1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
|
/*
* This file is part of the coreboot project.
*
* Copyright (C) 2013 ChromeOS Authors
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <types.h>
#include <string.h>
#include <device/device.h>
#include <device/pci.h>
#include <cpu/cpu.h>
#include <cpu/x86/cache.h>
#include <cpu/x86/lapic.h>
#include <cpu/x86/msr.h>
#include <cpu/x86/mtrr.h>
#include <cpu/x86/smm.h>
#include <console/console.h>
#include <northbridge/intel/haswell/haswell.h>
#include <southbridge/intel/lynxpoint/pch.h>
#include "haswell.h"
#define EMRRphysBase_MSR 0x1f4
#define EMRRphysMask_MSR 0x1f5
#define UNCORE_EMRRphysBase_MSR 0x2f4
#define UNCORE_EMRRphysMask_MSR 0x2f5
#define SMM_MCA_CAP_MSR 0x17d
#define SMM_CPU_SVRSTR_BIT 57
#define SMM_CPU_SVRSTR_MASK (1 << (SMM_CPU_SVRSTR_BIT - 32))
#define SMM_FEATURE_CONTROL_MSR 0x4e0
#define SMM_CPU_SAVE_EN (1 << 1)
/* SMM save state MSRs */
#define SMBASE_MSR 0xc20
#define IEDBASE_MSR 0xc22
#define SMRR_SUPPORTED (1<<11)
#define EMRR_SUPPORTED (1<<12)
struct smm_relocation_params {
u32 smram_base;
u32 smram_size;
u32 ied_base;
u32 ied_size;
msr_t smrr_base;
msr_t smrr_mask;
msr_t emrr_base;
msr_t emrr_mask;
msr_t uncore_emrr_base;
msr_t uncore_emrr_mask;
/* The smm_save_state_in_msrs field indicates if SMM save state
* locations live in MSRs. This indicates to the CPUs how to adjust
* the SMMBASE and IEDBASE */
int smm_save_state_in_msrs;
};
/* This gets filled in and used during relocation. */
static struct smm_relocation_params smm_reloc_params;
static inline void write_smrr(struct smm_relocation_params *relo_params)
{
printk(BIOS_DEBUG, "Writing SMRR. base = 0x%08x, mask=0x%08x\n",
relo_params->smrr_base.lo, relo_params->smrr_mask.lo);
wrmsr(SMRRphysBase_MSR, relo_params->smrr_base);
wrmsr(SMRRphysMask_MSR, relo_params->smrr_mask);
}
static inline void write_emrr(struct smm_relocation_params *relo_params)
{
printk(BIOS_DEBUG, "Writing EMRR. base = 0x%08x, mask=0x%08x\n",
relo_params->emrr_base.lo, relo_params->emrr_mask.lo);
wrmsr(EMRRphysBase_MSR, relo_params->emrr_base);
wrmsr(EMRRphysMask_MSR, relo_params->emrr_mask);
}
static inline void write_uncore_emrr(struct smm_relocation_params *relo_params)
{
printk(BIOS_DEBUG,
"Writing UNCORE_EMRR. base = 0x%08x, mask=0x%08x\n",
relo_params->uncore_emrr_base.lo,
relo_params->uncore_emrr_mask.lo);
wrmsr(UNCORE_EMRRphysBase_MSR, relo_params->uncore_emrr_base);
wrmsr(UNCORE_EMRRphysMask_MSR, relo_params->uncore_emrr_mask);
}
static void update_save_state(int cpu,
struct smm_relocation_params *relo_params,
const struct smm_runtime *runtime)
{
u32 smbase;
u32 iedbase;
/* The relocated handler runs with all CPUs concurrently. Therefore
* stagger the entry points adjusting SMBASE downwards by save state
* size * CPU num. */
smbase = relo_params->smram_base - cpu * runtime->save_state_size;
iedbase = relo_params->ied_base;
printk(BIOS_DEBUG, "New SMBASE=0x%08x IEDBASE=0x%08x\n",
smbase, iedbase);
/* All threads need to set IEDBASE and SMBASE to the relocated
* handler region. However, the save state location depends on the
* smm_save_state_in_msrs field in the relocation parameters. If
* smm_save_state_in_msrs is non-zero then the CPUs are relocating
* the SMM handler in parallel, and each CPUs save state area is
* located in their respective MSR space. If smm_save_state_in_msrs
* is zero then the SMM relocation is happening serially so the
* save state is at the same default location for all CPUs. */
if (relo_params->smm_save_state_in_msrs) {
msr_t smbase_msr;
msr_t iedbase_msr;
smbase_msr.lo = smbase;
smbase_msr.hi = 0;
/* According the BWG the IEDBASE MSR is in bits 63:32. It's
* not clear why it differs from the SMBASE MSR. */
iedbase_msr.lo = 0;
iedbase_msr.hi = iedbase;
wrmsr(SMBASE_MSR, smbase_msr);
wrmsr(IEDBASE_MSR, iedbase_msr);
} else {
em64t101_smm_state_save_area_t *save_state;
save_state = (void *)(runtime->smbase + SMM_DEFAULT_SIZE -
runtime->save_state_size);
save_state->smbase = smbase;
save_state->iedbase = iedbase;
}
}
/* Returns 1 if SMM MSR save state was set. */
static int bsp_setup_msr_save_state(struct smm_relocation_params *relo_params)
{
msr_t smm_mca_cap;
smm_mca_cap = rdmsr(SMM_MCA_CAP_MSR);
if (smm_mca_cap.hi & SMM_CPU_SVRSTR_MASK) {
msr_t smm_feature_control;
smm_feature_control = rdmsr(SMM_FEATURE_CONTROL_MSR);
smm_feature_control.hi = 0;
smm_feature_control.lo |= SMM_CPU_SAVE_EN;
wrmsr(SMM_FEATURE_CONTROL_MSR, smm_feature_control);
relo_params->smm_save_state_in_msrs = 1;
}
return relo_params->smm_save_state_in_msrs;
}
/* The relocation work is actually performed in SMM context, but the code
* resides in the ramstage module. This occurs by trampolining from the default
* SMRAM entry point to here. */
static void asmlinkage
cpu_smm_do_relocation(void *arg, int cpu, const struct smm_runtime *runtime)
{
msr_t mtrr_cap;
struct smm_relocation_params *relo_params = arg;
if (cpu >= CONFIG_MAX_CPUS) {
printk(BIOS_CRIT,
"Invalid CPU number assigned in SMM stub: %d\n", cpu);
return;
}
printk(BIOS_DEBUG, "In relocation handler: cpu %d\n", cpu);
/* Determine if the processor supports saving state in MSRs. If so,
* enable it before the non-BSPs run so that SMM relocation can occur
* in parallel in the non-BSP CPUs. */
if (cpu == 0) {
/* If smm_save_state_in_msrs is 1 then that means this is the
* 2nd time through the relocation handler for the BSP.
* Parallel SMM handler relocation is taking place. However,
* it is desired to access other CPUs save state in the real
* SMM handler. Therefore, disable the SMM save state in MSRs
* feature. */
if (relo_params->smm_save_state_in_msrs) {
msr_t smm_feature_control;
smm_feature_control = rdmsr(SMM_FEATURE_CONTROL_MSR);
smm_feature_control.lo &= ~SMM_CPU_SAVE_EN;
wrmsr(SMM_FEATURE_CONTROL_MSR, smm_feature_control);
} else if (bsp_setup_msr_save_state(relo_params))
/* Just return from relocation handler if MSR save
* state is enabled. In that case the BSP will come
* back into the relocation handler to setup the new
* SMBASE as well disabling SMM save state in MSRs. */
return;
}
/* Make appropriate changes to the save state map. */
update_save_state(cpu, relo_params, runtime);
/* Write EMRR and SMRR MSRs based on indicated support. */
mtrr_cap = rdmsr(MTRRcap_MSR);
if (mtrr_cap.lo & SMRR_SUPPORTED)
write_smrr(relo_params);
if (mtrr_cap.lo & EMRR_SUPPORTED) {
write_emrr(relo_params);
/* UNCORE_EMRR msrs are package level. Therefore, only
* configure these MSRs on the BSP. */
if (cpu == 0)
write_uncore_emrr(relo_params);
}
}
static u32 northbridge_get_base_reg(device_t dev, int reg)
{
u32 value;
value = pci_read_config32(dev, reg);
/* Base registers are at 1MiB granularity. */
value &= ~((1 << 20) - 1);
return value;
}
static void fill_in_relocation_params(device_t dev,
struct smm_relocation_params *params)
{
u32 tseg_size;
u32 tsegmb;
u32 bgsm;
u32 emrr_base;
u32 emrr_size;
int phys_bits;
/* All range registers are aligned to 4KiB */
const u32 rmask = ~((1 << 12) - 1);
/* Some of the range registers are dependent on the number of physical
* address bits supported. */
phys_bits = cpuid_eax(0x80000008) & 0xff;
/* The range bounded by the TSEGMB and BGSM registers encompasses the
* SMRAM range as well as the IED range. However, the SMRAM available
* to the handler is 4MiB since the IEDRAM lives TSEGMB + 4MiB.
*/
tsegmb = northbridge_get_base_reg(dev, TSEG);
bgsm = northbridge_get_base_reg(dev, BGSM);
tseg_size = bgsm - tsegmb;
params->smram_base = tsegmb;
params->smram_size = 4 << 20;
params->ied_base = tsegmb + params->smram_size;
params->ied_size = tseg_size - params->smram_size;
/* Adjust available SMM handler memory size. */
params->smram_size -= RESERVED_SMM_SIZE;
/* SMRR has 32-bits of valid address aligned to 4KiB. */
params->smrr_base.lo = (params->smram_base & rmask) | MTRR_TYPE_WRBACK;
params->smrr_base.hi = 0;
params->smrr_mask.lo = (~(tseg_size - 1) & rmask) | MTRRphysMaskValid;
params->smrr_mask.hi = 0;
/* The EMRR and UNCORE_EMRR are at IEDBASE + 2MiB */
emrr_base = (params->ied_base + (2 << 20)) & rmask;
emrr_size = params->ied_size - (2 << 20);
/* EMRR has 46 bits of valid address aligned to 4KiB. It's dependent
* on the number of physical address bits supported. */
params->emrr_base.lo = emrr_base | MTRR_TYPE_WRBACK;
params->emrr_base.hi = 0;
params->emrr_mask.lo = (~(emrr_size - 1) & rmask) | MTRRphysMaskValid;
params->emrr_mask.hi = (1 << (phys_bits - 32)) - 1;
/* UNCORE_EMRR has 39 bits of valid address aligned to 4KiB. */
params->uncore_emrr_base.lo = emrr_base;
params->uncore_emrr_base.hi = 0;
params->uncore_emrr_mask.lo = (~(emrr_size - 1) & rmask) |
MTRRphysMaskValid;
params->uncore_emrr_mask.hi = (1 << (39 - 32)) - 1;
}
static void adjust_apic_id_map(struct smm_loader_params *smm_params)
{
struct smm_runtime *runtime;
int i;
/* Adjust the APIC id map if HT is disabled. */
if (!ht_disabled)
return;
runtime = smm_params->runtime;
/* The APIC ids increment by 2 when HT is disabled. */
for (i = 0; i < CONFIG_MAX_CPUS; i++)
runtime->apic_id_to_cpu[i] = runtime->apic_id_to_cpu[i] * 2;
}
static int install_relocation_handler(int num_cpus,
struct smm_relocation_params *relo_params)
{
/* The default SMM entry can happen in parallel or serially. If the
* default SMM entry is done in parallel the BSP has already setup
* the saving state to each CPU's MSRs. At least one save state size
* is required for the initial SMM entry for the BSP to determine if
* parallel SMM relocation is even feasible. Set the stack size to
* the save state size, and call into the do_relocation handler. */
int save_state_size = sizeof(em64t101_smm_state_save_area_t);
struct smm_loader_params smm_params = {
.per_cpu_stack_size = save_state_size,
.num_concurrent_stacks = num_cpus,
.per_cpu_save_state_size = save_state_size,
.num_concurrent_save_states = 1,
.handler = (smm_handler_t)&cpu_smm_do_relocation,
.handler_arg = (void *)relo_params,
};
if (smm_setup_relocation_handler(&smm_params))
return -1;
adjust_apic_id_map(&smm_params);
return 0;
}
static void setup_ied_area(struct smm_relocation_params *params)
{
char *ied_base;
struct ied_header ied = {
.signature = "INTEL RSVD",
.size = params->ied_size,
.reserved = {0},
};
ied_base = (void *)params->ied_base;
/* Place IED header at IEDBASE. */
memcpy(ied_base, &ied, sizeof(ied));
/* Zero out 32KiB at IEDBASE + 1MiB */
memset(ied_base + (1 << 20), 0, (32 << 10));
/* According to the BWG MP init section 2MiB of memory at IEDBASE +
* 2MiB should be zeroed as well. However, I suspect what is intended
* is to clear the memory covered by EMRR. TODO(adurbin): figure out if * this is really required. */
//memset(ied_base + (2 << 20), 0, (2 << 20));
}
static int install_permanent_handler(int num_cpus,
struct smm_relocation_params *relo_params)
{
/* There are num_cpus concurrent stacks and num_cpus concurrent save
* state areas. Lastly, set the stack size to the save state size. */
int save_state_size = sizeof(em64t101_smm_state_save_area_t);
struct smm_loader_params smm_params = {
.per_cpu_stack_size = save_state_size,
.num_concurrent_stacks = num_cpus,
.per_cpu_save_state_size = save_state_size,
.num_concurrent_save_states = num_cpus,
};
printk(BIOS_DEBUG, "Installing SMM handler to 0x%08x\n",
relo_params->smram_base);
if (smm_load_module((void *)relo_params->smram_base,
relo_params->smram_size, &smm_params))
return -1;
adjust_apic_id_map(&smm_params);
return 0;
}
static int cpu_smm_setup(void)
{
device_t dev;
int num_cpus;
msr_t msr;
printk(BIOS_DEBUG, "Setting up SMI for CPU\n");
dev = dev_find_slot(0, PCI_DEVFN(0, 0));
fill_in_relocation_params(dev, &smm_reloc_params);
setup_ied_area(&smm_reloc_params);
msr = rdmsr(CORE_THREAD_COUNT_MSR);
num_cpus = msr.lo & 0xffff;
if (num_cpus > CONFIG_MAX_CPUS) {
printk(BIOS_CRIT,
"Error: Hardware CPUs (%d) > MAX_CPUS (%d)\n",
num_cpus, CONFIG_MAX_CPUS);
}
if (install_relocation_handler(num_cpus, &smm_reloc_params)) {
printk(BIOS_CRIT, "SMM Relocation handler install failed.\n");
return -1;
}
if (install_permanent_handler(num_cpus, &smm_reloc_params)) {
printk(BIOS_CRIT, "SMM Permanent handler install failed.\n");
return -1;
}
/* Ensure the SMM handlers hit DRAM before performing first SMI. */
/* TODO(adurbin): Is this really needed? */
wbinvd();
return 0;
}
int smm_initialize(void)
{
/* Return early if CPU SMM setup failed. */
if (cpu_smm_setup())
return -1;
/* Clear the SMM state in the southbridge. */
southbridge_smm_clear_state();
/* Run the relocation handler. */
smm_initiate_relocation();
/* If smm_save_state_in_msrs is non-zero then parallel SMM relocation
* shall take place. Run the relocation handler a second time to do
* the final move. */
if (smm_reloc_params.smm_save_state_in_msrs) {
printk(BIOS_DEBUG, "Doing parallel SMM relocation.\n");
release_aps_for_smm_relocation(1);
smm_initiate_relocation_parallel();
} else {
release_aps_for_smm_relocation(0);
}
/* Now that all APs have been relocated as well as the BSP let SMIs
* start flowing. */
southbridge_smm_enable_smi();
/* Lock down the SMRAM space. */
smm_lock();
return 0;
}
void smm_init(void)
{
/* smm_init() is normally called from initialize_cpus() in
* lapic_cpu_init.c. However, that path is no longer used. Don't reuse
* the function name because that would cause confusion.
* The smm_initialize() function above is used to setup SMM at the
* appropriate time. */
}
void smm_lock(void)
{
/* LOCK the SMM memory window and enable normal SMM.
* After running this function, only a full reset can
* make the SMM registers writable again.
*/
printk(BIOS_DEBUG, "Locking SMM.\n");
pci_write_config8(dev_find_slot(0, PCI_DEVFN(0, 0)), SMRAM,
D_LCK | G_SMRAME | C_BASE_SEG);
}
|