1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
|
/*
* This file is part of the coreboot project.
*
* Copyright (C) 2017 Patrick Rudolph <siro@das-labor.org>
* Copyright (C) 2017 Arthur Heymans <arthur@aheymans.xyz>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
/**
* @file ddr2.c
*
* \brief Utilities for decoding DDR2 SPDs
*/
#include <console/console.h>
#include <device/device.h>
#include <device/dram/ddr2.h>
#include <lib.h>
#include <string.h>
/*==============================================================================
* = DDR2 SPD decoding helpers
*----------------------------------------------------------------------------*/
/**
* \brief Checks if the DIMM is Registered based on byte[20] of the SPD
*
* Tells if the DIMM type is registered or not.
*
* @param type DIMM type. This is byte[20] of the SPD.
*/
int spd_dimm_is_registered_ddr2(enum spd_dimm_type type)
{
if ((type == SPD_DIMM_TYPE_RDIMM)
|| (type == SPD_DIMM_TYPE_72B_SO_RDIMM)
|| (type == SPD_DIMM_TYPE_MINI_RDIMM))
return 1;
return 0;
}
/**
* \brief Calculate the checksum of a DDR2 SPD unique identifier
*
* @param spd pointer to raw SPD data
* @param len length of data in SPD
*
* @return the checksum of SPD data bytes 63, or 0 when spd data is truncated.
*/
u8 spd_ddr2_calc_checksum(u8 *spd, int len)
{
int i;
u8 c = 0;
if (len < 63)
/* Not enough bytes available to get the checksum */
return 0;
for (i = 0; i < 63; i++)
c += spd[i];
return c;
}
/**
* \brief Return size of SPD.
*
* Returns size of SPD. Usually 128 Byte.
*/
u32 spd_decode_spd_size_ddr2(u8 byte0)
{
return MIN(byte0, SPD_SIZE_MAX_DDR2);
}
/**
* \brief Return size of eeprom.
*
* Returns size of eeprom. Usually 256 Byte.
*/
u32 spd_decode_eeprom_size_ddr2(u8 byte1)
{
if (!byte1)
return 0;
if (byte1 > 0x0e)
return 0x3fff;
return 1 << byte1;
}
/**
* \brief Return index of MSB set
*
* Returns the index fof MSB set.
*/
u8 spd_get_msbs(u8 c)
{
return log2(c);
}
/**
* \brief Decode SPD tck cycle time
*
* Decodes a raw SPD data from a DDR2 DIMM.
* Returns cycle time in 1/256th ns.
*/
static u32 spd_decode_tck_time(u8 c)
{
u8 high, low;
high = c >> 4;
switch (c & 0xf) {
case 0xa:
low = 25;
break;
case 0xb:
low = 33;
break;
case 0xc:
low = 66;
break;
case 0xd:
low = 75;
break;
default:
low = (c & 0xf) * 10;
}
return ((high * 100 + low) << 8) / 100;
}
/**
* \brief Decode SPD bcd style timings
*
* Decodes a raw SPD data from a DDR2 DIMM.
* Returns cycle time in 1/256th ns.
*/
static u32 spd_decode_bcd_time(u8 c)
{
u8 high, low;
high = c >> 4;
low = c & 0xf;
return ((high * 10 + low) << 8) / 100;
}
/**
* \brief Decode SPD tRP, tRRP cycle time
*
* Decodes a raw SPD data from a DDR2 DIMM.
* Returns cycle time in 1/256th ns.
*/
static u32 spd_decode_quarter_time(u8 c)
{
u8 high, low;
high = c >> 2;
low = 25 * (c & 0x3);
return ((high * 100 + low) << 8) / 100;
}
/**
* \brief Decode SPD tRR time
*
* Decodes a raw SPD data from a DDR2 DIMM.
* Returns cycle time in 1/256th us.
*/
static u32 spd_decode_tRR_time(u8 c)
{
switch (c) {
default:
printk(BIOS_WARNING,
"Unknown tRR value, using default of 15.6us.");
/* Fallthrough */
case 0x80:
return 15625 << 8;
case 0x81:
return 15625 << 6;
case 0x82:
return 15625 << 7;
case 0x83:
return 15625 << 9;
case 0x84:
return 15625 << 10;
case 0x85:
return 15625 << 11;
}
}
/**
* \brief Decode SPD tRC,tRFC time
*
* Decodes a raw SPD data from a DDR2 DIMM.
* Returns cycle time in 1/256th us.
*/
static void spd_decode_tRCtRFC_time(u8 *spd_40_41_42, u32 *tRC, u32 *tRFC)
{
u8 b40, b41, b42;
b40 = spd_40_41_42[0];
b41 = spd_40_41_42[1];
b42 = spd_40_41_42[2];
*tRC = b41 * 100;
*tRFC = b42 * 100;
if (b40 & 0x01)
*tRFC += 256 * 100;
switch ((b40 >> 1) & 0x07) {
case 1:
*tRFC += 25;
break;
case 2:
*tRFC += 33;
break;
case 3:
*tRFC += 50;
break;
case 4:
*tRFC += 66;
break;
case 5:
*tRFC += 75;
break;
default:
break;
}
switch ((b40 >> 4) & 0x07) {
case 1:
*tRC += 25;
break;
case 2:
*tRC += 33;
break;
case 3:
*tRC += 50;
break;
case 4:
*tRC += 66;
break;
case 5:
*tRC += 75;
break;
default:
break;
}
/* Convert to 1/256th us */
*tRC = (*tRC << 8) / 100;
*tRFC = (*tRFC << 8) / 100;
}
/**
* \brief Decode the raw SPD data
*
* Decodes a raw SPD data from a DDR2 DIMM, and organizes it into a
* @ref dimm_attr structure. The SPD data must first be read in a contiguous
* array, and passed to this function.
*
* @param dimm pointer to @ref dimm_attr structure where the decoded data is to
* be stored
* @param spd array of raw data previously read from the SPD.
*
* @return @ref spd_status enumerator
* SPD_STATUS_OK -- decoding was successful
* SPD_STATUS_INVALID -- invalid SPD or not a DDR2 SPD
* SPD_STATUS_CRC_ERROR -- CRC did not verify
* SPD_STATUS_INVALID_FIELD -- A field with an invalid value was
* detected.
*/
int spd_decode_ddr2(struct dimm_attr_st *dimm, u8 spd[SPD_SIZE_MAX_DDR2])
{
u8 spd_size, cl, reg8;
u16 eeprom_size;
int ret = SPD_STATUS_OK;
memset(dimm, 0, sizeof(*dimm));
spd_size = spd_decode_spd_size_ddr2(spd[0]);
eeprom_size = spd_decode_eeprom_size_ddr2(spd[1]);
printram("EEPROM with 0x%04x bytes\n", eeprom_size);
printram("SPD contains 0x%02x bytes\n", spd_size);
if (spd_size < 64 || eeprom_size < 64) {
printram("ERROR: SPD to small\n");
dimm->dram_type = SPD_MEMORY_TYPE_UNDEFINED;
return SPD_STATUS_INVALID;
}
if (spd_ddr2_calc_checksum(spd, spd_size) != spd[63]) {
printram("ERROR: SPD checksum error\n");
dimm->dram_type = SPD_MEMORY_TYPE_UNDEFINED;
return SPD_STATUS_CRC_ERROR;
}
reg8 = spd[62];
if ((reg8 & 0xf0) != 0x10) {
printram("ERROR: Unsupported SPD revision %01x.%01x\n",
reg8 >> 4, reg8 & 0xf);
dimm->dram_type = SPD_MEMORY_TYPE_UNDEFINED;
return SPD_STATUS_INVALID;
}
dimm->rev = reg8;
printram(" Revision : %01x.%01x\n", dimm->rev >> 4, dimm->rev & 0xf);
reg8 = spd[2];
printram(" Type : 0x%02x\n", reg8);
if (reg8 != 0x08) {
printram("ERROR: Unsupported SPD type %x\n", reg8);
dimm->dram_type = SPD_MEMORY_TYPE_UNDEFINED;
return SPD_STATUS_INVALID;
}
dimm->dram_type = SPD_MEMORY_TYPE_SDRAM_DDR2;
dimm->row_bits = spd[3];
printram(" Rows : %u\n", dimm->row_bits);
if ((dimm->row_bits > 31) ||
((dimm->row_bits > 15) && (dimm->rev < 0x13))) {
printram(" Invalid number of memory rows\n");
ret = SPD_STATUS_INVALID_FIELD;
}
dimm->col_bits = spd[4];
printram(" Columns : %u\n", dimm->col_bits);
if (dimm->col_bits > 15) {
printram(" Invalid number of memory columns\n");
ret = SPD_STATUS_INVALID_FIELD;
}
dimm->ranks = (spd[5] & 0x7) + 1;
printram(" Ranks : %u\n", dimm->ranks);
dimm->mod_width = spd[6];
printram(" Module data width : x%u\n", dimm->mod_width);
if (!dimm->mod_width) {
printram(" Invalid module data width\n");
ret = SPD_STATUS_INVALID_FIELD;
}
dimm->width = spd[13];
printram(" SDRAM width : x%u\n", dimm->width);
if (!dimm->width) {
printram(" Invalid SDRAM width\n");
ret = SPD_STATUS_INVALID_FIELD;
}
dimm->banks = spd[17];
printram(" Banks : %u\n", dimm->banks);
if (!dimm->banks) {
printram(" Invalid module banks count\n");
ret = SPD_STATUS_INVALID_FIELD;
}
switch (spd[8]) {
case 0:
dimm->flags.operable_5_00V = 1;
printram(" Voltage : 5.0V\n");
break;
case 1:
dimm->flags.operable_3_33V = 1;
printram(" Voltage : 3.3V\n");
break;
case 2:
dimm->flags.operable_1_50V = 1;
printram(" Voltage : 1.5V\n");
break;
case 3:
dimm->flags.operable_3_33V = 1;
printram(" Voltage : 3.3V\n");
break;
case 4:
dimm->flags.operable_2_50V = 1;
printram(" Voltage : 2.5V\n");
break;
case 5:
dimm->flags.operable_1_80V = 1;
printram(" Voltage : 1.8V\n");
break;
default:
printram(" Unknown voltage level.\n");
ret = SPD_STATUS_INVALID_FIELD;
}
dimm->cas_supported = spd[18];
if ((dimm->cas_supported & 0x3) || !dimm->cas_supported) {
printram(" Invalid CAS support advertised.\n");
ret = SPD_STATUS_INVALID_FIELD;
}
printram(" Supported CAS mask : 0x%x\n", dimm->cas_supported);
if ((dimm->rev < 0x13) && (dimm->cas_supported & 0x80)) {
printram(" Invalid CAS support advertised.\n");
ret = SPD_STATUS_INVALID_FIELD;
}
if ((dimm->rev < 0x12) && (dimm->cas_supported & 0x40)) {
printram(" Invalid CAS support advertised.\n");
ret = SPD_STATUS_INVALID_FIELD;
}
/* CL=X */
cl = spd_get_msbs(dimm->cas_supported);
/* SDRAM Cycle time at Maximum Supported CAS Latency (CL), CL=X */
dimm->cycle_time[cl] = spd_decode_tck_time(spd[9]);
/* SDRAM Access from Clock */
dimm->access_time[cl] = spd_decode_bcd_time(spd[10]);
if (dimm->cas_supported & (1 << (cl - 1))) {
/* Minimum Clock Cycle at CLX-1 */
dimm->cycle_time[cl - 1] = spd_decode_tck_time(spd[23]);
/* Maximum Data Access Time (tAC) from Clock at CLX-1 */
dimm->access_time[cl - 1] = spd_decode_bcd_time(spd[24]);
}
if (dimm->cas_supported & (1 << (cl - 2))) {
/* Minimum Clock Cycle at CLX-2 */
dimm->cycle_time[cl - 2] = spd_decode_tck_time(spd[25]);
/* Maximum Data Access Time (tAC) from Clock at CLX-2 */
dimm->access_time[cl - 2] = spd_decode_bcd_time(spd[26]);
}
reg8 = (spd[31] >> 5) | (spd[31] << 3);
if (!reg8) {
printram(" Invalid rank density.\n");
ret = SPD_STATUS_INVALID_FIELD;
}
/* Rank density */
dimm->ranksize_mb = 128 * reg8;
/* Module density */
dimm->size_mb = dimm->ranksize_mb * dimm->ranks;
if (dimm->size_mb < 1024)
printram(" Capacity : %u MB\n", dimm->size_mb);
else
printram(" Capacity : %u GB\n", dimm->size_mb >> 10);
/* SDRAM Maximum Cycle Time (tCKmax) */
dimm->tCK = spd_decode_tck_time(spd[43]);
/* Minimum Write Recovery Time (tWRmin) */
dimm->tWR = spd_decode_quarter_time(spd[36]);
/* Minimum RAS# to CAS# Delay Time (tRCDmin) */
dimm->tRCD = spd_decode_quarter_time(spd[29]);
/* Minimum Row Active to Row Active Delay Time (tRRDmin) */
dimm->tRRD = spd_decode_quarter_time(spd[28]);
/* Minimum Row Precharge Delay Time (tRPmin) */
dimm->tRP = spd_decode_quarter_time(spd[27]);
/* Minimum Active to Precharge Delay Time (tRASmin) */
dimm->tRAS = spd[30] << 8;
/* Minimum Active to Active/Refresh Delay Time (tRCmin) */
/* Minimum Refresh Recovery Delay Time (tRFCmin) */
spd_decode_tRCtRFC_time(&spd[40], &dimm->tRC, &dimm->tRFC);
/* Minimum Internal Write to Read Command Delay Time (tWTRmin) */
dimm->tWTR = spd_decode_quarter_time(spd[37]);
/* Minimum Internal Read to Precharge Command Delay Time (tRTPmin) */
dimm->tRTP = spd_decode_quarter_time(spd[38]);
/* Data Input Setup Time Before Strobe */
dimm->tDS = spd_decode_bcd_time(spd[34]);
/* Data Input Hold Time After Strobe */
dimm->tDH = spd_decode_bcd_time(spd[35]);
/* SDRAM Device DQS-DQ Skew for DQS and associated DQ signals */
dimm->tDQSQ = (spd[44] << 8) / 100;
/* SDRAM Device Maximum Read Data Hold Skew Factor */
dimm->tQHS = (spd[45] << 8) / 100;
/* PLL Relock Time in us */
dimm->tPLL = spd[46] << 8;
/* Refresh rate in us */
dimm->tRR = spd_decode_tRR_time(spd[12]);
/* Number of PLLs on DIMM */
if (dimm->rev >= 0x11)
dimm->plls = (spd[21] >> 2) & 0x3;
/* SDRAM Thermal and Refresh Options */
printram(" General features :");
if ((dimm->rev >= 0x12) && (spd[22] & 0x04)) {
dimm->flags.pasr = 1;
printram(" PASR");
}
if ((dimm->rev >= 0x12) && (spd[22] & 0x02)) {
dimm->flags.terminate_50ohms = 1;
printram(" 50Ohm");
}
if (spd[22] & 0x01) {
dimm->flags.weak_driver = 1;
printram(" WEAK_DRIVER");
}
printram("\n");
/* SDRAM Supported Burst length */
printram(" Burst length :");
if (spd[16] & 0x06) {
dimm->flags.bl8 = 1;
printram(" BL8");
}
if (spd[22] & 0x04) {
dimm->flags.bl4 = 1;
printram(" BL4");
}
printram("\n");
dimm->dimm_type = spd[20] & SPD_DIMM_TYPE_MASK;
printram(" Dimm type : %x\n", dimm->dimm_type);
dimm->flags.is_ecc = !!(spd[11] & 0x3);
printram(" ECC support : %x\n", dimm->flags.is_ecc);
dimm->flags.stacked = !!(spd[5] & 0x10);
printram(" Package : %s\n",
dimm->flags.stacked ? "stack" : "planar");
if (spd_size > 71) {
memcpy(&dimm->manufacturer_id, &spd[64], 4);
printram(" Manufacturer ID : %x\n", dimm->manufacturer_id);
}
if (spd_size > 90) {
dimm->part_number[16] = 0;
memcpy(dimm->part_number, &spd[73], 16);
printram(" Part number : %s\n", dimm->part_number);
}
if (spd_size > 94) {
dimm->year = spd[93] + 2000;
dimm->weeks = spd[94];
printram(" Date : %d week %d\n", dimm->year, dimm->weeks);
}
if (spd_size > 98) {
memcpy(&dimm->serial, &spd[95], 4);
printram(" Serial number : 0x%08x\n", dimm->serial);
}
return ret;
}
/*
* The information printed below has a more informational character, and is not
* necessarily tied in to RAM init debugging. Hence, we stop using printram(),
* and use the standard printk()'s below.
*/
static void print_ns(const char *msg, u32 val)
{
u32 mant, fp;
mant = val / 256;
fp = (val % 256) * 1000 / 256;
printk(BIOS_INFO, "%s%3u.%.3u ns\n", msg, mant, fp);
}
static void print_us(const char *msg, u32 val)
{
u32 mant, fp;
mant = val / 256;
fp = (val % 256) * 1000 / 256;
printk(BIOS_INFO, "%s%3u.%.3u us\n", msg, mant, fp);
}
/**
* \brief Print the info in DIMM
*
* Print info about the DIMM. Useful to use when CONFIG_DEBUG_RAM_SETUP is
* selected, or for a purely informative output.
*
* @param dimm pointer to already decoded @ref dimm_attr structure
*/
void dram_print_spd_ddr2(const struct dimm_attr_st *dimm)
{
char buf[32];
int i;
printk(BIOS_INFO, " Row addr bits : %u\n", dimm->row_bits);
printk(BIOS_INFO, " Column addr bits : %u\n", dimm->col_bits);
printk(BIOS_INFO, " Number of ranks : %u\n", dimm->ranks);
printk(BIOS_INFO, " DIMM Capacity : %u MB\n", dimm->size_mb);
printk(BIOS_INFO, " Width : x%u\n", dimm->width);
printk(BIOS_INFO, " Banks : %u\n", dimm->banks);
/* CAS Latencies Supported */
printk(BIOS_INFO, " CAS latencies :");
for (i = 2; i < 8; i++) {
if (dimm->cas_supported & (1 << i))
printk(BIOS_INFO, " %u", i);
}
printk(BIOS_INFO, "\n");
for (i = 2; i < 8; i++) {
if (!(dimm->cas_supported & (1 << i)))
continue;
strcpy(buf, " tCK at CLx : ");
/* Simple snprintf replacement */
buf[11] = '0' + i;
print_ns(buf, dimm->cycle_time[i]);
strcpy(buf, " tAC at CLx : ");
/* Simple snprintf replacement */
buf[11] = '0' + i;
print_ns(buf, dimm->access_time[i]);
}
print_ns(" tCKmax : ", dimm->tCK);
print_ns(" tWRmin : ", dimm->tWR);
print_ns(" tRCDmin : ", dimm->tRCD);
print_ns(" tRRDmin : ", dimm->tRRD);
print_ns(" tRPmin : ", dimm->tRP);
print_ns(" tRASmin : ", dimm->tRAS);
print_ns(" tRCmin : ", dimm->tRC);
print_ns(" tRFCmin : ", dimm->tRFC);
print_ns(" tWTRmin : ", dimm->tWTR);
print_ns(" tRTPmin : ", dimm->tRTP);
print_ns(" tDS : ", dimm->tDS);
print_ns(" tDH : ", dimm->tDH);
print_ns(" tDQSQmax : ", dimm->tDQSQ);
print_ns(" tQHSmax : ", dimm->tQHS);
print_us(" tPLL : ", dimm->tPLL);
print_us(" tRR : ", dimm->tRR);
}
void normalize_tck(u32 *tclk)
{
if (*tclk <= TCK_800MHZ) {
*tclk = TCK_800MHZ;
} else if (*tclk <= TCK_666MHZ) {
*tclk = TCK_666MHZ;
} else if (*tclk <= TCK_533MHZ) {
*tclk = TCK_533MHZ;
} else if (*tclk <= TCK_400MHZ) {
*tclk = TCK_400MHZ;
} else if (*tclk <= TCK_333MHZ) {
*tclk = TCK_333MHZ;
} else if (*tclk <= TCK_266MHZ) {
*tclk = TCK_266MHZ;
} else if (*tclk <= TCK_200MHZ) {
*tclk = TCK_200MHZ;
} else {
*tclk = 0;
printk(BIOS_ERR, "Too slow common tCLK found\n");
}
}
|