summaryrefslogtreecommitdiff
path: root/src/cpu/x86/mtrr/mtrr.c
blob: 532dd5d698a41847d2958a8e9dde567e9f256d2c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
/*
 * mtrr.c: setting MTRR to decent values for cache initialization on P6
 *
 * Derived from intel_set_mtrr in intel_subr.c and mtrr.c in linux kernel
 *
 * Copyright 2000 Silicon Integrated System Corporation
 * Copyright 2013 Google Inc.
 *
 *	This program is free software; you can redistribute it and/or modify
 *	it under the terms of the GNU General Public License as published by
 *	the Free Software Foundation; either version 2 of the License, or
 *	(at your option) any later version.
 *
 *	This program is distributed in the hope that it will be useful,
 *	but WITHOUT ANY WARRANTY; without even the implied warranty of
 *	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *	GNU General Public License for more details.
 *
 *
 * Reference: Intel Architecture Software Developer's Manual, Volume 3: System
 * Programming
 */

#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include <bootstate.h>
#include <console/console.h>
#include <device/device.h>
#include <device/pci_ids.h>
#include <cpu/cpu.h>
#include <cpu/x86/msr.h>
#include <cpu/x86/mtrr.h>
#include <cpu/x86/cache.h>
#include <cpu/x86/lapic.h>
#include <arch/cpu.h>
#include <arch/acpi.h>
#include <memrange.h>
#include <cpu/amd/mtrr.h>
#if IS_ENABLED(CONFIG_X86_AMD_FIXED_MTRRS)
#define MTRR_FIXED_WRBACK_BITS (MTRR_READ_MEM | MTRR_WRITE_MEM)
#else
#define MTRR_FIXED_WRBACK_BITS 0
#endif

/* 2 MTRRS are reserved for the operating system */
#define BIOS_MTRRS 6
#define OS_MTRRS   2
#define MTRRS      (BIOS_MTRRS + OS_MTRRS)
/*
 * Static storage size for variable MTRRs. It's sized sufficiently large to
 * handle different types of CPUs. Empirically, 16 variable MTRRs has not
 * yet been observed.
 */
#define NUM_MTRR_STATIC_STORAGE 16

static int total_mtrrs = MTRRS;
static int bios_mtrrs = BIOS_MTRRS;

static void detect_var_mtrrs(void)
{
	msr_t msr;

	msr = rdmsr(MTRR_CAP_MSR);

	total_mtrrs = msr.lo & 0xff;

	if (total_mtrrs > NUM_MTRR_STATIC_STORAGE) {
		printk(BIOS_WARNING,
			"MTRRs detected (%d) > NUM_MTRR_STATIC_STORAGE (%d)\n",
			total_mtrrs, NUM_MTRR_STATIC_STORAGE);
		total_mtrrs = NUM_MTRR_STATIC_STORAGE;
	}
	bios_mtrrs = total_mtrrs - OS_MTRRS;
}

void enable_fixed_mtrr(void)
{
	msr_t msr;

	msr = rdmsr(MTRR_DEF_TYPE_MSR);
	msr.lo |= MTRR_DEF_TYPE_EN | MTRR_DEF_TYPE_FIX_EN;
	wrmsr(MTRR_DEF_TYPE_MSR, msr);
}

void fixed_mtrrs_expose_amd_rwdram(void)
{
	msr_t syscfg;

	if (!IS_ENABLED(CONFIG_X86_AMD_FIXED_MTRRS))
		return;

	syscfg = rdmsr(SYSCFG_MSR);
	syscfg.lo |= SYSCFG_MSR_MtrrFixDramModEn;
	wrmsr(SYSCFG_MSR, syscfg);
}

void fixed_mtrrs_hide_amd_rwdram(void)
{
	msr_t syscfg;

	if (!IS_ENABLED(CONFIG_X86_AMD_FIXED_MTRRS))
		return;

	syscfg = rdmsr(SYSCFG_MSR);
	syscfg.lo &= ~SYSCFG_MSR_MtrrFixDramModEn;
	wrmsr(SYSCFG_MSR, syscfg);
}

static void enable_var_mtrr(unsigned char deftype)
{
	msr_t msr;

	msr = rdmsr(MTRR_DEF_TYPE_MSR);
	msr.lo &= ~0xff;
	msr.lo |= MTRR_DEF_TYPE_EN | deftype;
	wrmsr(MTRR_DEF_TYPE_MSR, msr);
}

#define MTRR_VERBOSE_LEVEL BIOS_NEVER

/* MTRRs are at a 4KiB granularity. Therefore all address calculations can
 * be done with 32-bit numbers. This allows for the MTRR code to handle
 * up to 2^44 bytes (16 TiB) of address space. */
#define RANGE_SHIFT 12
#define ADDR_SHIFT_TO_RANGE_SHIFT(x) \
	(((x) > RANGE_SHIFT) ? ((x) - RANGE_SHIFT) : RANGE_SHIFT)
#define PHYS_TO_RANGE_ADDR(x) ((x) >> RANGE_SHIFT)
#define RANGE_TO_PHYS_ADDR(x) (((resource_t)(x)) << RANGE_SHIFT)
#define NUM_FIXED_MTRRS (NUM_FIXED_RANGES / RANGES_PER_FIXED_MTRR)

/* Helpful constants. */
#define RANGE_1MB PHYS_TO_RANGE_ADDR(1 << 20)
#define RANGE_4GB (1 << (ADDR_SHIFT_TO_RANGE_SHIFT(32)))

#define MTRR_ALGO_SHIFT (8)
#define MTRR_TAG_MASK ((1 << MTRR_ALGO_SHIFT) - 1)

static inline uint32_t range_entry_base_mtrr_addr(struct range_entry *r)
{
	return PHYS_TO_RANGE_ADDR(range_entry_base(r));
}

static inline uint32_t range_entry_end_mtrr_addr(struct range_entry *r)
{
	return PHYS_TO_RANGE_ADDR(range_entry_end(r));
}

static inline int range_entry_mtrr_type(struct range_entry *r)
{
	return range_entry_tag(r) & MTRR_TAG_MASK;
}

static int filter_vga_wrcomb(struct device *dev, struct resource *res)
{
	/* Only handle PCI devices. */
	if (dev->path.type != DEVICE_PATH_PCI)
		return 0;

	/* Only handle VGA class devices. */
	if (((dev->class >> 8) != PCI_CLASS_DISPLAY_VGA))
		return 0;

	/* Add resource as write-combining in the address space. */
	return 1;
}

static void print_physical_address_space(const struct memranges *addr_space,
					const char *identifier)
{
	const struct range_entry *r;

	if (identifier)
		printk(BIOS_DEBUG, "MTRR: %s Physical address space:\n",
			identifier);
	else
		printk(BIOS_DEBUG, "MTRR: Physical address space:\n");

	memranges_each_entry(r, addr_space)
		printk(BIOS_DEBUG,
		       "0x%016llx - 0x%016llx size 0x%08llx type %ld\n",
		       range_entry_base(r), range_entry_end(r),
		       range_entry_size(r), range_entry_tag(r));
}

static struct memranges *get_physical_address_space(void)
{
	static struct memranges *addr_space;
	static struct memranges addr_space_storage;

	/* In order to handle some chipsets not being able to pre-determine
	 *  uncacheable ranges, such as graphics memory, at resource insertion
	 * time remove uncacheable regions from the cacheable ones. */
	if (addr_space == NULL) {
		unsigned long mask;
		unsigned long match;

		addr_space = &addr_space_storage;

		mask = IORESOURCE_CACHEABLE;
		/* Collect cacheable and uncacheable address ranges. The
		 * uncacheable regions take precedence over the  cacheable
		 * regions. */
		memranges_init(addr_space, mask, mask, MTRR_TYPE_WRBACK);
		memranges_add_resources(addr_space, mask, 0,
					MTRR_TYPE_UNCACHEABLE);

		/* Handle any write combining resources. Only prefetchable
		 * resources are appropriate for this MTRR type. */
		match = IORESOURCE_PREFETCH;
		mask |= match;
		memranges_add_resources_filter(addr_space, mask, match,
					MTRR_TYPE_WRCOMB, filter_vga_wrcomb);

		/* The address space below 4GiB is special. It needs to be
		 * covered entirely by range entries so that MTRR calculations
		 * can be properly done for the full 32-bit address space.
		 * Therefore, ensure holes are filled up to 4GiB as
		 * uncacheable */
		memranges_fill_holes_up_to(addr_space,
					   RANGE_TO_PHYS_ADDR(RANGE_4GB),
					   MTRR_TYPE_UNCACHEABLE);

		print_physical_address_space(addr_space, NULL);
	}

	return addr_space;
}

/* Fixed MTRR descriptor. This structure defines the step size and begin
 * and end (exclusive) address covered by a set of fixed MTRR MSRs.
 * It also describes the offset in byte intervals to store the calculated MTRR
 * type in an array. */
struct fixed_mtrr_desc {
	uint32_t begin;
	uint32_t end;
	uint32_t step;
	int range_index;
	int msr_index_base;
};

/* Shared MTRR calculations. Can be reused by APs. */
static uint8_t fixed_mtrr_types[NUM_FIXED_RANGES];

/* Fixed MTRR descriptors. */
static const struct fixed_mtrr_desc fixed_mtrr_desc[] = {
	{ PHYS_TO_RANGE_ADDR(0x000000), PHYS_TO_RANGE_ADDR(0x080000),
	  PHYS_TO_RANGE_ADDR(64 * 1024), 0, MTRR_FIX_64K_00000 },
	{ PHYS_TO_RANGE_ADDR(0x080000), PHYS_TO_RANGE_ADDR(0x0C0000),
	  PHYS_TO_RANGE_ADDR(16 * 1024), 8, MTRR_FIX_16K_80000 },
	{ PHYS_TO_RANGE_ADDR(0x0C0000), PHYS_TO_RANGE_ADDR(0x100000),
	  PHYS_TO_RANGE_ADDR(4 * 1024), 24, MTRR_FIX_4K_C0000 },
};

static void calc_fixed_mtrrs(void)
{
	static int fixed_mtrr_types_initialized;
	struct memranges *phys_addr_space;
	struct range_entry *r;
	const struct fixed_mtrr_desc *desc;
	const struct fixed_mtrr_desc *last_desc;
	uint32_t begin;
	uint32_t end;
	int type_index;

	if (fixed_mtrr_types_initialized)
		return;

	phys_addr_space = get_physical_address_space();

	/* Set all fixed ranges to uncacheable first. */
	memset(&fixed_mtrr_types[0], MTRR_TYPE_UNCACHEABLE, NUM_FIXED_RANGES);

	desc = &fixed_mtrr_desc[0];
	last_desc = &fixed_mtrr_desc[ARRAY_SIZE(fixed_mtrr_desc) - 1];

	memranges_each_entry(r, phys_addr_space) {
		begin = range_entry_base_mtrr_addr(r);
		end = range_entry_end_mtrr_addr(r);

		if (begin >= last_desc->end)
			break;

		if (end > last_desc->end)
			end = last_desc->end;

		/* Get to the correct fixed mtrr descriptor. */
		while (begin >= desc->end)
			desc++;

		type_index = desc->range_index;
		type_index += (begin - desc->begin) / desc->step;

		while (begin != end) {
			unsigned char type;

			type = range_entry_tag(r);
			printk(MTRR_VERBOSE_LEVEL,
			       "MTRR addr 0x%x-0x%x set to %d type @ %d\n",
			       begin, begin + desc->step, type, type_index);
			if (type == MTRR_TYPE_WRBACK)
				type |= MTRR_FIXED_WRBACK_BITS;
			fixed_mtrr_types[type_index] = type;
			type_index++;
			begin += desc->step;
			if (begin == desc->end)
				desc++;
		}
	}
	fixed_mtrr_types_initialized = 1;
}

static void commit_fixed_mtrrs(void)
{
	int i;
	int j;
	int msr_num;
	int type_index;
	/* 8 ranges per msr. */
	msr_t fixed_msrs[NUM_FIXED_MTRRS];
	unsigned long msr_index[NUM_FIXED_MTRRS];

	fixed_mtrrs_expose_amd_rwdram();

	memset(&fixed_msrs, 0, sizeof(fixed_msrs));

	msr_num = 0;
	type_index = 0;
	for (i = 0; i < ARRAY_SIZE(fixed_mtrr_desc); i++) {
		const struct fixed_mtrr_desc *desc;
		int num_ranges;

		desc = &fixed_mtrr_desc[i];
		num_ranges = (desc->end - desc->begin) / desc->step;
		for (j = 0; j < num_ranges; j += RANGES_PER_FIXED_MTRR) {
			msr_index[msr_num] = desc->msr_index_base +
				(j / RANGES_PER_FIXED_MTRR);
			fixed_msrs[msr_num].lo |=
				fixed_mtrr_types[type_index++] << 0;
			fixed_msrs[msr_num].lo |=
				fixed_mtrr_types[type_index++] << 8;
			fixed_msrs[msr_num].lo |=
				fixed_mtrr_types[type_index++] << 16;
			fixed_msrs[msr_num].lo |=
				fixed_mtrr_types[type_index++] << 24;
			fixed_msrs[msr_num].hi |=
				fixed_mtrr_types[type_index++] << 0;
			fixed_msrs[msr_num].hi |=
				fixed_mtrr_types[type_index++] << 8;
			fixed_msrs[msr_num].hi |=
				fixed_mtrr_types[type_index++] << 16;
			fixed_msrs[msr_num].hi |=
				fixed_mtrr_types[type_index++] << 24;
			msr_num++;
		}
	}

	for (i = 0; i < ARRAY_SIZE(fixed_msrs); i++)
		printk(BIOS_DEBUG, "MTRR: Fixed MSR 0x%lx 0x%08x%08x\n",
		       msr_index[i], fixed_msrs[i].hi, fixed_msrs[i].lo);

	disable_cache();
	for (i = 0; i < ARRAY_SIZE(fixed_msrs); i++)
		wrmsr(msr_index[i], fixed_msrs[i]);
	enable_cache();
	fixed_mtrrs_hide_amd_rwdram();

}

void x86_setup_fixed_mtrrs_no_enable(void)
{
	calc_fixed_mtrrs();
	commit_fixed_mtrrs();
}

void x86_setup_fixed_mtrrs(void)
{
	x86_setup_fixed_mtrrs_no_enable();

	printk(BIOS_SPEW, "call enable_fixed_mtrr()\n");
	enable_fixed_mtrr();
}

struct var_mtrr_regs {
	msr_t base;
	msr_t mask;
};

struct var_mtrr_solution {
	int mtrr_default_type;
	int num_used;
	struct var_mtrr_regs regs[NUM_MTRR_STATIC_STORAGE];
};

/* Global storage for variable MTRR solution. */
static struct var_mtrr_solution mtrr_global_solution;

struct var_mtrr_state {
	struct memranges *addr_space;
	int above4gb;
	int address_bits;
	int prepare_msrs;
	int mtrr_index;
	int def_mtrr_type;
	struct var_mtrr_regs *regs;
};

static void clear_var_mtrr(int index)
{
	msr_t msr = { .lo = 0, .hi = 0 };

	wrmsr(MTRR_PHYS_BASE(index), msr);
	wrmsr(MTRR_PHYS_MASK(index), msr);
}

static void prep_var_mtrr(struct var_mtrr_state *var_state,
			  uint32_t base, uint32_t size, int mtrr_type)
{
	struct var_mtrr_regs *regs;
	resource_t rbase;
	resource_t rsize;
	resource_t mask;

	/* Some variable MTRRs are attempted to be saved for the OS use.
	 * However, it's more important to try to map the full address space
	 * properly. */
	if (var_state->mtrr_index >= bios_mtrrs)
		printk(BIOS_WARNING, "Taking a reserved OS MTRR.\n");
	if (var_state->mtrr_index >= total_mtrrs) {
		printk(BIOS_ERR, "ERROR: Not enough MTRRs available! MTRR index is %d with %d MTTRs in total.\n",
		       var_state->mtrr_index, total_mtrrs);
		return;
	}

	rbase = base;
	rsize = size;

	rbase = RANGE_TO_PHYS_ADDR(rbase);
	rsize = RANGE_TO_PHYS_ADDR(rsize);
	rsize = -rsize;

	mask = (1ULL << var_state->address_bits) - 1;
	rsize = rsize & mask;

	printk(BIOS_DEBUG, "MTRR: %d base 0x%016llx mask 0x%016llx type %d\n",
	       var_state->mtrr_index, rbase, rsize, mtrr_type);

	regs = &var_state->regs[var_state->mtrr_index];

	regs->base.lo = rbase;
	regs->base.lo |= mtrr_type;
	regs->base.hi = rbase >> 32;

	regs->mask.lo = rsize;
	regs->mask.lo |= MTRR_PHYS_MASK_VALID;
	regs->mask.hi = rsize >> 32;
}

static void calc_var_mtrr_range(struct var_mtrr_state *var_state,
				uint32_t base, uint32_t size, int mtrr_type)
{
	while (size != 0) {
		uint32_t addr_lsb;
		uint32_t size_msb;
		uint32_t mtrr_size;

		addr_lsb = fls(base);
		size_msb = fms(size);

		/* All MTRR entries need to have their base aligned to the mask
		 * size. The maximum size is calculated by a function of the
		 * min base bit set and maximum size bit set. */
		if (addr_lsb > size_msb)
			mtrr_size = 1 << size_msb;
		else
			mtrr_size = 1 << addr_lsb;

		if (var_state->prepare_msrs)
			prep_var_mtrr(var_state, base, mtrr_size, mtrr_type);

		size -= mtrr_size;
		base += mtrr_size;
		var_state->mtrr_index++;
	}
}

static uint32_t optimize_var_mtrr_hole(const uint32_t base,
				       const uint32_t hole,
				       const uint64_t limit,
				       const int carve_hole)
{
	/*
	 * With default type UC, we can potentially optimize a WB
	 * range with unaligned upper end, by aligning it up and
	 * carving the added "hole" out again.
	 *
	 * To optimize the upper end of the hole, we will test
	 * how many MTRRs calc_var_mtrr_range() will spend for any
	 * alignment of the hole's upper end.
	 *
	 * We take four parameters, the lower end of the WB range
	 * `base`, upper end of the WB range as start of the `hole`,
	 * a `limit` how far we may align the upper end of the hole
	 * up and a flag `carve_hole` whether we should count MTRRs
	 * for carving the hole out. We return the optimal upper end
	 * for the hole (which may be the same as the end of the WB
	 * range in case we don't gain anything by aligning up).
	 */

	const int dont_care = 0;
	struct var_mtrr_state var_state = { 0, };

	unsigned int align, best_count;
	uint32_t best_end = hole;

	/* calculate MTRR count for the WB range alone (w/o a hole) */
	calc_var_mtrr_range(&var_state, base, hole - base, dont_care);
	best_count = var_state.mtrr_index;
	var_state.mtrr_index = 0;

	for (align = fls(hole) + 1; align <= fms(hole); ++align) {
		const uint64_t hole_end = ALIGN_UP((uint64_t)hole, 1 << align);
		if (hole_end > limit)
			break;

		/* calculate MTRR count for this alignment */
		calc_var_mtrr_range(
			&var_state, base, hole_end - base, dont_care);
		if (carve_hole)
			calc_var_mtrr_range(
				&var_state, hole, hole_end - hole, dont_care);

		if (var_state.mtrr_index < best_count) {
			best_count = var_state.mtrr_index;
			best_end = hole_end;
		}
		var_state.mtrr_index = 0;
	}

	return best_end;
}

static void calc_var_mtrrs_with_hole(struct var_mtrr_state *var_state,
				     struct range_entry *r)
{
	uint32_t a1, a2, b1, b2;
	int mtrr_type, carve_hole;

	/*
	 * Determine MTRRs based on the following algorithm for the given entry:
	 * +------------------+ b2 = ALIGN_UP(end)
	 * |  0 or more bytes | <-- hole is carved out between b1 and b2
	 * +------------------+ a2 = b1 = original end
	 * |                  |
	 * +------------------+ a1 = begin
	 *
	 * Thus, there are up to 2 sub-ranges to configure variable MTRRs for.
	 */
	mtrr_type = range_entry_mtrr_type(r);

	a1 = range_entry_base_mtrr_addr(r);
	a2 = range_entry_end_mtrr_addr(r);

	/* The end address is within the first 1MiB. The fixed MTRRs take
	 * precedence over the variable ones. Therefore this range
	 * can be ignored. */
	if (a2 <= RANGE_1MB)
		return;

	/* Again, the fixed MTRRs take precedence so the beginning
	 * of the range can be set to 0 if it starts at or below 1MiB. */
	if (a1 <= RANGE_1MB)
		a1 = 0;

	/* If the range starts above 4GiB the processing is done. */
	if (!var_state->above4gb && a1 >= RANGE_4GB)
		return;

	/* Clip the upper address to 4GiB if addresses above 4GiB
	 * are not being processed. */
	if (!var_state->above4gb && a2 > RANGE_4GB)
		a2 = RANGE_4GB;

	b1 = a2;
	b2 = a2;
	carve_hole = 0;

	/* We only consider WB type ranges for hole-carving. */
	if (mtrr_type == MTRR_TYPE_WRBACK) {
		struct range_entry *next;
		uint64_t b2_limit;
		/*
		 * Depending on the type of the next range, there are three
		 * different situations to handle:
		 *
		 * 1. WB range is last in address space:
		 *    Aligning up, up to the next power of 2, may gain us
		 *    something.
		 *
		 * 2. The next range is of type UC:
		 *    We may align up, up to the _end_ of the next range. If
		 *    there is a gap between the current and the next range,
		 *    it would have been covered by the default type UC anyway.
		 *
		 * 3. The next range is not of type UC:
		 *    We may align up, up to the _base_ of the next range. This
		 *    may either be the end of the current range (if the next
		 *    range follows immediately) or the end of the gap between
		 *    the ranges.
		 */
		next = memranges_next_entry(var_state->addr_space, r);
		if (next == NULL) {
			b2_limit = ALIGN_UP((uint64_t)b1, 1 << fms(b1));
			/* If it's the last range above 4GiB, we won't carve
			   the hole out. If an OS wanted to move MMIO there,
			   it would have to override the MTRR setting using
			   PAT just like it would with WB as default type. */
			carve_hole = a1 < RANGE_4GB;
		} else if (range_entry_mtrr_type(next)
				== MTRR_TYPE_UNCACHEABLE) {
			b2_limit = range_entry_end_mtrr_addr(next);
			carve_hole = 1;
		} else {
			b2_limit = range_entry_base_mtrr_addr(next);
			carve_hole = 1;
		}
		b2 = optimize_var_mtrr_hole(a1, b1, b2_limit, carve_hole);
	}

	calc_var_mtrr_range(var_state, a1, b2 - a1, mtrr_type);
	if (carve_hole && b2 != b1) {
		calc_var_mtrr_range(var_state, b1, b2 - b1,
				    MTRR_TYPE_UNCACHEABLE);
	}
}

static void __calc_var_mtrrs(struct memranges *addr_space,
			     int above4gb, int address_bits,
			     int *num_def_wb_mtrrs, int *num_def_uc_mtrrs)
{
	int wb_deftype_count;
	int uc_deftype_count;
	struct range_entry *r;
	struct var_mtrr_state var_state;

	/* The default MTRR cacheability type is determined by calculating
	 * the number of MTRRs required for each MTRR type as if it was the
	 * default. */
	var_state.addr_space = addr_space;
	var_state.above4gb = above4gb;
	var_state.address_bits = address_bits;
	var_state.prepare_msrs = 0;

	wb_deftype_count = 0;
	uc_deftype_count = 0;

	/*
	 * For each range do 2 calculations:
	 *   1. UC as default type with possible holes at top of range.
	 *   2. WB as default.
	 * The lowest count is then used as default after totaling all
	 * MTRRs. UC takes precedence in the MTRR architecture. There-
	 * fore, only holes can be used when the type of the region is
	 * MTRR_TYPE_WRBACK with MTRR_TYPE_UNCACHEABLE as the default
	 * type.
	 */
	memranges_each_entry(r, var_state.addr_space) {
		int mtrr_type;

		mtrr_type = range_entry_mtrr_type(r);

		if (mtrr_type != MTRR_TYPE_UNCACHEABLE) {
			var_state.mtrr_index = 0;
			var_state.def_mtrr_type = MTRR_TYPE_UNCACHEABLE;
			calc_var_mtrrs_with_hole(&var_state, r);
			uc_deftype_count += var_state.mtrr_index;
		}

		if (mtrr_type != MTRR_TYPE_WRBACK) {
			var_state.mtrr_index = 0;
			var_state.def_mtrr_type = MTRR_TYPE_WRBACK;
			calc_var_mtrrs_with_hole(&var_state, r);
			wb_deftype_count += var_state.mtrr_index;
		}
	}
	*num_def_wb_mtrrs = wb_deftype_count;
	*num_def_uc_mtrrs = uc_deftype_count;
}

static int calc_var_mtrrs(struct memranges *addr_space,
			  int above4gb, int address_bits)
{
	int wb_deftype_count = 0;
	int uc_deftype_count = 0;

	__calc_var_mtrrs(addr_space, above4gb, address_bits, &wb_deftype_count,
			 &uc_deftype_count);

	if (wb_deftype_count > bios_mtrrs && uc_deftype_count > bios_mtrrs) {
		printk(BIOS_DEBUG, "MTRR: Removing WRCOMB type. "
		       "WB/UC MTRR counts: %d/%d > %d.\n",
		       wb_deftype_count, uc_deftype_count, bios_mtrrs);
		memranges_update_tag(addr_space, MTRR_TYPE_WRCOMB,
				     MTRR_TYPE_UNCACHEABLE);
		__calc_var_mtrrs(addr_space, above4gb, address_bits,
				 &wb_deftype_count, &uc_deftype_count);
	}

	printk(BIOS_DEBUG, "MTRR: default type WB/UC MTRR counts: %d/%d.\n",
	       wb_deftype_count, uc_deftype_count);

	if (wb_deftype_count < uc_deftype_count) {
		printk(BIOS_DEBUG, "MTRR: WB selected as default type.\n");
		return MTRR_TYPE_WRBACK;
	}
	printk(BIOS_DEBUG, "MTRR: UC selected as default type.\n");
	return MTRR_TYPE_UNCACHEABLE;
}

static void prepare_var_mtrrs(struct memranges *addr_space, int def_type,
				int above4gb, int address_bits,
				struct var_mtrr_solution *sol)
{
	struct range_entry *r;
	struct var_mtrr_state var_state;

	var_state.addr_space = addr_space;
	var_state.above4gb = above4gb;
	var_state.address_bits = address_bits;
	/* Prepare the MSRs. */
	var_state.prepare_msrs = 1;
	var_state.mtrr_index = 0;
	var_state.def_mtrr_type = def_type;
	var_state.regs = &sol->regs[0];

	memranges_each_entry(r, var_state.addr_space) {
		if (range_entry_mtrr_type(r) == def_type)
			continue;
		calc_var_mtrrs_with_hole(&var_state, r);
	}

	/* Update the solution. */
	sol->num_used = var_state.mtrr_index;
}

static int commit_var_mtrrs(const struct var_mtrr_solution *sol)
{
	int i;

	if (sol->num_used > total_mtrrs) {
		printk(BIOS_WARNING, "Not enough MTRRs: %d vs %d\n",
			sol->num_used, total_mtrrs);
		return -1;
	}

	/* Write out the variable MTRRs. */
	disable_cache();
	for (i = 0; i < sol->num_used; i++) {
		wrmsr(MTRR_PHYS_BASE(i), sol->regs[i].base);
		wrmsr(MTRR_PHYS_MASK(i), sol->regs[i].mask);
	}
	/* Clear the ones that are unused. */
	for (; i < total_mtrrs; i++)
		clear_var_mtrr(i);
	enable_var_mtrr(sol->mtrr_default_type);
	enable_cache();

	return 0;
}

void x86_setup_var_mtrrs(unsigned int address_bits, unsigned int above4gb)
{
	static struct var_mtrr_solution *sol = NULL;
	struct memranges *addr_space;

	addr_space = get_physical_address_space();

	if (sol == NULL) {
		sol = &mtrr_global_solution;
		sol->mtrr_default_type =
			calc_var_mtrrs(addr_space, !!above4gb, address_bits);
		prepare_var_mtrrs(addr_space, sol->mtrr_default_type,
				  !!above4gb, address_bits, sol);
	}

	commit_var_mtrrs(sol);
}

void x86_setup_mtrrs(void)
{
	int address_size;

	x86_setup_fixed_mtrrs();
	address_size = cpu_phys_address_size();
	printk(BIOS_DEBUG, "CPU physical address size: %d bits\n",
		address_size);
	/* Always handle addresses above 4GiB. */
	x86_setup_var_mtrrs(address_size, 1);
}

void x86_setup_mtrrs_with_detect(void)
{
	detect_var_mtrrs();
	x86_setup_mtrrs();
}

void x86_mtrr_check(void)
{
	/* Only Pentium Pro and later have MTRR */
	msr_t msr;
	printk(BIOS_DEBUG, "\nMTRR check\n");

	msr = rdmsr(MTRR_DEF_TYPE_MSR);

	printk(BIOS_DEBUG, "Fixed MTRRs   : ");
	if (msr.lo & MTRR_DEF_TYPE_FIX_EN)
		printk(BIOS_DEBUG, "Enabled\n");
	else
		printk(BIOS_DEBUG, "Disabled\n");

	printk(BIOS_DEBUG, "Variable MTRRs: ");
	if (msr.lo & MTRR_DEF_TYPE_EN)
		printk(BIOS_DEBUG, "Enabled\n");
	else
		printk(BIOS_DEBUG, "Disabled\n");

	printk(BIOS_DEBUG, "\n");

	post_code(0x93);
}

static bool put_back_original_solution;

void mtrr_use_temp_range(uintptr_t begin, size_t size, int type)
{
	const struct range_entry *r;
	const struct memranges *orig;
	struct var_mtrr_solution sol;
	struct memranges addr_space;
	const int above4gb = 1; /* Cover above 4GiB by default. */
	int address_bits;

	/* Make a copy of the original address space and tweak it with the
	 * provided range. */
	memranges_init_empty(&addr_space, NULL, 0);
	orig = get_physical_address_space();
	memranges_each_entry(r, orig) {
		unsigned long tag = range_entry_tag(r);

		/* Remove any write combining MTRRs from the temporary
		 * solution as it just fragments the address space. */
		if (tag == MTRR_TYPE_WRCOMB)
			tag = MTRR_TYPE_UNCACHEABLE;

		memranges_insert(&addr_space, range_entry_base(r),
				range_entry_size(r), tag);
	}

	/* Place new range into the address space. */
	memranges_insert(&addr_space, begin, size, type);

	print_physical_address_space(&addr_space, "TEMPORARY");

	/* Calculate a new solution with the updated address space. */
	address_bits = cpu_phys_address_size();
	memset(&sol, 0, sizeof(sol));
	sol.mtrr_default_type =
		calc_var_mtrrs(&addr_space, above4gb, address_bits);
	prepare_var_mtrrs(&addr_space, sol.mtrr_default_type,
				above4gb, address_bits, &sol);

	if (commit_var_mtrrs(&sol) < 0)
		printk(BIOS_WARNING, "Unable to insert temporary MTRR range: 0x%016llx - 0x%016llx size 0x%08llx type %d\n",
			(long long)begin, (long long)begin + size,
			(long long)size, type);
	else
		put_back_original_solution = true;

	memranges_teardown(&addr_space);
}

static void remove_temp_solution(void *unused)
{
	if (put_back_original_solution)
		commit_var_mtrrs(&mtrr_global_solution);
}

BOOT_STATE_INIT_ENTRY(BS_OS_RESUME, BS_ON_ENTRY, remove_temp_solution, NULL);
BOOT_STATE_INIT_ENTRY(BS_PAYLOAD_LOAD, BS_ON_EXIT, remove_temp_solution, NULL);