FW_SECDATA)) tlcl_cr50_enable_nvcommits(); return safe_write(FIRMWARE_NV_INDEX, ctx->secdata_firmware, VB2_SECDATA_FIRMWARE_SIZE); } uint32_t antirollback_write_space_kernel(struct vb2_context *ctx) { /* Learn the expected size. */ uint8_t size = VB2_SECDATA_KERNEL_MIN_SIZE; vb2api_secdata_kernel_check(ctx, &size); return safe_write(KERNEL_NV_INDEX, ctx->secdata_kernel, size); } uint32_t antirollback_read_space_rec_hash(uint8_t *data, uint32_t size) { if (size != REC_HASH_NV_SIZE) { VBDEBUG("TPM: Incorrect buffer size for rec hash. " "(Expected=0x%x Actual=0x%x).\n", REC_HASH_NV_SIZE, size); return TPM_E_READ_FAILURE; } return read_space_rec_hash(data); } uint32_t antirollback_write_space_rec_hash(const uint8_t *data, uint32_t size) { uint8_t spc_data[REC_HASH_NV_SIZE]; uint32_t rv; if (size != REC_HASH_NV_SIZE) { VBDEBUG("TPM: Incorrect buffer size for rec hash. " "(Expected=0x%x Actual=0x%x).\n", REC_HASH_NV_SIZE, size); return TPM_E_WRITE_FAILURE; } rv = read_space_rec_hash(spc_data); if (rv == TPM_E_BADINDEX) { /* * If space is not defined already for recovery hash, define * new space. */ VBDEBUG("TPM: Initializing recovery hash space.\n"); return set_rec_hash_space(data); } if (rv != TPM_SUCCESS) return rv; return safe_write(REC_HASH_NV_INDEX, data, size); } vb2_error_t vb2ex_tpm_clear_owner(struct vb2_context *ctx) { uint32_t rv; printk(BIOS_INFO, "Clearing TPM owner\n"); rv = tpm_clear_and_reenable(); if (rv) return VB2_ERROR_EX_TPM_CLEAR_OWNER; return VB2_SUCCESS; }