/* SPDX-License-Identifier: GPL-2.0-only */ #include #include #include #include #include #include #include #define DIV(div) (2 * div - 1) struct clock_config qup_cfg[] = { { .hz = QUPV3_UART_SRC_HZ, .src = SRC_GPLL0_EVEN_300MHZ, .div = DIV(1), .m = 384, .n = 15625, .d_2 = 15625, }, { .hz = SRC_XO_HZ, /* 19.2KHz */ .src = SRC_XO_19_2MHZ, .div = DIV(1), } }; struct clock_config qspi_core_cfg[] = { { .hz = SRC_XO_HZ, /* 19.2KHz */ .src = SRC_XO_19_2MHZ, .div = DIV(1), }, { .hz = 100 * MHz, .src = SRC_GPLL0_EVEN_300MHZ, .div = DIV(3), }, { .hz = 150 * MHz, .src = SRC_GPLL0_EVEN_300MHZ, .div = DIV(2), }, { .hz = GPLL0_EVEN_HZ, /* 300MHz */ .src = SRC_GPLL0_EVEN_300MHZ, .div = DIV(1), } }; struct clock_config qup_wrap_cfg[] = { { .hz = SRC_XO_HZ, /* 19.2KHz */ .src = SRC_XO_19_2MHZ, .div = DIV(1), }, { .hz = 32 * MHz, .src = SRC_GPLL0_EVEN_300MHZ, .div = DIV(1), .m = 8, .n = 75, .d_2 = 75, }, { .hz = 48 * MHz, .src = SRC_GPLL0_EVEN_300MHZ, .div = DIV(1), .m = 4, .n = 25, .d_2 = 25, }, { .hz = 64 * MHz, .src = SRC_GPLL0_EVEN_300MHZ, .div = DIV(1), .m = 16, .n = 75, .d_2 = 75, }, { .hz = 96 * MHz, .src = SRC_GPLL0_EVEN_300MHZ, .div = DIV(1), .m = 8, .n = 25, .d_2 = 25, }, { .hz = 100 * MHz, .src = SRC_GPLL0_EVEN_300MHZ, .div = DIV(3), }, { .hz = SRC_XO_HZ, /* 19.2KHz */ .src = SRC_XO_19_2MHZ, .div = DIV(1), }, { .hz = SRC_XO_HZ, /* 19.2KHz */ .src = SRC_XO_19_2MHZ, .div = DIV(1), }, }; static struct sc7180_mnd_clock *mdss_clock[MDSS_CLK_COUNT] = { [MDSS_CLK_ESC0] = &mdss->esc0, [MDSS_CLK_PCLK0] = &mdss->pclk0, [MDSS_CLK_BYTE0] = &mdss->byte0, [MDSS_CLK_BYTE0_INTF] = &mdss->byte0, }; static u32 *mdss_cbcr[MDSS_CLK_COUNT] = { [MDSS_CLK_ESC0] = &mdss->esc0_cbcr, [MDSS_CLK_PCLK0] = &mdss->pclk0_cbcr, [MDSS_CLK_BYTE0] = &mdss->byte0_cbcr, [MDSS_CLK_BYTE0_INTF] = &mdss->byte0_intf_cbcr, }; static int clock_configure_gpll0(void) { setbits32(&gcc->gpll0.user_ctl_u, 1 << SCALE_FREQ_SHFT); /* Keep existing GPLL0 configuration, in RUN mode @600Mhz. */ setbits32(&gcc->gpll0.user_ctl, 1 << CLK_CTL_GPLL_PLLOUT_EVEN_SHFT | 1 << CLK_CTL_GPLL_PLLOUT_MAIN_SHFT | 1 << CLK_CTL_GPLL_PLLOUT_ODD_SHFT); return 0; } static int clock_configure_mnd(struct sc7180_clock *clk, uint32_t m, uint32_t n, uint32_t d_2) { struct sc7180_mnd_clock *mnd = (struct sc7180_mnd_clock *)clk; setbits32(&clk->rcg_cfg, RCG_MODE_DUAL_EDGE << CLK_CTL_CFG_MODE_SHFT); write32(&mnd->m, m & CLK_CTL_RCG_MND_BMSK); write32(&mnd->n, ~(n-m) & CLK_CTL_RCG_MND_BMSK); write32(&mnd->d_2, ~(d_2) & CLK_CTL_RCG_MND_BMSK); return 0; } static int clock_configure(struct sc7180_clock *clk, struct clock_config *clk_cfg, uint32_t hz, uint32_t num_perfs) { uint32_t reg_val; uint32_t idx; for (idx = 0; idx < num_perfs; idx++) if (hz <= clk_cfg[idx].hz) break; assert(hz == clk_cfg[idx].hz); reg_val = (clk_cfg[idx].src << CLK_CTL_CFG_SRC_SEL_SHFT) | (clk_cfg[idx].div << CLK_CTL_CFG_SRC_DIV_SHFT); /* Set clock config */ write32(&clk->rcg_cfg, reg_val); if (clk_cfg[idx].m != 0) clock_configure_mnd(clk, clk_cfg[idx].m, clk_cfg[idx].n, clk_cfg[idx].d_2); /* Commit config to RCG*/ setbits32(&clk->rcg_cmd, BIT(CLK_CTL_CMD_UPDATE_SHFT)); return 0; } static bool clock_is_off(u32 *cbcr_addr) { return (read32(cbcr_addr) & CLK_CTL_CBC_CLK_OFF_BMSK); } static int clock_enable_vote(void *cbcr_addr, void *vote_addr, uint32_t vote_bit) { /* Set clock vote bit */ setbits32(vote_addr, BIT(vote_bit)); /* Ensure clock is enabled */ while (clock_is_off(cbcr_addr)) ; return 0; } static int clock_enable(void *cbcr_addr) { /* Set clock enable bit */ setbits32(cbcr_addr, BIT(CLK_CTL_CBC_CLK_EN_SHFT)); /* Ensure clock is enabled */ while (clock_is_off(cbcr_addr)) ; return 0; } void clock_reset_aop(void) { /* Bring AOP out of RESET */ clrbits32(&aoss->aoss_cc_apcs_misc, BIT(AOP_RESET_SHFT)); } void clock_configure_qspi(uint32_t hz) { clock_configure(&gcc->qspi_core, qspi_core_cfg, hz, ARRAY_SIZE(qspi_core_cfg)); clock_enable(&gcc->qspi_cnoc_ahb_cbcr); clock_enable(&gcc->qspi_core_cbcr); } int clock_reset_bcr(void *bcr_addr, bool reset) { struct sc7180_bcr *bcr = bcr_addr; if (reset) setbits32(bcr, BIT(CLK_CTL_BCR_BLK_ARES_SHFT)); else clrbits32(bcr, BIT(CLK_CTL_BCR_BLK_ARES_SHFT)); return 0; } void clock_configure_dfsr(int qup) { int idx; int s = qup % QUP_WRAP1_S0; uint32_t reg_val; struct sc7180_qupv3_clock *qup_clk = qup < QUP_WRAP1_S0 ? &gcc->qup_wrap0_s[s] : &gcc->qup_wrap1_s[s]; clrsetbits32(&qup_clk->dfsr_clk.cmd_dfsr, BIT(CLK_CTL_CMD_RCG_SW_CTL_SHFT), BIT(CLK_CTL_CMD_DFSR_SHFT)); for (idx = 0; idx < ARRAY_SIZE(qup_wrap_cfg); idx++) { reg_val = (qup_wrap_cfg[idx].src << CLK_CTL_CFG_SRC_SEL_SHFT) | (qup_wrap_cfg[idx].div << CLK_CTL_CFG_SRC_DIV_SHFT); write32(&qup_clk->dfsr_clk.perf_dfsr[idx], reg_val); if (qup_wrap_cfg[idx].m == 0) continue; setbits32(&qup_clk->dfsr_clk.perf_dfsr[idx], RCG_MODE_DUAL_EDGE << CLK_CTL_CFG_MODE_SHFT); reg_val = qup_wrap_cfg[idx].m & CLK_CTL_RCG_MND_BMSK; write32(&qup_clk->dfsr_clk.perf_m_dfsr[idx], reg_val); reg_val = ~(qup_wrap_cfg[idx].n - qup_wrap_cfg[idx].m) & CLK_CTL_RCG_MND_BMSK; write32(&qup_clk->dfsr_clk.perf_n_dfsr[idx], reg_val); reg_val = ~(qup_wrap_cfg[idx].d_2) & CLK_CTL_RCG_MND_BMSK; write32(&qup_clk->dfsr_clk.perf_d_dfsr[idx], reg_val); } } void clock_configure_qup(int qup, uint32_t hz) { int s = qup % QUP_WRAP1_S0; struct sc7180_qupv3_clock *qup_clk = qup < QUP_WRAP1_S0 ? &gcc->qup_wrap0_s[s] : &gcc->qup_wrap1_s[s]; clock_configure(&qup_clk->mnd_clk.clock, qup_cfg, hz, ARRAY_SIZE(qup_cfg)); } void clock_enable_qup(int qup) { int s = qup % QUP_WRAP1_S0; int clk_en_off = qup < QUP_WRAP1_S0 ? QUPV3_WRAP0_CLK_ENA_S(s) : QUPV3_WRAP1_CLK_ENA_S(s); struct sc7180_qupv3_clock *qup_clk = qup < QUP_WRAP1_S0 ? &gcc->qup_wrap0_s[s] : &gcc->qup_wrap1_s[s]; clock_enable_vote(&qup_clk->mnd_clk, &gcc->apcs_clk_br_en1, clk_en_off); } static int pll_init_and_set(struct sc7180_apss_clock *apss, u32 l_val) { u32 gfmux_val; /* Configure and Enable PLL */ write32(&apss->pll.config_ctl_lo, 0x0); setbits32(&apss->pll.config_ctl_lo, 0x2 << CTUNE_SHFT | 0x2 << K_I_SHFT | 0x5 << K_P_SHFT | 0x2 << PFA_MSB_SHFT | 0x2 << REF_CONT_SHFT); write32(&apss->pll.config_ctl_hi, 0x0); setbits32(&apss->pll.config_ctl_hi, 0x2 << CUR_ADJ_SHFT | BIT(DMET_SHFT) | 0xF << RES_SHFT); write32(&apss->pll.config_ctl_u1, 0x0); write32(&apss->pll.l_val, l_val); setbits32(&apss->pll.mode, BIT(BYPASSNL_SHFT)); udelay(5); setbits32(&apss->pll.mode, BIT(RESET_SHFT)); setbits32(&apss->pll.opmode, RUN_MODE); if (!wait_us(100, read32(&apss->pll.mode) & LOCK_DET_BMSK)) { printk(BIOS_ERR, "ERROR: PLL did not lock!\n"); return -1; } setbits32(&apss->pll.mode, BIT(OUTCTRL_SHFT)); gfmux_val = read32(&apss->cfg_gfmux) & ~GFMUX_SRC_SEL_BMSK; gfmux_val |= APCS_SRC_EARLY; write32(&apss->cfg_gfmux, gfmux_val); return 0; } static void speed_up_boot_cpu(void) { /* 1516.8 MHz */ if (!pll_init_and_set(apss_silver, L_VAL_1516P8MHz)) printk(BIOS_DEBUG, "Silver Frequency bumped to 1.5168(GHz)\n"); /* 1209.6 MHz */ if (!pll_init_and_set(apss_l3, L_VAL_1209P6MHz)) printk(BIOS_DEBUG, "L3 Frequency bumped to 1.2096(GHz)\n"); } int mdss_clock_configure(enum mdss_clock clk_type, uint32_t source, uint32_t half_divider, uint32_t m, uint32_t n, uint32_t d_2) { struct clock_config mdss_clk_cfg; uint32_t reg_val; if (clk_type >= MDSS_CLK_COUNT) return -1; /* Initialize it with received arguments */ mdss_clk_cfg.hz = 0; mdss_clk_cfg.src = source; /* * client is expected to provide 2n divider value, * as the divider value in register is in form "2n-1" */ mdss_clk_cfg.div = half_divider ? (half_divider - 1) : 0; mdss_clk_cfg.m = m; mdss_clk_cfg.n = n; mdss_clk_cfg.d_2 = d_2; /* configure and set the clock */ reg_val = (mdss_clk_cfg.src << CLK_CTL_CFG_SRC_SEL_SHFT) | (mdss_clk_cfg.div << CLK_CTL_CFG_SRC_DIV_SHFT); write32(&mdss_clock[clk_type]->clock.rcg_cfg, reg_val); /* Set m/n/d values for a specific clock */ if (mdss_clk_cfg.m != 0) clock_configure_mnd((struct sc7180_clock *)mdss_clock[clk_type], mdss_clk_cfg.m, mdss_clk_cfg.n, mdss_clk_cfg.d_2); /* Commit config to RCG */ setbits32(&mdss_clock[clk_type]->clock.rcg_cmd, BIT(CLK_CTL_CMD_UPDATE_SHFT)); return 0; } int mdss_clock_enable(enum mdss_clock clk_type) { if (clk_type >= MDSS_CLK_COUNT) return -1; /* Enable clock*/ clock_enable(mdss_cbcr[clk_type]); return 0; } void clock_init(void) { clock_configure_gpll0(); clock_enable_vote(&gcc->qup_wrap0_core_2x_cbcr, &gcc->apcs_clk_br_en1, QUPV3_WRAP0_CORE_2X_CLK_ENA); clock_enable_vote(&gcc->qup_wrap0_core_cbcr, &gcc->apcs_clk_br_en1, QUPV3_WRAP0_CORE_CLK_ENA); clock_enable_vote(&gcc->qup_wrap0_m_ahb_cbcr, &gcc->apcs_clk_br_en1, QUPV3_WRAP_0_M_AHB_CLK_ENA); clock_enable_vote(&gcc->qup_wrap0_s_ahb_cbcr, &gcc->apcs_clk_br_en1, QUPV3_WRAP_0_S_AHB_CLK_ENA); clock_enable_vote(&gcc->qup_wrap1_core_2x_cbcr, &gcc->apcs_clk_br_en1, QUPV3_WRAP1_CORE_2X_CLK_ENA); clock_enable_vote(&gcc->qup_wrap1_core_cbcr, &gcc->apcs_clk_br_en1, QUPV3_WRAP1_CORE_CLK_ENA); clock_enable_vote(&gcc->qup_wrap1_m_ahb_cbcr, &gcc->apcs_clk_br_en1, QUPV3_WRAP_1_M_AHB_CLK_ENA); clock_enable_vote(&gcc->qup_wrap1_s_ahb_cbcr, &gcc->apcs_clk_br_en1, QUPV3_WRAP_1_S_AHB_CLK_ENA); speed_up_boot_cpu(); }