/* * This file is part of the coreboot project. * * Copyright (C) 2011 Samsung Electronics * Copyright 2013 Google Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include #include #include #include #include "clk.h" #include "gpio.h" #include "spi.h" #if defined(CONFIG_DEBUG_SPI) && CONFIG_DEBUG_SPI # define DEBUG_SPI(x,...) printk(BIOS_DEBUG, "EXYNOS_SPI: " x) #else # define DEBUG_SPI(x,...) #endif static void exynos_spi_rx_tx(struct exynos_spi *regs, int todo, void *dinp, void const *doutp, int i) { int rx_lvl, tx_lvl; unsigned int *rxp = (unsigned int *)(dinp + (i * (32 * 1024))); unsigned int out_bytes, in_bytes; // TODO In current implementation, every read/write must be aligned to // 4 bytes, otherwise you may get timeout or other unexpected results. ASSERT(todo % 4 == 0); out_bytes = in_bytes = todo; setbits_le32(®s->ch_cfg, SPI_CH_RST); clrbits_le32(®s->ch_cfg, SPI_CH_RST); writel(((todo * 8) / 32) | SPI_PACKET_CNT_EN, ®s->pkt_cnt); while (in_bytes) { uint32_t spi_sts; int temp; spi_sts = readl(®s->spi_sts); rx_lvl = ((spi_sts >> 15) & 0x7f); tx_lvl = ((spi_sts >> 6) & 0x7f); while (tx_lvl < 32 && out_bytes) { // TODO The "writing" (tx) is not supported now; that's // why we write garbage to keep driving FIFO clock. temp = 0xffffffff; writel(temp, ®s->tx_data); out_bytes -= 4; tx_lvl += 4; } while (rx_lvl >= 4 && in_bytes) { temp = readl(®s->rx_data); if (rxp) *rxp++ = temp; in_bytes -= 4; rx_lvl -= 4; } } } /* set up SPI channel */ int exynos_spi_open(struct exynos_spi *regs) { /* set the spi1 GPIO */ /* set pktcnt and enable it */ writel(4 | SPI_PACKET_CNT_EN, ®s->pkt_cnt); /* set FB_CLK_SEL */ writel(SPI_FB_DELAY_180, ®s->fb_clk); /* set CH_WIDTH and BUS_WIDTH as word */ setbits_le32(®s->mode_cfg, SPI_MODE_CH_WIDTH_WORD | SPI_MODE_BUS_WIDTH_WORD); clrbits_le32(®s->ch_cfg, SPI_CH_CPOL_L); /* CPOL: active high */ /* clear rx and tx channel if set previously */ clrbits_le32(®s->ch_cfg, SPI_RX_CH_ON | SPI_TX_CH_ON); setbits_le32(®s->swap_cfg, SPI_RX_SWAP_EN | SPI_RX_BYTE_SWAP | SPI_RX_HWORD_SWAP); /* do a soft reset */ setbits_le32(®s->ch_cfg, SPI_CH_RST); clrbits_le32(®s->ch_cfg, SPI_CH_RST); /* now set rx and tx channel ON */ setbits_le32(®s->ch_cfg, SPI_RX_CH_ON | SPI_TX_CH_ON | SPI_CH_HS_EN); return 0; } int exynos_spi_read(struct exynos_spi *regs, void *dest, u32 len, u32 off) { int upto, todo; int i; clrbits_le32(®s->cs_reg, SPI_SLAVE_SIG_INACT); /* CS low */ /* Send read instruction (0x3h) followed by a 24 bit addr */ writel((SF_READ_DATA_CMD << 24) | off, ®s->tx_data); /* waiting for TX done */ while (!(readl(®s->spi_sts) & SPI_ST_TX_DONE)); for (upto = 0, i = 0; upto < len; upto += todo, i++) { todo = MIN(len - upto, (1 << 15)); exynos_spi_rx_tx(regs, todo, dest, (void *)(off), i); } setbits_le32(®s->cs_reg, SPI_SLAVE_SIG_INACT);/* make the CS high */ return len; } int exynos_spi_close(struct exynos_spi *regs) { /* * Let put controller mode to BYTE as * SPI driver does not support WORD mode yet */ clrbits_le32(®s->mode_cfg, SPI_MODE_CH_WIDTH_WORD | SPI_MODE_BUS_WIDTH_WORD); writel(0, ®s->swap_cfg); /* * Flush spi tx, rx fifos and reset the SPI controller * and clear rx/tx channel */ clrsetbits_le32(®s->ch_cfg, SPI_CH_HS_EN, SPI_CH_RST); clrbits_le32(®s->ch_cfg, SPI_CH_RST); clrbits_le32(®s->ch_cfg, SPI_TX_CH_ON | SPI_RX_CH_ON); return 0; } // SPI as CBFS media. struct exynos_spi_media { struct exynos_spi *regs; struct cbfs_simple_buffer buffer; }; static int exynos_spi_cbfs_open(struct cbfs_media *media) { struct exynos_spi_media *spi = (struct exynos_spi_media*)media->context; DEBUG_SPI("exynos_spi_cbfs_open\n"); return exynos_spi_open(spi->regs); } static int exynos_spi_cbfs_close(struct cbfs_media *media) { struct exynos_spi_media *spi = (struct exynos_spi_media*)media->context; DEBUG_SPI("exynos_spi_cbfs_close\n"); return exynos_spi_close(spi->regs); } static size_t exynos_spi_cbfs_read(struct cbfs_media *media, void *dest, size_t offset, size_t count) { struct exynos_spi_media *spi = (struct exynos_spi_media*)media->context; int bytes; DEBUG_SPI("exynos_spi_cbfs_read(%u)\n", count); bytes = exynos_spi_read(spi->regs, dest, count, offset); // Flush and re-open the device. exynos_spi_close(spi->regs); exynos_spi_open(spi->regs); return bytes; } static void *exynos_spi_cbfs_map(struct cbfs_media *media, size_t offset, size_t count) { struct exynos_spi_media *spi = (struct exynos_spi_media*)media->context; DEBUG_SPI("exynos_spi_cbfs_map\n"); // See exynos_spi_rx_tx for I/O alignment limitation. if (count % 4) count += 4 - (count % 4); return cbfs_simple_buffer_map(&spi->buffer, media, offset, count); } static void *exynos_spi_cbfs_unmap(struct cbfs_media *media, const void *address) { struct exynos_spi_media *spi = (struct exynos_spi_media*)media->context; DEBUG_SPI("exynos_spi_cbfs_unmap\n"); return cbfs_simple_buffer_unmap(&spi->buffer, address); } int initialize_exynos_spi_cbfs_media(struct cbfs_media *media, void *buffer_address, size_t buffer_size) { // TODO Replace static variable to support multiple streams. static struct exynos_spi_media context; DEBUG_SPI("initialize_exynos_spi_cbfs_media\n"); context.regs = (void*)EXYNOS5_SPI1_BASE; context.buffer.allocated = context.buffer.last_allocate = 0; context.buffer.buffer = buffer_address; context.buffer.size = buffer_size; media->context = (void*)&context; media->open = exynos_spi_cbfs_open; media->close = exynos_spi_cbfs_close; media->read = exynos_spi_cbfs_read; media->map = exynos_spi_cbfs_map; media->unmap = exynos_spi_cbfs_unmap; return 0; }