/* * This file is part of the coreboot project. * * Copyright (C) 2008-2009 coresystems GmbH * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include <device/device.h> #include <device/pci.h> #include <console/console.h> #include <arch/io.h> #include <cpu/x86/cache.h> #include <cpu/x86/smm.h> #include <cpu/cpu.h> #include <string.h> #include "chip.h" #include "sch.h" extern unsigned char _binary_smm_start; extern unsigned char _binary_smm_size; /* I945 */ #define SMRAM 0x9d #define D_OPEN (1 << 6) #define D_CLS (1 << 5) #define D_LCK (1 << 4) #define G_SMRAME (1 << 3) #define C_BASE_SEG ((0 << 2) | (1 << 1) | (0 << 0)) /* ICH7 */ #define PM1_STS 0x00 #define PM1_EN 0x02 #define PM1_CNT 0x04 #define PM1_TMR 0x08 #define PROC_CNT 0x10 #define LV2 0x14 #define LV3 0x15 #define LV4 0x16 #define PM2_CNT 0x20 // mobile only #define GPE0_STS 0x28 #define GPE0_EN 0x2c #define SMI_EN 0x30 #define EL_SMI_EN (1 << 25) // Intel Quick Resume Technology #define INTEL_USB2_EN (1 << 18) // Intel-Specific USB2 SMI logic #define LEGACY_USB2_EN (1 << 17) // Legacy USB2 SMI logic #define PERIODIC_EN (1 << 14) // SMI on PERIODIC_STS in SMI_STS #define TCO_EN (1 << 13) // Enable TCO Logic (BIOSWE et al) #define MCSMI_EN (1 << 11) // Trap microcontroller range access #define BIOS_RLS (1 << 7) // asserts SCI on bit set #define SWSMI_TMR_EN (1 << 6) // start software smi timer on bit set #define APMC_EN (1 << 5) // Writes to APM_CNT cause SMI# #define SLP_SMI_EN (1 << 4) // Write to SLP_EN in PM1_CNT asserts SMI# #define LEGACY_USB_EN (1 << 3) // Legacy USB circuit SMI logic #define BIOS_EN (1 << 2) // Assert SMI# on setting GBL_RLS bit #define EOS (1 << 1) // End of SMI (deassert SMI#) #define GBL_SMI_EN (1 << 0) // SMI# generation at all? #define SMI_STS 0x34 #define ALT_GP_SMI_EN 0x38 #define ALT_GP_SMI_STS 0x3a #define GPE_CNTL 0x42 #define DEVACT_STS 0x44 #define SS_CNT 0x50 #define C3_RES 0x54 /* While we read PMBASE dynamically in case it changed, let's * initialize it with a sane value */ static u16 pmbase = DEFAULT_PMBASE; /** * @brief read and clear PM1_STS * @return PM1_STS register */ static u16 reset_pm1_status(void) { u16 reg16; reg16 = inw(pmbase + PM1_STS); /* set status bits are cleared by writing 1 to them */ outw(reg16, pmbase + PM1_STS); return reg16; } static void dump_pm1_status(u16 pm1_sts) { printk(BIOS_DEBUG, "PM1_STS: "); if (pm1_sts & (1 << 15)) printk(BIOS_DEBUG, "WAK "); if (pm1_sts & (1 << 14)) printk(BIOS_DEBUG, "PCIEXPWAK "); if (pm1_sts & (1 << 11)) printk(BIOS_DEBUG, "PRBTNOR "); if (pm1_sts & (1 << 10)) printk(BIOS_DEBUG, "RTC "); if (pm1_sts & (1 << 8)) printk(BIOS_DEBUG, "PWRBTN "); if (pm1_sts & (1 << 5)) printk(BIOS_DEBUG, "GBL "); if (pm1_sts & (1 << 4)) printk(BIOS_DEBUG, "BM "); if (pm1_sts & (1 << 0)) printk(BIOS_DEBUG, "TMROF "); printk(BIOS_DEBUG, "\n"); } /** * @brief read and clear SMI_STS * @return SMI_STS register */ static u32 reset_smi_status(void) { u32 reg32; reg32 = inl(pmbase + SMI_STS); /* set status bits are cleared by writing 1 to them */ outl(reg32, pmbase + SMI_STS); return reg32; } static void dump_smi_status(u32 smi_sts) { printk(BIOS_DEBUG, "SMI_STS: "); if (smi_sts & (1 << 26)) printk(BIOS_DEBUG, "SPI "); if (smi_sts & (1 << 25)) printk(BIOS_DEBUG, "EL_SMI "); if (smi_sts & (1 << 21)) printk(BIOS_DEBUG, "MONITOR "); if (smi_sts & (1 << 20)) printk(BIOS_DEBUG, "PCI_EXP_SMI "); if (smi_sts & (1 << 18)) printk(BIOS_DEBUG, "INTEL_USB2 "); if (smi_sts & (1 << 17)) printk(BIOS_DEBUG, "LEGACY_USB2 "); if (smi_sts & (1 << 16)) printk(BIOS_DEBUG, "SMBUS_SMI "); if (smi_sts & (1 << 15)) printk(BIOS_DEBUG, "SERIRQ_SMI "); if (smi_sts & (1 << 14)) printk(BIOS_DEBUG, "PERIODIC "); if (smi_sts & (1 << 13)) printk(BIOS_DEBUG, "TCO "); if (smi_sts & (1 << 12)) printk(BIOS_DEBUG, "DEVMON "); if (smi_sts & (1 << 11)) printk(BIOS_DEBUG, "MCSMI "); if (smi_sts & (1 << 10)) printk(BIOS_DEBUG, "GPI "); if (smi_sts & (1 << 9)) printk(BIOS_DEBUG, "GPE0 "); if (smi_sts & (1 << 8)) printk(BIOS_DEBUG, "PM1 "); if (smi_sts & (1 << 6)) printk(BIOS_DEBUG, "SWSMI_TMR "); if (smi_sts & (1 << 5)) printk(BIOS_DEBUG, "APM "); if (smi_sts & (1 << 4)) printk(BIOS_DEBUG, "SLP_SMI "); if (smi_sts & (1 << 3)) printk(BIOS_DEBUG, "LEGACY_USB "); if (smi_sts & (1 << 2)) printk(BIOS_DEBUG, "BIOS "); printk(BIOS_DEBUG, "\n"); } /** * @brief read and clear GPE0_STS * @return GPE0_STS register */ static u32 reset_gpe0_status(void) { u32 reg32; reg32 = inl(pmbase + GPE0_STS); /* set status bits are cleared by writing 1 to them */ outl(reg32, pmbase + GPE0_STS); return reg32; } static void dump_gpe0_status(u32 gpe0_sts) { int i; printk(BIOS_DEBUG, "GPE0_STS: "); for (i=31; i>= 16; i--) { if (gpe0_sts & (1 << i)) printk(BIOS_DEBUG, "GPIO%d ", (i-16)); } if (gpe0_sts & (1 << 14)) printk(BIOS_DEBUG, "USB4 "); if (gpe0_sts & (1 << 13)) printk(BIOS_DEBUG, "PME_B0 "); if (gpe0_sts & (1 << 12)) printk(BIOS_DEBUG, "USB3 "); if (gpe0_sts & (1 << 11)) printk(BIOS_DEBUG, "PME "); if (gpe0_sts & (1 << 10)) printk(BIOS_DEBUG, "EL_SCI/BATLOW "); if (gpe0_sts & (1 << 9)) printk(BIOS_DEBUG, "PCI_EXP "); if (gpe0_sts & (1 << 8)) printk(BIOS_DEBUG, "RI "); if (gpe0_sts & (1 << 7)) printk(BIOS_DEBUG, "SMB_WAK "); if (gpe0_sts & (1 << 6)) printk(BIOS_DEBUG, "TCO_SCI "); if (gpe0_sts & (1 << 5)) printk(BIOS_DEBUG, "AC97 "); if (gpe0_sts & (1 << 4)) printk(BIOS_DEBUG, "USB2 "); if (gpe0_sts & (1 << 3)) printk(BIOS_DEBUG, "USB1 "); if (gpe0_sts & (1 << 2)) printk(BIOS_DEBUG, "HOT_PLUG "); if (gpe0_sts & (1 << 0)) printk(BIOS_DEBUG, "THRM "); printk(BIOS_DEBUG, "\n"); } /** * @brief read and clear TCOx_STS * @return TCOx_STS registers */ static u32 reset_tco_status(void) { u32 tcobase = pmbase + 0x60; u32 reg32; reg32 = inl(tcobase + 0x04); /* set status bits are cleared by writing 1 to them */ outl(reg32 & ~(1<<18), tcobase + 0x04); // Don't clear BOOT_STS before SECOND_TO_STS if (reg32 & (1 << 18)) outl(reg32 & (1<<18), tcobase + 0x04); // clear BOOT_STS return reg32; } static void dump_tco_status(u32 tco_sts) { printk(BIOS_DEBUG, "TCO_STS: "); if (tco_sts & (1 << 20)) printk(BIOS_DEBUG, "SMLINK_SLV "); if (tco_sts & (1 << 18)) printk(BIOS_DEBUG, "BOOT "); if (tco_sts & (1 << 17)) printk(BIOS_DEBUG, "SECOND_TO "); if (tco_sts & (1 << 16)) printk(BIOS_DEBUG, "INTRD_DET "); if (tco_sts & (1 << 12)) printk(BIOS_DEBUG, "DMISERR "); if (tco_sts & (1 << 10)) printk(BIOS_DEBUG, "DMISMI "); if (tco_sts & (1 << 9)) printk(BIOS_DEBUG, "DMISCI "); if (tco_sts & (1 << 8)) printk(BIOS_DEBUG, "BIOSWR "); if (tco_sts & (1 << 7)) printk(BIOS_DEBUG, "NEWCENTURY "); if (tco_sts & (1 << 3)) printk(BIOS_DEBUG, "TIMEOUT "); if (tco_sts & (1 << 2)) printk(BIOS_DEBUG, "TCO_INT "); if (tco_sts & (1 << 1)) printk(BIOS_DEBUG, "SW_TCO "); if (tco_sts & (1 << 0)) printk(BIOS_DEBUG, "NMI2SMI "); printk(BIOS_DEBUG, "\n"); } /** * @brief Set the EOS bit */ static void smi_set_eos(void) { // FIXME: disabled until SMM actually works #if 0 u8 reg8; reg8 = inb(pmbase + SMI_EN); reg8 |= EOS; outb(reg8, pmbase + SMI_EN); #endif } extern uint8_t smm_relocation_start, smm_relocation_end; static void smm_relocate(void) { u32 smi_en; printk(BIOS_DEBUG, "Initializing SMM handler..."); pmbase = pci_read_config16(dev_find_slot(0, PCI_DEVFN(0x1f, 0)), 0x40) & 0xfffc; printk(BIOS_SPEW, " ... pmbase = 0x%04x\n", pmbase); smi_en = inl(pmbase + SMI_EN); if (smi_en & APMC_EN) { printk(BIOS_INFO, "SMI# handler already enabled?\n"); return; } /* copy the SMM relocation code */ memcpy((void *)0x38000, &smm_relocation_start, &smm_relocation_end - &smm_relocation_start); printk(BIOS_DEBUG, "\n"); dump_smi_status(reset_smi_status()); dump_pm1_status(reset_pm1_status()); dump_gpe0_status(reset_gpe0_status()); dump_tco_status(reset_tco_status()); /* Enable SMI generation: * - on TCO events * - on APMC writes (io 0xb2) * - on writes to SLP_EN (sleep states) * - on writes to GBL_RLS (bios commands) * No SMIs: * - on microcontroller writes (io 0x62/0x66) */ outl(smi_en | (TCO_EN | APMC_EN | SLP_SMI_EN | BIOS_EN | EOS | GBL_SMI_EN), pmbase + SMI_EN); /** * There are several methods of raising a controlled SMI# via * software, among them: * - Writes to io 0xb2 (APMC) * - Writes to the Local Apic ICR with Delivery mode SMI. * * Using the local apic is a bit more tricky. According to * AMD Family 11 Processor BKDG no destination shorthand must be * used. * The whole SMM initialization is quite a bit hardware specific, so * I'm not too worried about the better of the methods at the moment */ /* raise an SMI interrupt */ printk(BIOS_SPEW, " ... raise SMI#\n"); outb(0x00, 0xb2); } static void smm_install(void) { /* enable the SMM memory window */ pci_write_config8(dev_find_slot(0, PCI_DEVFN(0, 0)), SMRAM, D_OPEN | G_SMRAME | C_BASE_SEG); /* copy the real SMM handler */ memcpy((void *)0xa0000, &_binary_smm_start, (size_t)&_binary_smm_size); wbinvd(); /* close the SMM memory window and enable normal SMM */ pci_write_config8(dev_find_slot(0, PCI_DEVFN(0, 0)), SMRAM, G_SMRAME | C_BASE_SEG); } void smm_init(void) { smm_relocate(); smm_install(); smi_set_eos(); } void smm_lock(void) { /* LOCK the SMM memory window and enable normal SMM. * After running this function, only a full reset can * make the SMM registers writable again. */ printk(BIOS_DEBUG, "Locking SMM.\n"); pci_write_config8(dev_find_slot(0, PCI_DEVFN(0, 0)), SMRAM, D_LCK | G_SMRAME | C_BASE_SEG); } void smm_setup_structures(void *gnvs, void *tcg, void *smi1) { /* The GDT or coreboot table is going to live here. But a long time * after we relocated the GNVS, so this is not troublesome. */ *(u32 *)0x500 = (u32)gnvs; *(u32 *)0x504 = (u32)tcg; *(u32 *)0x508 = (u32)smi1; outb(0xea, 0xb2); }