/* * This file is part of the coreboot project. * * Copyright 2014 Google Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include #include #include #include #include #include #include #include "clk_rst.h" #include "ccplex.h" #include "flow.h" #include "mc.h" #include "pmc.h" #include "power.h" #define EVP_CPU_RESET_VECTOR (void *)(uintptr_t)(TEGRA_EVP_BASE + 0x100) #define CLK_RST_REGS (void *)(uintptr_t)(TEGRA_CLK_RST_BASE) #define PMC_REGS (void *)(uintptr_t)(TEGRA_PMC_BASE) #define MTS_FILE_NAME "mts" static int ccplex_start(void) { struct mono_time t1, t2; const long timeout_us = 1500000; long wait_time; const uint32_t handshake_mask = 1; const uint32_t cxreset1_mask = 1 << 21; uint32_t reg; struct tegra_pmc_regs * const pmc = PMC_REGS; struct clk_rst_ctlr * const clk_rst = CLK_RST_REGS; /* Set the handshake bit to be knocked down. */ write32(handshake_mask, &pmc->scratch118); /* Assert nCXRSET[1] */ reg = read32(&clk_rst->rst_cpu_cmplx_set); reg |= cxreset1_mask; write32(reg, &clk_rst->rst_cpu_cmplx_set); timer_monotonic_get(&t1); while (1) { reg = read32(&pmc->scratch118); timer_monotonic_get(&t2); wait_time = mono_time_diff_microseconds(&t1, &t2); /* Wait for the bit to be knocked down. */ if ((reg & handshake_mask) != handshake_mask) break; if (wait_time >= timeout_us) { printk(BIOS_DEBUG, "MTS handshake timeout.\n"); return -1; } } printk(BIOS_DEBUG, "MTS handshake took %ld us.\n", wait_time); return 0; } int ccplex_load_mts(void) { struct cbfs_file file; ssize_t offset; size_t nread; /* * MTS location is hard coded to this magic address. The hardware will * take the MTS from this location and place it in the final resting * place in the carveout region. */ void * const mts = (void *)(uintptr_t)MTS_LOAD_ADDRESS; struct cbfs_media *media = CBFS_DEFAULT_MEDIA; offset = cbfs_locate_file(media, &file, MTS_FILE_NAME); if (offset < 0) { printk(BIOS_DEBUG, "MTS file not found: %s\n", MTS_FILE_NAME); return -1; } /* Read MTS file into the carveout region. */ nread = cbfs_read(media, mts, offset, file.len); if (nread != file.len) { printk(BIOS_DEBUG, "MTS bytes read (%zu) != file length(%u)!\n", nread, file.len); return -1; } printk(BIOS_DEBUG, "MTS: %zu bytes loaded @ %p\n", nread, mts); return ccplex_start(); } static void enable_cpu_clocks(void) { struct clk_rst_ctlr * const clk_rst = CLK_RST_REGS; uint32_t reg; reg = read32(&clk_rst->clk_enb_l_set); reg |= CLK_ENB_CPU; write32(reg, &clk_rst->clk_enb_l_set); reg = read32(&clk_rst->clk_enb_v_set); reg |= SET_CLK_ENB_CPUG_ENABLE | SET_CLK_ENB_CPULP_ENABLE; write32(reg, &clk_rst->clk_enb_v_set); } static void enable_cpu_power_partitions(void) { /* Bring up fast cluster, non-CPU, CPU0, and CPU1 partitions. */ power_ungate_partition(POWER_PARTID_CRAIL); power_ungate_partition(POWER_PARTID_C0NC); power_ungate_partition(POWER_PARTID_CE0); power_ungate_partition(POWER_PARTID_CE1); } static void request_ram_repair(void) { struct flow_ctlr * const flow = (void *)(uintptr_t)TEGRA_FLOW_BASE; const uint32_t req = 1 << 0; const uint32_t sts = 1 << 1; uint32_t reg; struct mono_time t1, t2; printk(BIOS_DEBUG, "Requesting RAM repair.\n"); reg = read32(&flow->ram_repair); reg |= req; write32(reg, &flow->ram_repair); timer_monotonic_get(&t1); while ((read32(&flow->ram_repair) & sts) != sts); timer_monotonic_get(&t2); printk(BIOS_DEBUG, "RAM repair complete in %ld usecs.\n", mono_time_diff_microseconds(&t1, &t2)); } void ccplex_cpu_prepare(void) { enable_cpu_clocks(); enable_cpu_power_partitions(); mainboard_configure_pmc(); mainboard_enable_vdd_cpu(); request_ram_repair(); } static void start_cpu0(void) { struct clk_rst_ctlr * const clk_rst = CLK_RST_REGS; /* Clear fast CPU partition reset. */ write32(CRC_RST_CPUG_CLR_NONCPU, &clk_rst->rst_cpug_cmplx_clr); /* Clear reset of CPU0 components. */ write32(CRC_RST_CPUG_CLR_CPU0 | CRC_RST_CPUG_CLR_DBG0 | CRC_RST_CPUG_CLR_CORE0 | CRC_RST_CPUG_CLR_CX0 | CRC_RST_CPUG_CLR_L2 | CRC_RST_CPUG_CLR_PDBG, &clk_rst->rst_cpug_cmplx_clr); } /* * The Denver cores come up in aarch32 mode. In order to transition to * 64-bit mode a write to the RMR (reset mangement register) with the * AA64 bit (0) set while setting RR (reset request bit 1). */ static const uint32_t aarch32to64[] = { 0xe3a00003, /* mov r0, #3 */ 0xee0c0f50, /* mcr 15, 0, r0, cr12, cr0, {2} */ }; static void load_aarch64_trampoline(void *addr) { const size_t trampoline_size = sizeof(aarch32to64); const void * const trampoline = &aarch32to64[0]; /* Copy trampoline into ram. */ memcpy(addr, trampoline, trampoline_size); } void ccplex_cpu_start(void *entry_addr) { struct tegra_pmc_regs * const pmc = PMC_REGS; void * const evp_cpu_reset_vector = EVP_CPU_RESET_VECTOR; void *trampoline; uint32_t entry_point; /* * Just place the trampoline at the MTS_LOAD_ADDRESS. This assumes * the program to run doesn't overlap this address. */ const uint32_t trampoline_addr = MTS_LOAD_ADDRESS; trampoline = (void *)(uintptr_t)trampoline_addr; /* The arm entry points have bit 0 set if thumb code. Mask that off. */ entry_point = (uint32_t)(uintptr_t)entry_addr; load_aarch64_trampoline(trampoline); /* Warm reset vector is pulled from the PMC scratch registers. */ write32(entry_point, &pmc->secure_scratch34); write32(0, &pmc->secure_scratch35); printk(BIOS_DEBUG, "Starting CPU0 @ %p trampolining to %08x.\n", trampoline, entry_point); /* * The Denver cores start in 32-bit mode. Therefore a trampoline * is needed to get into 64-bit mode. Point the cold reset vector * to the trampoline location. */ write32(trampoline_addr, evp_cpu_reset_vector); start_cpu0(); }