/* SPDX-License-Identifier: GPL-2.0-or-later */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "chip.h" static int acpi_sci_irq(void) { int sci_irq = 9; int32_t scis; scis = soc_read_sci_irq_select(); scis &= SCI_IRQ_SEL; scis >>= SCI_IRQ_ADJUST; /* Determine how SCI is routed. */ switch (scis) { case SCIS_IRQ9: case SCIS_IRQ10: case SCIS_IRQ11: sci_irq = scis - SCIS_IRQ9 + 9; break; case SCIS_IRQ20: case SCIS_IRQ21: case SCIS_IRQ22: case SCIS_IRQ23: sci_irq = scis - SCIS_IRQ20 + 20; break; default: printk(BIOS_DEBUG, "Invalid SCI route! Defaulting to IRQ9.\n"); sci_irq = 9; break; } printk(BIOS_DEBUG, "SCI is IRQ%d\n", sci_irq); return sci_irq; } void acpi_init_gnvs(global_nvs_t *gnvs) { /* CPU core count */ gnvs->pcnt = dev_count_cpu(); printk(BIOS_DEBUG, "%s gnvs->pcnt: %d\n", __func__, gnvs->pcnt); /* Update the mem console pointer. */ if (CONFIG(CONSOLE_CBMEM)) gnvs->cbmc = (uint32_t)cbmem_find(CBMEM_ID_CONSOLE); } uint32_t soc_read_sci_irq_select(void) { struct device *dev = PCH_DEV_PMC; if (!dev) return 0; return pci_read_config32(dev, PMC_ACPI_CNT); } acpi_cstate_t *soc_get_cstate_map(size_t *entries) { *entries = 0; return NULL; } unsigned long acpi_fill_mcfg(unsigned long current) { current += acpi_create_mcfg_mmconfig((acpi_mcfg_mmconfig_t *)current, CONFIG_MMCONF_BASE_ADDRESS, 0, 0, 255); return current; } unsigned long acpi_madt_irq_overrides(unsigned long current) { int sci = acpi_sci_irq(); uint16_t flags = MP_IRQ_TRIGGER_LEVEL; /* INT_SRC_OVR */ current += acpi_create_madt_irqoverride((void *)current, 0, 0, 2, 0); flags |= soc_madt_sci_irq_polarity(sci); /* SCI */ current += acpi_create_madt_irqoverride((void *)current, 0, sci, sci, flags); current += acpi_create_madt_lapic_nmi((acpi_madt_lapic_nmi_t *) current, 0xff, 0x0d, 1); return current; } static unsigned long xeonsp_acpi_create_madt_lapics(unsigned long current) { struct device *cpu; int num_cpus = 0; for (cpu = all_devices; cpu; cpu = cpu->next) { if ((cpu->path.type != DEVICE_PATH_APIC) || (cpu->bus->dev->path.type != DEVICE_PATH_CPU_CLUSTER)) { continue; } if (!cpu->enabled) continue; current += acpi_create_madt_lapic((acpi_madt_lapic_t *)current, num_cpus, cpu->path.apic.apic_id); } return current; } unsigned long acpi_fill_madt(unsigned long current) { size_t hob_size = 0; const uint8_t fsp_hob_iio_universal_data_guid[16] = FSP_HOB_IIO_UNIVERSAL_DATA_GUID; const IIO_UDS *hob; int cur_stack; int gsi_bases[] = { 0, 0x18, 0x20, 0x28, 0x30, 0x48, 0x50, 0x58, 0x60 }; int ioapic_ids[] = { 0x8, 0x9, 0xa, 0xb, 0xc, 0xf, 0x10, 0x11, 0x12 }; /* Local APICs */ current = xeonsp_acpi_create_madt_lapics(current); hob = fsp_find_extension_hob_by_guid(fsp_hob_iio_universal_data_guid, &hob_size); assert(hob != NULL && hob_size != 0); cur_stack = 0; for (int socket = 0; socket < hob->PlatformData.numofIIO; ++socket) { for (int stack = 0; stack < MAX_IIO_STACK; ++stack) { const STACK_RES *ri = &hob->PlatformData.IIO_resource[socket].StackRes[stack]; // TODO: do we have situation with only bus 0 and one stack? if (ri->BusBase != ri->BusLimit) { assert(cur_stack < ARRAY_SIZE(ioapic_ids)); assert(cur_stack < ARRAY_SIZE(gsi_bases)); int ioapic_id = ioapic_ids[cur_stack]; int gsi_base = gsi_bases[cur_stack]; printk(BIOS_DEBUG, "Adding MADT IOAPIC for socket: %d, stack: %d, ioapic_id: 0x%x, " "ioapic_base: 0x%x, gsi_base: 0x%x\n", socket, stack, ioapic_id, ri->IoApicBase, gsi_base); current += acpi_create_madt_ioapic( (acpi_madt_ioapic_t *)current, ioapic_id, ri->IoApicBase, gsi_base); ++cur_stack; if (socket == 0 && stack == 0) { assert(cur_stack < ARRAY_SIZE(ioapic_ids)); assert(cur_stack < ARRAY_SIZE(gsi_bases)); ioapic_id = ioapic_ids[cur_stack]; gsi_base = gsi_bases[cur_stack]; printk(BIOS_DEBUG, "Adding MADT IOAPIC for socket: %d, stack: %d, ioapic_id: 0x%x, " "ioapic_base: 0x%x, gsi_base: 0x%x\n", socket, stack, ioapic_id, ri->IoApicBase + 0x1000, gsi_base); current += acpi_create_madt_ioapic( (acpi_madt_ioapic_t *)current, ioapic_id, ri->IoApicBase + 0x1000, gsi_base); ++cur_stack; } } } } return acpi_madt_irq_overrides(current); } void generate_t_state_entries(int core, int cores_per_package) { } void generate_p_state_entries(int core, int cores_per_package) { } void generate_cpu_entries(const struct device *device) { int core_id, cpu_id, pcontrol_blk = ACPI_BASE_ADDRESS; int plen = 6; int total_threads = dev_count_cpu(); int threads_per_package = get_threads_per_package(); int numcpus = total_threads / threads_per_package; printk(BIOS_DEBUG, "Found %d CPU(s) with %d core(s) each, totalcores: %d.\n", numcpus, threads_per_package, total_threads); for (cpu_id = 0; cpu_id < numcpus; cpu_id++) { for (core_id = 0; core_id < threads_per_package; core_id++) { if (core_id > 0) { pcontrol_blk = 0; plen = 0; } /* Generate processor \_PR.CPUx */ acpigen_write_processor((cpu_id) * threads_per_package + core_id, pcontrol_blk, plen); /* NOTE: Intel idle driver doesn't use ACPI C-state tables */ /* TODO: Soc specific power states generation */ acpigen_pop_len(); } } /* PPKG is usually used for thermal management of the first and only package. */ acpigen_write_processor_package("PPKG", 0, threads_per_package); /* Add a method to notify processor nodes */ acpigen_write_processor_cnot(threads_per_package); } void soc_fill_fadt(acpi_fadt_t *fadt) { uint16_t pmbase = ACPI_BASE_ADDRESS; /* Power Control */ fadt->pm2_cnt_blk = pmbase + PM2_CNT; fadt->pm_tmr_blk = pmbase + PM1_TMR; fadt->gpe1_blk = 0; /* Control Registers - Length */ fadt->pm2_cnt_len = 1; fadt->pm_tmr_len = 4; /* There are 4 GPE0 STS/EN pairs each 32 bits wide. */ fadt->gpe0_blk_len = 2 * GPE0_REG_MAX * sizeof(uint32_t); fadt->gpe1_blk_len = 0; fadt->gpe1_base = 0; fadt->p_lvl2_lat = ACPI_FADT_C2_NOT_SUPPORTED; fadt->p_lvl3_lat = ACPI_FADT_C3_NOT_SUPPORTED; fadt->flush_size = 0; /* set to 0 if WBINVD is 1 in flags */ fadt->flush_stride = 0; /* set to 0 if WBINVD is 1 in flags */ fadt->duty_offset = 1; fadt->duty_width = 0; /* RTC Registers */ fadt->day_alrm = 0x0D; fadt->mon_alrm = 0x00; fadt->century = 0x00; fadt->iapc_boot_arch = ACPI_FADT_LEGACY_DEVICES | ACPI_FADT_8042; fadt->flags = ACPI_FADT_WBINVD | ACPI_FADT_C1_SUPPORTED | ACPI_FADT_C2_MP_SUPPORTED | ACPI_FADT_SLEEP_BUTTON | ACPI_FADT_RESET_REGISTER | ACPI_FADT_SLEEP_TYPE | ACPI_FADT_S4_RTC_WAKE | ACPI_FADT_PLATFORM_CLOCK; /* Reset Register */ fadt->reset_reg.space_id = ACPI_ADDRESS_SPACE_IO; fadt->reset_reg.bit_width = 8; fadt->reset_reg.bit_offset = 0; fadt->reset_reg.access_size = ACPI_ACCESS_SIZE_BYTE_ACCESS; fadt->reset_reg.addrl = 0xCF9; fadt->reset_reg.addrh = 0x00; fadt->reset_value = 6; /* PM1 Status & PM1 Enable */ fadt->x_pm1a_evt_blk.space_id = ACPI_ADDRESS_SPACE_IO; fadt->x_pm1a_evt_blk.bit_width = 32; fadt->x_pm1a_evt_blk.bit_offset = 0; fadt->x_pm1a_evt_blk.access_size = ACPI_ACCESS_SIZE_DWORD_ACCESS; fadt->x_pm1a_evt_blk.addrl = fadt->pm1a_evt_blk; fadt->x_pm1a_evt_blk.addrh = 0x00; fadt->x_pm1b_evt_blk.space_id = ACPI_ADDRESS_SPACE_IO; fadt->x_pm1b_evt_blk.bit_width = 0; fadt->x_pm1b_evt_blk.bit_offset = 0; fadt->x_pm1b_evt_blk.access_size = 0; fadt->x_pm1b_evt_blk.addrl = fadt->pm1b_evt_blk; fadt->x_pm1b_evt_blk.addrh = 0x00; /* PM1 Control Registers */ fadt->x_pm1a_cnt_blk.space_id = ACPI_ADDRESS_SPACE_IO; fadt->x_pm1a_cnt_blk.bit_width = 16; fadt->x_pm1a_cnt_blk.bit_offset = 0; fadt->x_pm1a_cnt_blk.access_size = ACPI_ACCESS_SIZE_WORD_ACCESS; fadt->x_pm1a_cnt_blk.addrl = fadt->pm1a_cnt_blk; fadt->x_pm1a_cnt_blk.addrh = 0x00; fadt->x_pm1b_cnt_blk.space_id = ACPI_ADDRESS_SPACE_IO; fadt->x_pm1b_cnt_blk.bit_width = 0; fadt->x_pm1b_cnt_blk.bit_offset = 0; fadt->x_pm1b_cnt_blk.access_size = 0; fadt->x_pm1b_cnt_blk.addrl = fadt->pm1b_cnt_blk; fadt->x_pm1b_cnt_blk.addrh = 0x00; /* PM2 Control Registers */ fadt->x_pm2_cnt_blk.space_id = ACPI_ADDRESS_SPACE_IO; fadt->x_pm2_cnt_blk.bit_width = 8; fadt->x_pm2_cnt_blk.bit_offset = 0; fadt->x_pm2_cnt_blk.access_size = ACPI_ACCESS_SIZE_BYTE_ACCESS; fadt->x_pm2_cnt_blk.addrl = fadt->pm2_cnt_blk; fadt->x_pm2_cnt_blk.addrh = 0x00; /* PM1 Timer Register */ fadt->x_pm_tmr_blk.space_id = ACPI_ADDRESS_SPACE_IO; fadt->x_pm_tmr_blk.bit_width = 32; fadt->x_pm_tmr_blk.bit_offset = 0; fadt->x_pm_tmr_blk.access_size = ACPI_ACCESS_SIZE_DWORD_ACCESS; fadt->x_pm_tmr_blk.addrl = fadt->pm_tmr_blk; fadt->x_pm_tmr_blk.addrh = 0x00; /* General-Purpose Event Registers */ fadt->x_gpe0_blk.space_id = ACPI_ADDRESS_SPACE_IO; fadt->x_gpe0_blk.bit_width = 64; /* EventStatus + EventEnable */ fadt->x_gpe0_blk.bit_offset = 0; fadt->x_gpe0_blk.access_size = ACPI_ACCESS_SIZE_DWORD_ACCESS; fadt->x_gpe0_blk.addrl = fadt->gpe0_blk; fadt->x_gpe0_blk.addrh = 0x00; fadt->x_gpe1_blk.space_id = ACPI_ADDRESS_SPACE_IO; fadt->x_gpe1_blk.bit_width = 0; fadt->x_gpe1_blk.bit_offset = 0; fadt->x_gpe1_blk.access_size = 0; fadt->x_gpe1_blk.addrl = fadt->gpe1_blk; fadt->x_gpe1_blk.addrh = 0x00; } void acpi_fill_fadt(acpi_fadt_t *fadt) { const uint16_t pmbase = ACPI_BASE_ADDRESS; fadt->header.revision = get_acpi_table_revision(FADT); fadt->sci_int = acpi_sci_irq(); /* TODO: enabled SMM mode switch when SMM handlers are set up. */ if (0 && permanent_smi_handler()) { fadt->smi_cmd = APM_CNT; fadt->acpi_enable = APM_CNT_ACPI_ENABLE; fadt->acpi_disable = APM_CNT_ACPI_DISABLE; } fadt->pm1a_evt_blk = pmbase + PM1_STS; fadt->pm1b_evt_blk = 0x0; fadt->pm1a_cnt_blk = pmbase + PM1_CNT; fadt->pm1b_cnt_blk = 0x0; fadt->pm2_cnt_blk = pmbase + PM2_CNT; fadt->pm_tmr_blk = pmbase + PM1_TMR; fadt->gpe0_blk = pmbase + GPE0_STS(0); fadt->gpe1_blk = 0; fadt->pm1_evt_len = 4; fadt->pm1_cnt_len = 2; fadt->pm2_cnt_len = 1; fadt->pm_tmr_len = 4; /* There are 4 GPE0 STS/EN pairs each 32 bits wide. */ fadt->gpe0_blk_len = 2 * GPE0_REG_MAX * sizeof(uint32_t); fadt->gpe1_blk_len = 0; fadt->gpe1_base = 0; fadt->p_lvl2_lat = 1; fadt->p_lvl3_lat = 87; fadt->flush_size = 1024; fadt->flush_stride = 16; fadt->duty_offset = 1; fadt->duty_width = 0; fadt->day_alrm = 0xd; fadt->mon_alrm = 0x00; fadt->century = 0x00; fadt->iapc_boot_arch = ACPI_FADT_LEGACY_FREE; if (!CONFIG(NO_FADT_8042)) fadt->iapc_boot_arch |= ACPI_FADT_8042; fadt->flags = ACPI_FADT_WBINVD | ACPI_FADT_C1_SUPPORTED | ACPI_FADT_C2_MP_SUPPORTED | ACPI_FADT_SLEEP_BUTTON | ACPI_FADT_RESET_REGISTER | ACPI_FADT_SEALED_CASE | ACPI_FADT_S4_RTC_WAKE | ACPI_FADT_PLATFORM_CLOCK; fadt->reset_reg.space_id = 1; fadt->reset_reg.bit_width = 8; fadt->reset_reg.bit_offset = 0; fadt->reset_reg.access_size = ACPI_ACCESS_SIZE_BYTE_ACCESS; fadt->reset_reg.addrl = 0xcf9; fadt->reset_reg.addrh = 0; fadt->reset_value = 6; fadt->x_pm1a_evt_blk.space_id = 1; fadt->x_pm1a_evt_blk.bit_width = fadt->pm1_evt_len * 8; fadt->x_pm1a_evt_blk.bit_offset = 0; fadt->x_pm1a_evt_blk.access_size = ACPI_ACCESS_SIZE_DWORD_ACCESS; fadt->x_pm1a_evt_blk.addrl = pmbase + PM1_STS; fadt->x_pm1a_evt_blk.addrh = 0x0; fadt->x_pm1b_evt_blk.space_id = 1; fadt->x_pm1b_evt_blk.bit_width = 0; fadt->x_pm1b_evt_blk.bit_offset = 0; fadt->x_pm1b_evt_blk.access_size = 0; fadt->x_pm1b_evt_blk.addrl = 0x0; fadt->x_pm1b_evt_blk.addrh = 0x0; fadt->x_pm1a_cnt_blk.space_id = 1; fadt->x_pm1a_cnt_blk.bit_width = fadt->pm1_cnt_len * 8; fadt->x_pm1a_cnt_blk.bit_offset = 0; fadt->x_pm1a_cnt_blk.access_size = ACPI_ACCESS_SIZE_WORD_ACCESS; fadt->x_pm1a_cnt_blk.addrl = pmbase + PM1_CNT; fadt->x_pm1a_cnt_blk.addrh = 0x0; fadt->x_pm1b_cnt_blk.space_id = 1; fadt->x_pm1b_cnt_blk.bit_width = 0; fadt->x_pm1b_cnt_blk.bit_offset = 0; fadt->x_pm1b_cnt_blk.access_size = 0; fadt->x_pm1b_cnt_blk.addrl = 0x0; fadt->x_pm1b_cnt_blk.addrh = 0x0; fadt->x_pm2_cnt_blk.space_id = 1; fadt->x_pm2_cnt_blk.bit_width = fadt->pm2_cnt_len * 8; fadt->x_pm2_cnt_blk.bit_offset = 0; fadt->x_pm2_cnt_blk.access_size = ACPI_ACCESS_SIZE_BYTE_ACCESS; fadt->x_pm2_cnt_blk.addrl = pmbase + PM2_CNT; fadt->x_pm2_cnt_blk.addrh = 0x0; fadt->x_pm_tmr_blk.space_id = 1; fadt->x_pm_tmr_blk.bit_width = fadt->pm_tmr_len * 8; fadt->x_pm_tmr_blk.bit_offset = 0; fadt->x_pm_tmr_blk.access_size = ACPI_ACCESS_SIZE_DWORD_ACCESS; fadt->x_pm_tmr_blk.addrl = pmbase + PM1_TMR; fadt->x_pm_tmr_blk.addrh = 0x0; fadt->x_gpe0_blk.space_id = ACPI_ADDRESS_SPACE_IO; fadt->x_gpe0_blk.bit_width = fadt->gpe0_blk_len * 8; fadt->x_gpe0_blk.bit_offset = 0; fadt->x_gpe0_blk.access_size = ACPI_ACCESS_SIZE_DWORD_ACCESS; fadt->x_gpe0_blk.addrl = fadt->gpe0_blk; fadt->x_gpe0_blk.addrh = 0; fadt->x_gpe1_blk.space_id = 1; fadt->x_gpe1_blk.bit_width = 0; fadt->x_gpe1_blk.bit_offset = 0; fadt->x_gpe1_blk.access_size = 0; fadt->x_gpe1_blk.addrl = 0x0; fadt->x_gpe1_blk.addrh = 0x0; } static acpi_tstate_t xeon_sp_tss_table[] = { { 100, 1000, 0, 0x00, 0 }, { 88, 875, 0, 0x1e, 0 }, { 75, 750, 0, 0x1c, 0 }, { 63, 625, 0, 0x1a, 0 }, { 50, 500, 0, 0x18, 0 }, { 38, 375, 0, 0x16, 0 }, { 25, 250, 0, 0x14, 0 }, { 13, 125, 0, 0x12, 0 }, }; acpi_tstate_t *soc_get_tss_table(int *entries) { *entries = ARRAY_SIZE(xeon_sp_tss_table); return xeon_sp_tss_table; } int soc_madt_sci_irq_polarity(int sci) { if (sci >= 20) return MP_IRQ_POLARITY_LOW; else return MP_IRQ_POLARITY_HIGH; } unsigned long southbridge_write_acpi_tables(const struct device *device, unsigned long current, struct acpi_rsdp *rsdp) { current = acpi_write_hpet(device, current, rsdp); current = (ALIGN(current, 16)); printk(BIOS_DEBUG, "current = %lx\n", current); return current; } unsigned long acpi_create_srat_lapics(unsigned long current) { struct device *cpu; int cpu_index = 0; for (cpu = all_devices; cpu; cpu = cpu->next) { if ((cpu->path.type != DEVICE_PATH_APIC) || (cpu->bus->dev->path.type != DEVICE_PATH_CPU_CLUSTER)) { continue; } if (!cpu->enabled) continue; printk(BIOS_DEBUG, "SRAT: lapic cpu_index=%02x, node_id=%02x, apic_id=%02x\n", cpu_index, cpu->path.apic.node_id, cpu->path.apic.apic_id); current += acpi_create_srat_lapic((acpi_srat_lapic_t *)current, cpu->path.apic.node_id, cpu->path.apic.apic_id); cpu_index++; } return current; } static unsigned long acpi_fill_srat(unsigned long current) { acpi_srat_mem_t srat_mem[MAX_ACPI_MEMORY_AFFINITY_COUNT]; unsigned int mem_count; /* create all subtables for processors */ current = acpi_create_srat_lapics(current); mem_count = get_srat_memory_entries(srat_mem); for (int i = 0; i < mem_count; ++i) { printk(BIOS_DEBUG, "adding srat memory %d entry length: %d, addr: 0x%x%x, " "length: 0x%x%x, proximity_domain: %d, flags: %x\n", i, srat_mem[i].length, srat_mem[i].base_address_high, srat_mem[i].base_address_low, srat_mem[i].length_high, srat_mem[i].length_low, srat_mem[i].proximity_domain, srat_mem[i].flags); memcpy((acpi_srat_mem_t *)current, &srat_mem[i], sizeof(srat_mem[i])); current += srat_mem[i].length; } return current; } static unsigned long acpi_fill_slit(unsigned long current) { int nodes = get_cpu_count(); uint8_t *p = (uint8_t *)current; memset(p, 0, 8 + nodes * nodes); *p = (uint8_t)nodes; p += 8; /* this assumes fully connected socket topology */ for (int i = 0; i < nodes; i++) { for (int j = 0; j < nodes; j++) { if (i == j) p[i*nodes+j] = 10; else p[i*nodes+j] = 16; } } current += 8+nodes*nodes; return current; } static int get_stack_for_port(int p) { if (p == 0) return CSTACK; else if (p >= PORT_1A && p <= PORT_1D) return PSTACK0; else if (p >= PORT_2A && p <= PORT_2D) return PSTACK1; else if (p >= PORT_3A && p <= PORT_3D) return PSTACK2; else if (p >= PORT_4A && p <= PORT_4D) return PSTACK3; // MCP0 else return PSTACK4; // MCP1 } static unsigned long acpi_create_drhd(unsigned long current, int socket, int stack) { int IoApicID[] = { // socket 0 PC00_IOAPIC_ID, PC01_IOAPIC_ID, PC02_IOAPIC_ID, PC03_IOAPIC_ID, PC04_IOAPIC_ID, PC05_IOAPIC_ID, // socket 1 PC06_IOAPIC_ID, PC07_IOAPIC_ID, PC08_IOAPIC_ID, PC09_IOAPIC_ID, PC10_IOAPIC_ID, PC11_IOAPIC_ID, }; uint32_t enum_id; unsigned long tmp = current; size_t hob_size; const uint8_t fsp_hob_iio_universal_data_guid[16] = FSP_HOB_IIO_UNIVERSAL_DATA_GUID; const IIO_UDS *hob = fsp_find_extension_hob_by_guid( fsp_hob_iio_universal_data_guid, &hob_size); assert(hob != NULL && hob_size != 0); uint32_t bus = hob->PlatformData.CpuQpiInfo[socket].StackBus[stack]; uint32_t pcie_seg = hob->PlatformData.CpuQpiInfo[socket].PcieSegment; uint32_t reg_base = hob->PlatformData.IIO_resource[socket].StackRes[stack].VtdBarAddress; printk(BIOS_SPEW, "%s socket: %d, stack: %d, bus: 0x%x, pcie_seg: 0x%x, reg_base: 0x%x\n", __func__, socket, stack, bus, pcie_seg, reg_base); // Add DRHD Hardware Unit if (socket == 0 && stack == CSTACK) { printk(BIOS_DEBUG, "[Hardware Unit Definition] Flags: 0x%x, PCI Segment Number: 0x%x, " "Register Base Address: 0x%x\n", DRHD_INCLUDE_PCI_ALL, pcie_seg, reg_base); current += acpi_create_dmar_drhd(current, DRHD_INCLUDE_PCI_ALL, pcie_seg, reg_base); } else { printk(BIOS_DEBUG, "[Hardware Unit Definition] Flags: 0x%x, PCI Segment Number: 0x%x, " "Register Base Address: 0x%x\n", 0, pcie_seg, reg_base); current += acpi_create_dmar_drhd(current, 0, pcie_seg, reg_base); } // Add PCH IOAPIC if (socket == 0 && stack == CSTACK) { printk(BIOS_DEBUG, " [IOAPIC Device] Enumeration ID: 0x%x, PCI Bus Number: 0x%x, " "PCI Path: 0x%x, 0x%x\n", PCH_IOAPIC_ID, PCH_IOAPIC_BUS_NUMBER, PCH_IOAPIC_DEV_NUM, PCH_IOAPIC_FUNC_NUM); current += acpi_create_dmar_ds_ioapic(current, PCH_IOAPIC_ID, PCH_IOAPIC_BUS_NUMBER, PCH_IOAPIC_DEV_NUM, PCH_IOAPIC_FUNC_NUM); } // Add IOAPIC entry enum_id = IoApicID[(socket*MAX_IIO_STACK)+stack]; printk(BIOS_DEBUG, " [IOAPIC Device] Enumeration ID: 0x%x, PCI Bus Number: 0x%x, " "PCI Path: 0x%x, 0x%x\n", enum_id, bus, APIC_DEV_NUM, APIC_FUNC_NUM); current += acpi_create_dmar_ds_ioapic(current, enum_id, bus, APIC_DEV_NUM, APIC_FUNC_NUM); // Add CBDMA devices for CSTACK if (socket != 0 && stack == CSTACK) { for (int cbdma_func_id = 0; cbdma_func_id < 8; ++cbdma_func_id) { printk(BIOS_DEBUG, " [PCI Endpoint Device] Enumeration ID: 0x%x, " "PCI Bus Number: 0x%x, PCI Path: 0x%x, 0x%x\n", 0, bus, CBDMA_DEV_NUM, cbdma_func_id); current += acpi_create_dmar_ds_pci(current, bus, CBDMA_DEV_NUM, cbdma_func_id); } } // Add PCIe Ports if (socket != 0 || stack != CSTACK) { IIO_RESOURCE_INSTANCE iio_resource = hob->PlatformData.IIO_resource[socket]; for (int p = 0; p < NUMBER_PORTS_PER_SOCKET; ++p) { if (get_stack_for_port(p) != stack) continue; uint32_t dev = iio_resource.PcieInfo.PortInfo[p].Device; uint32_t func = iio_resource.PcieInfo.PortInfo[p].Function; uint32_t id = pci_mmio_read_config32(PCI_DEV(bus, dev, func), PCI_VENDOR_ID); if (id == 0xffffffff) continue; printk(BIOS_DEBUG, " [PCI Bridge Device] Enumeration ID: 0x%x, " "PCI Bus Number: 0x%x, PCI Path: 0x%x, 0x%x\n", 0, bus, dev, func); current += acpi_create_dmar_ds_pci_br(current, bus, dev, func); } // Add VMD if (hob->PlatformData.VMDStackEnable[socket][stack] && stack >= PSTACK0 && stack <= PSTACK2) { printk(BIOS_DEBUG, " [PCI Endpoint Device] Enumeration ID: 0x%x, " "PCI Bus Number: 0x%x, PCI Path: 0x%x, 0x%x\n", 0, bus, VMD_DEV_NUM, VMD_FUNC_NUM); current += acpi_create_dmar_ds_pci(current, bus, VMD_DEV_NUM, VMD_FUNC_NUM); } } // Add HPET if (socket == 0 && stack == CSTACK) { uint16_t hpet_capid = read16((void *)HPET_BASE_ADDRESS); uint16_t num_hpets = (hpet_capid >> 0x08) & 0x1F; // Bits [8:12] has hpet count printk(BIOS_SPEW, "%s hpet_capid: 0x%x, num_hpets: 0x%x\n", __func__, hpet_capid, num_hpets); //BIT 15 if (num_hpets && (num_hpets != 0x1f) && (read32((void *)(HPET_BASE_ADDRESS + 0x100)) & (0x00008000))) { printk(BIOS_DEBUG, " [Message-capable HPET Device] Enumeration ID: 0x%x, " "PCI Bus Number: 0x%x, PCI Path: 0x%x, 0x%x\n", 0, HPET_BUS_NUM, HPET_DEV_NUM, HPET0_FUNC_NUM); current += acpi_create_dmar_ds_msi_hpet(current, 0, HPET_BUS_NUM, HPET_DEV_NUM, HPET0_FUNC_NUM); } } acpi_dmar_drhd_fixup(tmp, current); return current; } static unsigned long acpi_create_atsr(unsigned long current) { size_t hob_size; const uint8_t uds_guid[16] = FSP_HOB_IIO_UNIVERSAL_DATA_GUID; const IIO_UDS *hob = fsp_find_extension_hob_by_guid(uds_guid, &hob_size); assert(hob != NULL && hob_size != 0); for (int socket = 0; socket < hob->PlatformData.numofIIO; ++socket) { uint32_t pcie_seg = hob->PlatformData.CpuQpiInfo[socket].PcieSegment; unsigned long tmp = current; bool first = true; IIO_RESOURCE_INSTANCE iio_resource = hob->PlatformData.IIO_resource[socket]; for (int stack = 0; stack <= PSTACK2; ++stack) { uint32_t bus = hob->PlatformData.CpuQpiInfo[socket].StackBus[stack]; uint32_t vtd_base = iio_resource.StackRes[stack].VtdBarAddress; if (!vtd_base) continue; uint64_t vtd_mmio_cap = read64((void *)(vtd_base + VTD_EXT_CAP_LOW)); printk(BIOS_SPEW, "%s socket: %d, stack: %d, bus: 0x%x, vtd_base: 0x%x, " "vtd_mmio_cap: 0x%llx\n", __func__, socket, stack, bus, vtd_base, vtd_mmio_cap); // ATSR is applicable only for platform supporting device IOTLBs // through the VT-d extended capability register assert(vtd_mmio_cap != 0xffffffffffffffff); if ((vtd_mmio_cap & 0x4) == 0) // BIT 2 continue; for (int p = 0; p < NUMBER_PORTS_PER_SOCKET; ++p) { if (socket == 0 && p == 0) continue; if (get_stack_for_port(p) != stack) continue; uint32_t dev = iio_resource.PcieInfo.PortInfo[p].Device; uint32_t func = iio_resource.PcieInfo.PortInfo[p].Function; u32 id = pci_mmio_read_config32(PCI_DEV(bus, dev, func), PCI_VENDOR_ID); if (id == 0xffffffff) continue; if (first) { printk(BIOS_DEBUG, "[Root Port ATS Capability] Flags: 0x%x, " "PCI Segment Number: 0x%x\n", 0, pcie_seg); current += acpi_create_dmar_atsr(current, 0, pcie_seg); first = 0; } printk(BIOS_DEBUG, " [PCI Bridge Device] Enumeration ID: 0x%x, " "PCI Bus Number: 0x%x, PCI Path: 0x%x, 0x%x\n", 0, bus, dev, func); current += acpi_create_dmar_ds_pci_br(current, bus, dev, func); } } if (tmp != current) acpi_dmar_atsr_fixup(tmp, current); } return current; } static unsigned long acpi_create_rmrr(unsigned long current) { uint32_t size = ALIGN_UP(MEM_BLK_COUNT * sizeof(MEM_BLK), 0x1000); uint32_t *ptr; // reserve memory ptr = cbmem_find(CBMEM_ID_STORAGE_DATA); if (!ptr) { ptr = cbmem_add(CBMEM_ID_STORAGE_DATA, size); assert(ptr != NULL); memset(ptr, 0, size); } unsigned long tmp = current; printk(BIOS_DEBUG, "[Reserved Memory Region] PCI Segment Number: 0x%x, Base Address: 0x%x, " "End Address (limit): 0x%x\n", 0, (uint32_t) ptr, (uint32_t) ((uint32_t) ptr + size - 1)); current += acpi_create_dmar_rmrr(current, 0, (uint32_t) ptr, (uint32_t) ((uint32_t) ptr + size - 1)); printk(BIOS_DEBUG, " [PCI Endpoint Device] Enumeration ID: 0x%x, PCI Bus Number: 0x%x, " "PCI Path: 0x%x, 0x%x\n", 0, XHCI_BUS_NUMBER, PCH_DEV_SLOT_XHCI, XHCI_FUNC_NUM); current += acpi_create_dmar_ds_pci(current, XHCI_BUS_NUMBER, PCH_DEV_SLOT_XHCI, XHCI_FUNC_NUM); acpi_dmar_rmrr_fixup(tmp, current); return current; } static unsigned long acpi_create_rhsa(unsigned long current) { size_t hob_size; const uint8_t uds_guid[16] = FSP_HOB_IIO_UNIVERSAL_DATA_GUID; const IIO_UDS *hob = fsp_find_extension_hob_by_guid(uds_guid, &hob_size); assert(hob != NULL && hob_size != 0); for (int socket = 0; socket < hob->PlatformData.numofIIO; ++socket) { IIO_RESOURCE_INSTANCE iio_resource = hob->PlatformData.IIO_resource[socket]; for (int stack = 0; stack <= PSTACK2; ++stack) { uint32_t vtd_base = iio_resource.StackRes[stack].VtdBarAddress; if (!vtd_base) continue; printk(BIOS_DEBUG, "[Remapping Hardware Static Affinity] Base Address: 0x%x, " "Proximity Domain: 0x%x\n", vtd_base, socket); current += acpi_create_dmar_rhsa(current, vtd_base, socket); } } return current; } static unsigned long acpi_fill_dmar(unsigned long current) { size_t hob_size; const uint8_t uds_guid[16] = FSP_HOB_IIO_UNIVERSAL_DATA_GUID; const IIO_UDS *hob = fsp_find_extension_hob_by_guid(uds_guid, &hob_size); assert(hob != NULL && hob_size != 0); // DRHD for (int iio = 1; iio <= hob->PlatformData.numofIIO; ++iio) { int socket = iio; if (socket == hob->PlatformData.numofIIO) // socket 0 should be last DRHD entry socket = 0; if (socket == 0) { for (int stack = 1; stack <= PSTACK2; ++stack) current = acpi_create_drhd(current, socket, stack); current = acpi_create_drhd(current, socket, CSTACK); } else { for (int stack = 0; stack <= PSTACK2; ++stack) current = acpi_create_drhd(current, socket, stack); } } // RMRR current = acpi_create_rmrr(current); // ATSR - causes hang current = acpi_create_atsr(current); // RHSA current = acpi_create_rhsa(current); return current; } unsigned long northbridge_write_acpi_tables(const struct device *device, unsigned long current, struct acpi_rsdp *rsdp) { acpi_srat_t *srat; acpi_slit_t *slit; acpi_dmar_t *dmar; const struct soc_intel_xeon_sp_skx_config *const config = config_of(device); /* SRAT */ current = ALIGN(current, 8); printk(BIOS_DEBUG, "ACPI: * SRAT at %lx\n", current); srat = (acpi_srat_t *) current; acpi_create_srat(srat, acpi_fill_srat); current += srat->header.length; acpi_add_table(rsdp, srat); /* SLIT */ current = ALIGN(current, 8); printk(BIOS_DEBUG, "ACPI: * SLIT at %lx\n", current); slit = (acpi_slit_t *) current; acpi_create_slit(slit, acpi_fill_slit); current += slit->header.length; acpi_add_table(rsdp, slit); /* DMAR */ if (config->vtd_support) { current = ALIGN(current, 8); dmar = (acpi_dmar_t *)current; printk(BIOS_DEBUG, "ACPI: * DMAR\n"); printk(BIOS_DEBUG, "[DMA Remapping table] Flags: 0x%x\n", (DMAR_INTR_REMAP | DMAR_X2APIC_OPT_OUT)); acpi_create_dmar(dmar, (DMAR_INTR_REMAP | DMAR_X2APIC_OPT_OUT), acpi_fill_dmar); current += dmar->header.length; current = acpi_align_current(current); acpi_add_table(rsdp, dmar); } return current; } void uncore_inject_dsdt(void) { size_t hob_size; const uint8_t uds_guid[16] = FSP_HOB_IIO_UNIVERSAL_DATA_GUID; const IIO_UDS *hob = fsp_find_extension_hob_by_guid(uds_guid, &hob_size); assert(hob != NULL && hob_size != 0); acpigen_write_scope("\\_SB"); for (int socket = 0; socket < hob->PlatformData.numofIIO; ++socket) { IIO_RESOURCE_INSTANCE iio_resource = hob->PlatformData.IIO_resource[socket]; for (int stack = 0; stack <= PSTACK2; ++stack) { const STACK_RES *ri = &iio_resource.StackRes[stack]; char rtname[16]; snprintf(rtname, sizeof(rtname), "RT%02x", (socket*MAX_IIO_STACK)+stack); acpigen_write_name(rtname); printk(BIOS_DEBUG, "\tCreating ResourceTemplate %s for socket: %d, stack: %d\n", rtname, socket, stack); acpigen_write_resourcetemplate_header(); /* bus resource */ acpigen_resource_word(2, 0xc, 0, 0, ri->BusBase, ri->BusLimit, 0x0, (ri->BusLimit - ri->BusBase + 1)); // additional io resources on socket 0 bus 0 if (socket == 0 && stack == 0) { /* ACPI 6.4.2.5 I/O Port Descriptor */ acpigen_write_io16(0xCF8, 0xCFF, 0x1, 0x8, 1); /* IO decode CF8-CFF */ acpigen_resource_word(1, 0xc, 0x3, 0, 0x0000, 0x03AF, 0, 0x03B0); acpigen_resource_word(1, 0xc, 0x3, 0, 0x03E0, 0x0CF7, 0, 0x0918); acpigen_resource_word(1, 0xc, 0x3, 0, 0x03B0, 0x03BB, 0, 0x000C); acpigen_resource_word(1, 0xc, 0x3, 0, 0x03C0, 0x03DF, 0, 0x0020); } /* IO resource */ acpigen_resource_word(1, 0xc, 0x3, 0, ri->PciResourceIoBase, ri->PciResourceIoLimit, 0x0, (ri->PciResourceIoLimit - ri->PciResourceIoBase + 1)); // additional mem32 resources on socket 0 bus 0 if (socket == 0 && stack == 0) { acpigen_resource_dword(0, 0xc, 3, 0, VGA_BASE_ADDRESS, (VGA_BASE_ADDRESS + VGA_BASE_SIZE - 1), 0x0, VGA_BASE_SIZE); acpigen_resource_dword(0, 0xc, 1, 0, SPI_BASE_ADDRESS, (SPI_BASE_ADDRESS + SPI_BASE_SIZE - 1), 0x0, SPI_BASE_SIZE); } /* Mem32 resource */ acpigen_resource_dword(0, 0xc, 1, 0, ri->PciResourceMem32Base, ri->PciResourceMem32Limit, 0x0, (ri->PciResourceMem32Limit - ri->PciResourceMem32Base + 1)); /* Mem64 resource */ acpigen_resource_qword(0, 0xc, 1, 0, ri->PciResourceMem64Base, ri->PciResourceMem64Limit, 0x0, (ri->PciResourceMem64Limit - ri->PciResourceMem64Base + 1)); acpigen_write_resourcetemplate_footer(); } } acpigen_pop_len(); } void southbridge_inject_dsdt(const struct device *device) { global_nvs_t *gnvs; gnvs = cbmem_find(CBMEM_ID_ACPI_GNVS); if (!gnvs) { gnvs = cbmem_add(CBMEM_ID_ACPI_GNVS, sizeof(*gnvs)); if (gnvs) memset(gnvs, 0, sizeof(*gnvs)); } if (gnvs) { acpi_create_gnvs(gnvs); /* TODO: tell SMI about it, if HAVE_SMI_HANDLER */ // smm_setup_structures(gnvs, NULL, NULL); /* Add it to DSDT. */ printk(BIOS_SPEW, "%s injecting NVSA with 0x%x\n", __FILE__, (uint32_t)gnvs); acpigen_write_scope("\\"); acpigen_write_name_dword("NVSA", (uint32_t)gnvs); acpigen_pop_len(); } // Add IIOStack ACPI Resource Templates uncore_inject_dsdt(); }