/* * This file is part of the coreboot project. * * Copyright (C) 2014 Google Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include #include #include #include #include #include #include #include static inline uint32_t *stack_push(u32 *stack, u32 value) { stack = &stack[-1]; *stack = value; return stack; } /* Romstage needs quite a bit of stack for decompressing images since the lzma * lib keeps its state on the stack during romstage. */ static unsigned long choose_top_of_stack(void) { unsigned long stack_top; const unsigned long romstage_ram_stack_size = 0x5000; /* cbmem_add() does a find() before add(). */ stack_top = (unsigned long)cbmem_add(CBMEM_ID_ROMSTAGE_RAM_STACK, romstage_ram_stack_size); stack_top += romstage_ram_stack_size; return stack_top; } /* setup_stack_and_mttrs() determines the stack to use after * cache-as-ram is torn down as well as the MTRR settings to use. */ void *setup_stack_and_mttrs(void) { unsigned long top_of_stack; int num_mtrrs; uint32_t *slot; uint32_t mtrr_mask_upper; uint32_t top_of_ram; /* Top of stack needs to be aligned to a 4-byte boundary. */ top_of_stack = choose_top_of_stack() & ~3; slot = (void *)top_of_stack; num_mtrrs = 0; /* The upper bits of the MTRR mask need to set according to the number * of physical address bits. */ mtrr_mask_upper = (1 << ((cpuid_eax(0x80000008) & 0xff) - 32)) - 1; /* The order for each MTTR is value then base with upper 32-bits of * each value coming before the lower 32-bits. The reasoning for * this ordering is to create a stack layout like the following: * +0: Number of MTRRs * +4: MTTR base 0 31:0 * +8: MTTR base 0 63:32 * +12: MTTR mask 0 31:0 * +16: MTTR mask 0 63:32 * +20: MTTR base 1 31:0 * +24: MTTR base 1 63:32 * +28: MTTR mask 1 31:0 * +32: MTTR mask 1 63:32 */ /* Cache the ROM as WP just below 4GiB. */ slot = stack_push(slot, mtrr_mask_upper); /* upper mask */ slot = stack_push(slot, ~(CONFIG_ROM_SIZE - 1) | MTRRphysMaskValid); slot = stack_push(slot, 0); /* upper base */ slot = stack_push(slot, ~(CONFIG_ROM_SIZE - 1) | MTRR_TYPE_WRPROT); num_mtrrs++; /* Cache RAM as WB from 0 -> CONFIG_RAMTOP. */ slot = stack_push(slot, mtrr_mask_upper); /* upper mask */ slot = stack_push(slot, ~(CONFIG_RAMTOP - 1) | MTRRphysMaskValid); slot = stack_push(slot, 0); /* upper base */ slot = stack_push(slot, 0 | MTRR_TYPE_WRBACK); num_mtrrs++; top_of_ram = (uint32_t)cbmem_top(); /* Cache 8MiB below the top of ram. The top of ram under 4GiB is the * start of the TSEG region. It is required to be 8MiB aligned. Set * this area as cacheable so it can be used later for ramstage before * setting up the entire RAM as cacheable. */ slot = stack_push(slot, mtrr_mask_upper); /* upper mask */ slot = stack_push(slot, ~((8 << 20) - 1) | MTRRphysMaskValid); slot = stack_push(slot, 0); /* upper base */ slot = stack_push(slot, (top_of_ram - (8 << 20)) | MTRR_TYPE_WRBACK); num_mtrrs++; /* Cache 8MiB at the top of ram. Top of ram is where the TSEG * region resides. However, it is not restricted to SMM mode until * SMM has been relocated. By setting the region to cacheable it * provides faster access when relocating the SMM handler as well * as using the TSEG region for other purposes. */ slot = stack_push(slot, mtrr_mask_upper); /* upper mask */ slot = stack_push(slot, ~((8 << 20) - 1) | MTRRphysMaskValid); slot = stack_push(slot, 0); /* upper base */ slot = stack_push(slot, top_of_ram | MTRR_TYPE_WRBACK); num_mtrrs++; /* Save the number of MTTRs to setup. Return the stack location * pointing to the number of MTRRs. */ slot = stack_push(slot, num_mtrrs); return slot; }