1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
|
/*
* mtrr.c: setting MTRR to decent values for cache initialization on P6
*
* Derived from intel_set_mtrr in intel_subr.c and mtrr.c in linux kernel
*
* Copyright 2000 Silicon Integrated System Corporation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
*
* Reference: Intel Architecture Software Developer's Manual, Volume 3: System Programming
*/
/*
2005.1 yhlu add NC support to spare mtrrs for 64G memory above installed
2005.6 Eric add address bit in x86_setup_mtrrs
2005.6 yhlu split x86_setup_var_mtrrs and x86_setup_fixed_mtrrs,
for AMD, it will not use x86_setup_fixed_mtrrs
*/
#include <stddef.h>
#include <console/console.h>
#include <device/device.h>
#include <cpu/x86/msr.h>
#include <cpu/x86/mtrr.h>
#include <cpu/x86/cache.h>
#include <cpu/x86/lapic.h>
#include <arch/cpu.h>
#include <arch/acpi.h>
#if CONFIG_GFXUMA
extern uint64_t uma_memory_base, uma_memory_size;
#endif
static unsigned int mtrr_msr[] = {
MTRRfix64K_00000_MSR, MTRRfix16K_80000_MSR, MTRRfix16K_A0000_MSR,
MTRRfix4K_C0000_MSR, MTRRfix4K_C8000_MSR, MTRRfix4K_D0000_MSR, MTRRfix4K_D8000_MSR,
MTRRfix4K_E0000_MSR, MTRRfix4K_E8000_MSR, MTRRfix4K_F0000_MSR, MTRRfix4K_F8000_MSR,
};
void enable_fixed_mtrr(void)
{
msr_t msr;
msr = rdmsr(MTRRdefType_MSR);
msr.lo |= 0xc00;
wrmsr(MTRRdefType_MSR, msr);
}
static void enable_var_mtrr(void)
{
msr_t msr;
msr = rdmsr(MTRRdefType_MSR);
msr.lo |= MTRRdefTypeEn;
wrmsr(MTRRdefType_MSR, msr);
}
/* setting variable mtrr, comes from linux kernel source */
static void set_var_mtrr(
unsigned int reg, unsigned long basek, unsigned long sizek,
unsigned char type, unsigned address_bits)
{
msr_t base, mask;
unsigned address_mask_high;
if (reg >= 8)
return;
// it is recommended that we disable and enable cache when we
// do this.
if (sizek == 0) {
disable_cache();
msr_t zero;
zero.lo = zero.hi = 0;
/* The invalid bit is kept in the mask, so we simply clear the
relevant mask register to disable a range. */
wrmsr (MTRRphysMask_MSR(reg), zero);
enable_cache();
return;
}
address_mask_high = ((1u << (address_bits - 32u)) - 1u);
base.hi = basek >> 22;
base.lo = basek << 10;
printk(BIOS_SPEW, "ADDRESS_MASK_HIGH=%#x\n", address_mask_high);
if (sizek < 4*1024*1024) {
mask.hi = address_mask_high;
mask.lo = ~((sizek << 10) -1);
}
else {
mask.hi = address_mask_high & (~((sizek >> 22) -1));
mask.lo = 0;
}
// it is recommended that we disable and enable cache when we
// do this.
disable_cache();
/* Bit 32-35 of MTRRphysMask should be set to 1 */
base.lo |= type;
mask.lo |= MTRRphysMaskValid;
wrmsr (MTRRphysBase_MSR(reg), base);
wrmsr (MTRRphysMask_MSR(reg), mask);
enable_cache();
}
/* fms: find most sigificant bit set, stolen from Linux Kernel Source. */
static inline unsigned int fms(unsigned int x)
{
int r;
__asm__("bsrl %1,%0\n\t"
"jnz 1f\n\t"
"movl $0,%0\n"
"1:" : "=r" (r) : "g" (x));
return r;
}
/* fls: find least sigificant bit set */
static inline unsigned int fls(unsigned int x)
{
int r;
__asm__("bsfl %1,%0\n\t"
"jnz 1f\n\t"
"movl $32,%0\n"
"1:" : "=r" (r) : "g" (x));
return r;
}
/* setting up variable and fixed mtrr
*
* From Intel Vol. III Section 9.12.4, the Range Size and Base Alignment has some kind of requirement:
* 1. The range size must be 2^N byte for N >= 12 (i.e 4KB minimum).
* 2. The base address must be 2^N aligned, where the N here is equal to the N in previous
* requirement. So a 8K range must be 8K aligned not 4K aligned.
*
* These requirement is meet by "decompositing" the ramsize into Sum(Cn * 2^n, n = [0..N], Cn = [0, 1]).
* For Cm = 1, there is a WB range of 2^m size at base address Sum(Cm * 2^m, m = [N..n]).
* A 124MB (128MB - 4MB SMA) example:
* ramsize = 124MB == 64MB (at 0MB) + 32MB (at 64MB) + 16MB (at 96MB ) + 8MB (at 112MB) + 4MB (120MB).
* But this wastes a lot of MTRR registers so we use another more "aggresive" way with Uncacheable Regions.
*
* In the Uncacheable Region scheme, we try to cover the whole ramsize by one WB region as possible,
* If (an only if) this can not be done we will try to decomposite the ramesize, the mathematical formula
* whould be ramsize = Sum(Cn * 2^n, n = [0..N], Cn = [-1, 0, 1]). For Cn = -1, a Uncachable Region is used.
* The same 124MB example:
* ramsize = 124MB == 128MB WB (at 0MB) + 4MB UC (at 124MB)
* or a 156MB (128MB + 32MB - 4MB SMA) example:
* ramsize = 156MB == 128MB WB (at 0MB) + 32MB WB (at 128MB) + 4MB UC (at 156MB)
*/
/* 2 MTRRS are reserved for the operating system */
#if 1
#define BIOS_MTRRS 6
#define OS_MTRRS 2
#else
#define BIOS_MTRRS 8
#define OS_MTRRS 0
#endif
#define MTRRS (BIOS_MTRRS + OS_MTRRS)
static void set_fixed_mtrrs(unsigned int first, unsigned int last, unsigned char type)
{
unsigned int i;
unsigned int fixed_msr = NUM_FIXED_RANGES >> 3;
msr_t msr;
msr.lo = msr.hi = 0; /* Shut up gcc */
for(i = first; i < last; i++) {
/* When I switch to a new msr read it in */
if (fixed_msr != i >> 3) {
/* But first write out the old msr */
if (fixed_msr < (NUM_FIXED_RANGES >> 3)) {
disable_cache();
wrmsr(mtrr_msr[fixed_msr], msr);
enable_cache();
}
fixed_msr = i>>3;
msr = rdmsr(mtrr_msr[fixed_msr]);
}
if ((i & 7) < 4) {
msr.lo &= ~(0xff << ((i&3)*8));
msr.lo |= type << ((i&3)*8);
} else {
msr.hi &= ~(0xff << ((i&3)*8));
msr.hi |= type << ((i&3)*8);
}
}
/* Write out the final msr */
if (fixed_msr < (NUM_FIXED_RANGES >> 3)) {
disable_cache();
wrmsr(mtrr_msr[fixed_msr], msr);
enable_cache();
}
}
static unsigned fixed_mtrr_index(unsigned long addrk)
{
unsigned index;
index = (addrk - 0) >> 6;
if (index >= 8) {
index = ((addrk - 8*64) >> 4) + 8;
}
if (index >= 24) {
index = ((addrk - (8*64 + 16*16)) >> 2) + 24;
}
if (index > NUM_FIXED_RANGES) {
index = NUM_FIXED_RANGES;
}
return index;
}
static unsigned int range_to_mtrr(unsigned int reg,
unsigned long range_startk, unsigned long range_sizek,
unsigned long next_range_startk, unsigned char type,
unsigned int address_bits, unsigned int above4gb)
{
if (!range_sizek) {
/* If there's no MTRR hole, this function will bail out
* here when called for the hole.
*/
printk(BIOS_SPEW, "Zero-sized MTRR range @%ldKB\n", range_startk);
return reg;
}
if (reg >= BIOS_MTRRS) {
printk(BIOS_ERR, "Warning: Out of MTRRs for base: %4ldMB, range: %ldMB, type %s\n",
range_startk >>10, range_sizek >> 10,
(type==MTRR_TYPE_UNCACHEABLE)?"UC":
((type==MTRR_TYPE_WRBACK)?"WB":"Other") );
return reg;
}
while(range_sizek) {
unsigned long max_align, align;
unsigned long sizek;
/* Compute the maximum size I can make a range */
max_align = fls(range_startk);
align = fms(range_sizek);
if (align > max_align) {
align = max_align;
}
sizek = 1 << align;
printk(BIOS_DEBUG, "Setting variable MTRR %d, base: %4ldMB, range: %4ldMB, type %s\n",
reg, range_startk >>10, sizek >> 10,
(type==MTRR_TYPE_UNCACHEABLE)?"UC":
((type==MTRR_TYPE_WRBACK)?"WB":"Other")
);
/* if range is above 4GB, MTRR is needed
* only if above4gb flag is set
*/
if (range_startk < 0x100000000ull / 1024 || above4gb)
set_var_mtrr(reg++, range_startk, sizek, type, address_bits);
range_startk += sizek;
range_sizek -= sizek;
if (reg >= BIOS_MTRRS) {
printk(BIOS_ERR, "Running out of variable MTRRs!\n");
break;
}
}
return reg;
}
static unsigned long resk(uint64_t value)
{
unsigned long resultk;
if (value < (1ULL << 42)) {
resultk = value >> 10;
}
else {
resultk = 0xffffffff;
}
return resultk;
}
static void set_fixed_mtrr_resource(void *gp, struct device *dev, struct resource *res)
{
unsigned int start_mtrr;
unsigned int last_mtrr;
start_mtrr = fixed_mtrr_index(resk(res->base));
last_mtrr = fixed_mtrr_index(resk((res->base + res->size)));
if (start_mtrr >= NUM_FIXED_RANGES) {
return;
}
printk(BIOS_DEBUG, "Setting fixed MTRRs(%d-%d) Type: WB\n",
start_mtrr, last_mtrr);
set_fixed_mtrrs(start_mtrr, last_mtrr, MTRR_TYPE_WRBACK);
}
#ifndef CONFIG_VAR_MTRR_HOLE
#define CONFIG_VAR_MTRR_HOLE 1
#endif
struct var_mtrr_state {
unsigned long range_startk, range_sizek;
unsigned int reg;
unsigned long hole_startk, hole_sizek;
unsigned int address_bits;
unsigned int above4gb; /* Set if MTRRs are needed for DRAM above 4GB */
};
void set_var_mtrr_resource(void *gp, struct device *dev, struct resource *res)
{
struct var_mtrr_state *state = gp;
unsigned long basek, sizek;
if (state->reg >= BIOS_MTRRS)
return;
basek = resk(res->base);
sizek = resk(res->size);
/* See if I can merge with the last range
* Either I am below 1M and the fixed mtrrs handle it, or
* the ranges touch.
*/
if ((basek <= 1024) || (state->range_startk + state->range_sizek == basek)) {
unsigned long endk = basek + sizek;
state->range_sizek = endk - state->range_startk;
return;
}
/* Write the range mtrrs */
if (state->range_sizek != 0) {
#if CONFIG_VAR_MTRR_HOLE
if (state->hole_sizek == 0) {
/* We need to put that on to hole */
unsigned long endk = basek + sizek;
state->hole_startk = state->range_startk + state->range_sizek;
state->hole_sizek = basek - state->hole_startk;
state->range_sizek = endk - state->range_startk;
return;
}
#endif
state->reg = range_to_mtrr(state->reg, state->range_startk,
state->range_sizek, basek, MTRR_TYPE_WRBACK,
state->address_bits, state->above4gb);
#if CONFIG_VAR_MTRR_HOLE
state->reg = range_to_mtrr(state->reg, state->hole_startk,
state->hole_sizek, basek, MTRR_TYPE_UNCACHEABLE,
state->address_bits, state->above4gb);
#endif
state->range_startk = 0;
state->range_sizek = 0;
state->hole_startk = 0;
state->hole_sizek = 0;
}
/* Allocate an msr */
printk(BIOS_SPEW, " Allocate an msr - basek = %08lx, sizek = %08lx,\n", basek, sizek);
state->range_startk = basek;
state->range_sizek = sizek;
}
void x86_setup_fixed_mtrrs(void)
{
/* Try this the simple way of incrementally adding together
* mtrrs. If this doesn't work out we can get smart again
* and clear out the mtrrs.
*/
printk(BIOS_DEBUG, "\n");
/* Initialized the fixed_mtrrs to uncached */
printk(BIOS_DEBUG, "Setting fixed MTRRs(%d-%d) Type: UC\n",
0, NUM_FIXED_RANGES);
set_fixed_mtrrs(0, NUM_FIXED_RANGES, MTRR_TYPE_UNCACHEABLE);
/* Now see which of the fixed mtrrs cover ram.
*/
search_global_resources(
IORESOURCE_MEM | IORESOURCE_CACHEABLE, IORESOURCE_MEM | IORESOURCE_CACHEABLE,
set_fixed_mtrr_resource, NULL);
printk(BIOS_DEBUG, "DONE fixed MTRRs\n");
/* enable fixed MTRR */
printk(BIOS_SPEW, "call enable_fixed_mtrr()\n");
enable_fixed_mtrr();
}
void x86_setup_var_mtrrs(unsigned int address_bits, unsigned int above4gb)
/* this routine needs to know how many address bits a given processor
* supports. CPUs get grumpy when you set too many bits in
* their mtrr registers :( I would generically call cpuid here
* and find out how many physically supported but some cpus are
* buggy, and report more bits then they actually support.
* If above4gb flag is set, variable MTRR ranges must be used to
* set cacheability of DRAM above 4GB. If above4gb flag is clear,
* some other mechanism is controlling cacheability of DRAM above 4GB.
*/
{
/* Try this the simple way of incrementally adding together
* mtrrs. If this doesn't work out we can get smart again
* and clear out the mtrrs.
*/
struct var_mtrr_state var_state;
/* Cache as many memory areas as possible */
/* FIXME is there an algorithm for computing the optimal set of mtrrs?
* In some cases it is definitely possible to do better.
*/
var_state.range_startk = 0;
var_state.range_sizek = 0;
var_state.hole_startk = 0;
var_state.hole_sizek = 0;
var_state.reg = 0;
var_state.address_bits = address_bits;
var_state.above4gb = above4gb;
search_global_resources(
IORESOURCE_MEM | IORESOURCE_CACHEABLE, IORESOURCE_MEM | IORESOURCE_CACHEABLE,
set_var_mtrr_resource, &var_state);
#if (CONFIG_GFXUMA == 1) /* UMA or SP. */
/* For now we assume the UMA space is at the end of memory below 4GB */
if (var_state.hole_startk || var_state.hole_sizek) {
printk(BIOS_DEBUG, "Warning: Can't set up MTRR hole for UMA due to pre-existing MTRR hole.\n");
} else {
#if CONFIG_VAR_MTRR_HOLE
// Increase the base range and set up UMA as an UC hole instead
var_state.range_sizek += (uma_memory_size >> 10);
var_state.hole_startk = (uma_memory_base >> 10);
var_state.hole_sizek = (uma_memory_size >> 10);
#endif
}
#endif
/* Write the last range */
var_state.reg = range_to_mtrr(var_state.reg, var_state.range_startk,
var_state.range_sizek, 0, MTRR_TYPE_WRBACK,
var_state.address_bits, var_state.above4gb);
#if CONFIG_VAR_MTRR_HOLE
var_state.reg = range_to_mtrr(var_state.reg, var_state.hole_startk,
var_state.hole_sizek, 0, MTRR_TYPE_UNCACHEABLE,
var_state.address_bits, var_state.above4gb);
#endif
printk(BIOS_DEBUG, "DONE variable MTRRs\n");
printk(BIOS_DEBUG, "Clear out the extra MTRR's\n");
/* Clear out the extra MTRR's */
while(var_state.reg < MTRRS) {
set_var_mtrr(var_state.reg++, 0, 0, 0, var_state.address_bits);
}
#if CONFIG_CACHE_ROM
/* Enable Caching and speculative Reads for the
* complete ROM now that we actually have RAM.
*/
if (boot_cpu() && (acpi_slp_type != 3)) {
set_var_mtrr(7, (4096-4)*1024, 4*1024,
MTRR_TYPE_WRPROT, address_bits);
}
#endif
printk(BIOS_SPEW, "call enable_var_mtrr()\n");
enable_var_mtrr();
printk(BIOS_SPEW, "Leave %s\n", __func__);
post_code(0x6A);
}
void x86_setup_mtrrs(void)
{
int address_size;
x86_setup_fixed_mtrrs();
address_size = cpu_phys_address_size();
printk(BIOS_DEBUG, "CPU physical address size: %d bits\n", address_size);
x86_setup_var_mtrrs(address_size, 1);
}
int x86_mtrr_check(void)
{
/* Only Pentium Pro and later have MTRR */
msr_t msr;
printk(BIOS_DEBUG, "\nMTRR check\n");
msr = rdmsr(0x2ff);
msr.lo >>= 10;
printk(BIOS_DEBUG, "Fixed MTRRs : ");
if (msr.lo & 0x01)
printk(BIOS_DEBUG, "Enabled\n");
else
printk(BIOS_DEBUG, "Disabled\n");
printk(BIOS_DEBUG, "Variable MTRRs: ");
if (msr.lo & 0x02)
printk(BIOS_DEBUG, "Enabled\n");
else
printk(BIOS_DEBUG, "Disabled\n");
printk(BIOS_DEBUG, "\n");
post_code(0x93);
return ((int) msr.lo);
}
|