/* * Copyright (C) 2014 Google Inc. * Copyright (C) 2015 Intel Corporation. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ /* This file is derived from the flashrom project. */ #include #include #include #include #include #include #include #include #include #include #include static inline uint16_t spi_read_hsfs(pch_spi_regs * const regs) { return readw_(®s->hsfs); } static inline void spi_clear_status(pch_spi_regs * const regs) { /* clear FDONE, FCERR, AEL by writing 1 to them (if they are set) */ writew_(spi_read_hsfs(regs), ®s->hsfs); } static inline uint16_t spi_read_hsfc(pch_spi_regs * const regs) { return readw_(®s->hsfc); } static inline uint32_t spi_read_faddr(pch_spi_regs * const regs) { return readl_(®s->faddr) & SPIBAR_FADDR_MASK; } /* * Polls for Cycle Done Status, Flash Cycle Error * Resets all error flags in HSFS. * Returns 0 if the cycle completes successfully without errors within * timeout, 1 on errors. */ static int wait_for_completion(pch_spi_regs * const regs, int timeout_ms, size_t len) { uint16_t hsfs; uint16_t hsfc; uint32_t addr; struct stopwatch sw; int timeout = 0; stopwatch_init_msecs_expire(&sw, timeout_ms); do { hsfs = spi_read_hsfs(regs); if ((hsfs & (HSFS_FDONE | HSFS_FCERR))) break; } while (!(timeout = stopwatch_expired(&sw))); if (timeout) { addr = spi_read_faddr(regs); hsfc = spi_read_hsfc(regs); printk(BIOS_ERR, "%ld ms Transaction timeout between offset " "0x%08x and 0x%08zx (= 0x%08x + %zd) HSFC=%x HSFS=%x!\n", stopwatch_duration_msecs(&sw), addr, addr + len - 1, addr, len - 1, hsfc, hsfs); return 1; } if (hsfs & HSFS_FCERR) { addr = spi_read_faddr(regs); hsfc = spi_read_hsfc(regs); printk(BIOS_ERR, "Transaction error between offset 0x%08x and " "0x%08zx (= 0x%08x + %zd) HSFC=%x HSFS=%x!\n", addr, addr + len - 1, addr, len - 1, hsfc, hsfs); return 1; } return 0; } /* Start operation returning 0 on success, non-zero on error or timeout. */ static int spi_do_operation(int op, size_t offset, size_t size, int timeout_ms) { uint16_t hsfc; pch_spi_regs * const regs = get_spi_bar(); /* Clear status prior to operation. */ spi_clear_status(regs); /* Set the FADDR */ writel_(offset & SPIBAR_FADDR_MASK, ®s->faddr); hsfc = readw_(®s->hsfc); /* Clear then set the correct op. */ hsfc &= ~HSFC_FCYCLE_MASK; hsfc |= op; /* Set the size field */ hsfc &= ~HSFC_FDBC_MASK; /* Check for sizes of confirming operations. */ if (size && size <= SPI_FDATA_BYTES) hsfc |= ((size - 1) << HSFC_FDBC_SHIFT) & HSFC_FDBC_MASK; /* start operation */ hsfc |= HSFC_FGO; writew_(hsfc, ®s->hsfc); return wait_for_completion(regs, timeout_ms, size); } unsigned int spi_crop_chunk(unsigned int cmd_len, unsigned int buf_len) { return min(SPI_FDATA_BYTES, buf_len); } static size_t spi_get_flash_size(pch_spi_regs *spi_bar) { uint32_t flcomp; size_t size; writel_(SPIBAR_FDOC_COMPONENT, &spi_bar->fdoc); flcomp = readl_(&spi_bar->fdod); switch (flcomp & FLCOMP_C0DEN_MASK) { case FLCOMP_C0DEN_8MB: size = 8*MiB; break; case FLCOMP_C0DEN_16MB: size = 16*MiB; break; case FLCOMP_C0DEN_32MB: size = 32*MiB; break; default: size = 16*MiB; } return size; } void spi_init(void) { uint8_t bios_cntl; device_t dev = PCH_DEV_SPI; /* Disable the BIOS write protect so write commands are allowed. */ pci_read_config_byte(dev, SPIBAR_BIOS_CNTL, &bios_cntl); bios_cntl &= ~SPIBAR_BC_EISS; bios_cntl |= SPIBAR_BC_WPD; pci_write_config_byte(dev, SPIBAR_BIOS_CNTL, bios_cntl); } int pch_hwseq_erase(const struct spi_flash *flash, u32 offset, size_t len) { u32 start, end, erase_size; int ret = 0; erase_size = flash->sector_size; if (offset % erase_size || len % erase_size) { printk(BIOS_ERR, "SF: Erase offset/length not multiple of erase size\n"); return -1; } start = offset; end = start + len; while (offset < end) { if (spi_do_operation(HSFC_FCYCLE_4KE, offset, 0, 5000)) { printk(BIOS_ERR, "SF: Erase failed at %x\n", offset); ret = -1; goto out; } offset += erase_size; } printk(BIOS_DEBUG, "SF: Successfully erased %zu bytes @ %#x\n", len, start); out: spi_release_bus(&flash->spi); return ret; } static void pch_read_data(uint8_t *data, int len) { int i; pch_spi_regs *spi_bar; uint32_t temp32 = 0; spi_bar = get_spi_bar(); for (i = 0; i < len; i++) { if ((i % 4) == 0) temp32 = readl_((uint8_t *)spi_bar->fdata + i); data[i] = (temp32 >> ((i % 4) * 8)) & 0xff; } } int pch_hwseq_read(const struct spi_flash *flash, u32 addr, size_t len, void *buf) { uint8_t block_len; if (addr + len > spi_get_flash_size(get_spi_bar())) { printk(BIOS_ERR, "Attempt to read %x-%x which is out of chip\n", (unsigned) addr, (unsigned) addr+(unsigned) len); return -1; } while (len > 0) { const int timeout_ms = 6; block_len = min(len, SPI_FDATA_BYTES); if (block_len > (~addr & 0xff)) block_len = (~addr & 0xff) + 1; if (spi_do_operation(HSFC_FCYCLE_RD, addr, block_len, timeout_ms)) return -1; pch_read_data(buf, block_len); addr += block_len; buf += block_len; len -= block_len; } return 0; } /* Fill len bytes from the data array into the fdata/spid registers. * * Note that using len > flash->pgm->spi.max_data_write will trash the registers * following the data registers. */ static void pch_fill_data(const uint8_t *data, int len) { uint32_t temp32 = 0; int i; pch_spi_regs *spi_bar; spi_bar = get_spi_bar(); if (len <= 0) return; for (i = 0; i < len; i++) { if ((i % 4) == 0) temp32 = 0; temp32 |= ((uint32_t) data[i]) << ((i % 4) * 8); if ((i % 4) == 3) /* 32 bits are full, write them to regs. */ writel_(temp32, (uint8_t *)spi_bar->fdata + (i - (i % 4))); } i--; if ((i % 4) != 3) /* Write remaining data to regs. */ writel_(temp32, (uint8_t *)spi_bar->fdata + (i - (i % 4))); } int pch_hwseq_write(const struct spi_flash *flash, u32 addr, size_t len, const void *buf) { uint8_t block_len; uint32_t start = addr; pch_spi_regs *spi_bar; spi_bar = get_spi_bar(); if (addr + len > spi_get_flash_size(spi_bar)) { printk(BIOS_ERR, "Attempt to write 0x%x-0x%x which is out of chip\n", (unsigned)addr, (unsigned) (addr+len)); return -1; } while (len > 0) { const int timeout_ms = 6; block_len = min(len, sizeof(spi_bar->fdata)); if (block_len > (~addr & 0xff)) block_len = (~addr & 0xff) + 1; pch_fill_data(buf, block_len); if (spi_do_operation(HSFC_FCYCLE_WR, addr, block_len, timeout_ms)) { printk(BIOS_ERR, "SF: write failure at %x\n", addr); return -1; } addr += block_len; buf += block_len; len -= block_len; } printk(BIOS_DEBUG, "SF: Successfully written %u bytes @ %#x\n", (unsigned) (addr - start), start); return 0; } int pch_hwseq_read_status(const struct spi_flash *flash, u8 *reg) { size_t block_len = SPI_READ_STATUS_LENGTH; const int timeout_ms = 6; if (spi_do_operation(HSFC_FCYCLE_RS, 0, block_len, timeout_ms)) return -1; pch_read_data(reg, block_len); return 0; } static struct spi_flash boot_flash CAR_GLOBAL; struct spi_flash *spi_flash_programmer_probe(struct spi_slave *spi, int force) { struct spi_flash *flash; flash = car_get_var_ptr(&boot_flash); /* Ensure writes can take place to the flash. */ spi_init(); memcpy(&flash->spi, spi, sizeof(*spi)); flash->name = "Opaque HW-sequencing"; flash->internal_write = pch_hwseq_write; flash->internal_erase = pch_hwseq_erase; flash->internal_read = pch_hwseq_read; flash->internal_status = pch_hwseq_read_status; /* The hardware sequencing supports 4KiB or 64KiB erase. Use 4KiB. */ flash->sector_size = 4*KiB; flash->size = spi_get_flash_size(get_spi_bar()); return flash; } int spi_setup_slave(unsigned int bus, unsigned int cs, struct spi_slave *slave) { /* This is special hardware. We expect bus 0 and CS line 0 here. */ if ((bus != 0) || (cs != 0)) return -1; slave->bus = bus; slave->cs = cs; slave->ctrlr = NULL; return 0; } int spi_flash_get_fpr_info(struct fpr_info *info) { pch_spi_regs *spi_bar = get_spi_bar(); if (!spi_bar) return -1; info->base = (uintptr_t)&spi_bar->pr[0]; info->max = SPI_FPR_MAX; return 0; } #if ENV_RAMSTAGE /* * spi_init() needs run unconditionally in every boot (including resume) to * allow write protect to be disabled for eventlog and firmware updates. */ static void spi_init_cb(void *unused) { spi_init(); } BOOT_STATE_INIT_ENTRY(BS_PRE_DEVICE, BS_ON_ENTRY, spi_init_cb, NULL); #endif