/* SPDX-License-Identifier: GPL-2.0-only */ #include #include #include #include #include #include #include #include #include #if CONFIG(EC_GOOGLE_CHROMEEC) #include #include #endif #include #include #include #include #include #include #include static const char *const ecc_decoder[] = { "inactive", "active on IO", "disabled on IO", "active", }; /* * Dump in the log memory controller configuration as read from the memory * controller registers. */ static void report_memory_config(void) { int i; const u32 addr_decoder_common = MCHBAR32(MAD_CHNL); printk(BIOS_DEBUG, "memcfg DDR3 clock %d MHz\n", (MCHBAR32(MC_BIOS_DATA) * 13333 * 2 + 50) / 100); printk(BIOS_DEBUG, "memcfg channel assignment: A: %d, B % d, C % d\n", (addr_decoder_common >> 0) & 3, (addr_decoder_common >> 2) & 3, (addr_decoder_common >> 4) & 3); for (i = 0; i < NUM_CHANNELS; i++) { const u32 ch_conf = MCHBAR32(MAD_DIMM(i)); printk(BIOS_DEBUG, "memcfg channel[%d] config (%8.8x):\n", i, ch_conf); printk(BIOS_DEBUG, " ECC %s\n", ecc_decoder[(ch_conf >> 24) & 3]); printk(BIOS_DEBUG, " enhanced interleave mode %s\n", ((ch_conf >> 22) & 1) ? "on" : "off"); printk(BIOS_DEBUG, " rank interleave %s\n", ((ch_conf >> 21) & 1) ? "on" : "off"); printk(BIOS_DEBUG, " DIMMA %d MB width %s %s rank%s\n", ((ch_conf >> 0) & 0xff) * 256, ((ch_conf >> 19) & 1) ? "x16" : "x8 or x32", ((ch_conf >> 17) & 1) ? "dual" : "single", ((ch_conf >> 16) & 1) ? "" : ", selected"); printk(BIOS_DEBUG, " DIMMB %d MB width %s %s rank%s\n", ((ch_conf >> 8) & 0xff) * 256, ((ch_conf >> 20) & 1) ? "x16" : "x8 or x32", ((ch_conf >> 18) & 1) ? "dual" : "single", ((ch_conf >> 16) & 1) ? ", selected" : ""); } } /* * Find PEI executable in coreboot filesystem and execute it. */ void raminit(struct pei_data *pei_data) { size_t mrc_size; struct memory_info *mem_info; pei_wrapper_entry_t entry; int ret; struct cbfsf f; uint32_t type = CBFS_TYPE_MRC; broadwell_fill_pei_data(pei_data); if (CONFIG(BROADWELL_VBOOT_IN_BOOTBLOCK) && vboot_recovery_mode_enabled()) { /* Recovery mode does not use MRC cache */ printk(BIOS_DEBUG, "Recovery mode: not using MRC cache.\n"); } else { /* Assume boot device is memory mapped. */ assert(CONFIG(BOOT_DEVICE_MEMORY_MAPPED)); pei_data->saved_data = mrc_cache_current_mmap_leak(MRC_TRAINING_DATA, 0, &mrc_size); if (pei_data->saved_data) { /* MRC cache found */ pei_data->saved_data_size = mrc_size; } else if (pei_data->boot_mode == ACPI_S3) { /* Waking from S3 and no cache. */ printk(BIOS_DEBUG, "No MRC cache found in S3 resume path.\n"); post_code(POST_RESUME_FAILURE); system_reset(); } else { printk(BIOS_DEBUG, "No MRC cache found.\n"); } } /* * Do not use saved pei data. Can be set by mainboard romstage * to force a full train of memory on every boot. */ if (pei_data->disable_saved_data) { printk(BIOS_DEBUG, "Disabling PEI saved data by request\n"); pei_data->saved_data = NULL; pei_data->saved_data_size = 0; } /* Determine if mrc.bin is in the cbfs. */ if (cbfs_locate_file_in_region(&f, "COREBOOT", "mrc.bin", &type) < 0) die("mrc.bin not found!"); /* We don't care about leaking the mapping */ entry = (pei_wrapper_entry_t)rdev_mmap_full(&f.data); if (entry == NULL) { printk(BIOS_DEBUG, "Couldn't find mrc.bin\n"); return; } printk(BIOS_DEBUG, "Starting Memory Reference Code\n"); ret = entry(pei_data); if (ret < 0) die("pei_data version mismatch\n"); /* Print the MRC version after executing the UEFI PEI stage. */ u32 version = MCHBAR32(MRC_REVISION); printk(BIOS_DEBUG, "MRC Version %d.%d.%d Build %d\n", (version >> 24) & 0xff, (version >> 16) & 0xff, (version >> 8) & 0xff, (version >> 0) & 0xff); report_memory_config(); if (pei_data->boot_mode != ACPI_S3) { cbmem_initialize_empty(); } else if (cbmem_initialize()) { printk(BIOS_DEBUG, "Failed to recover CBMEM in S3 resume.\n"); /* Failed S3 resume, reset to come up cleanly */ system_reset(); } printk(BIOS_DEBUG, "MRC data at %p %d bytes\n", pei_data->data_to_save, pei_data->data_to_save_size); if (pei_data->data_to_save != NULL && pei_data->data_to_save_size > 0) mrc_cache_stash_data(MRC_TRAINING_DATA, 0, pei_data->data_to_save, pei_data->data_to_save_size); printk(BIOS_DEBUG, "create cbmem for dimm information\n"); mem_info = cbmem_add(CBMEM_ID_MEMINFO, sizeof(struct memory_info)); if (!mem_info) { printk(BIOS_ERR, "Error! Failed to add mem_info to cbmem\n"); return; } memset(mem_info, 0, sizeof(*mem_info)); /* Translate pei_memory_info struct data into memory_info struct */ mem_info->dimm_cnt = pei_data->meminfo.dimm_cnt; for (int i = 0; i < MIN(DIMM_INFO_TOTAL, PEI_DIMM_INFO_TOTAL); i++) { struct dimm_info *dimm = &mem_info->dimm[i]; const struct pei_dimm_info *pei_dimm = &pei_data->meminfo.dimm[i]; dimm->dimm_size = pei_dimm->dimm_size; dimm->ddr_type = pei_dimm->ddr_type; dimm->ddr_frequency = pei_dimm->ddr_frequency; dimm->rank_per_dimm = pei_dimm->rank_per_dimm; dimm->channel_num = pei_dimm->channel_num; dimm->dimm_num = pei_dimm->dimm_num; dimm->bank_locator = pei_dimm->bank_locator; memcpy(&dimm->serial, &pei_dimm->serial, MIN(sizeof(dimm->serial), sizeof(pei_dimm->serial))); memcpy(&dimm->module_part_number, &pei_dimm->module_part_number, MIN(sizeof(dimm->module_part_number), sizeof(pei_dimm->module_part_number))); dimm->module_part_number[DIMM_INFO_PART_NUMBER_SIZE - 1] = '\0'; dimm->mod_id = pei_dimm->mod_id; dimm->mod_type = pei_dimm->mod_type; dimm->bus_width = pei_dimm->bus_width; } }