1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
|
/*
* PCI Bus Services, see include/linux/pci.h for further explanation.
*
* Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
* David Mosberger-Tang
*
* Copyright 1997 -- 1999 Martin Mares <mj@atrey.karlin.mff.cuni.cz>
*
* Copyright 2003 -- Eric Biederman <ebiederman@lnxi.com>
*/
#include <console/console.h>
#include <stdlib.h>
#include <stdint.h>
#include <bitops.h>
#include <string.h>
#include <arch/io.h>
#include <device/device.h>
#include <device/pci.h>
#include <device/pci_ids.h>
#include <part/hard_reset.h>
#include <part/fallback_boot.h>
#include <delay.h>
static uint8_t pci_moving_config8(struct device *dev, unsigned reg)
{
uint8_t value, ones, zeroes;
value = pci_read_config8(dev, reg);
pci_write_config8(dev, reg, 0xff);
ones = pci_read_config8(dev, reg);
pci_write_config8(dev, reg, 0x00);
zeroes = pci_read_config8(dev, reg);
pci_write_config8(dev, reg, value);
return ones ^ zeroes;
}
static uint16_t pci_moving_config16(struct device *dev, unsigned reg)
{
uint16_t value, ones, zeroes;
value = pci_read_config16(dev, reg);
pci_write_config16(dev, reg, 0xffff);
ones = pci_read_config16(dev, reg);
pci_write_config16(dev, reg, 0x0000);
zeroes = pci_read_config16(dev, reg);
pci_write_config16(dev, reg, value);
return ones ^ zeroes;
}
static uint32_t pci_moving_config32(struct device *dev, unsigned reg)
{
uint32_t value, ones, zeroes;
value = pci_read_config32(dev, reg);
pci_write_config32(dev, reg, 0xffffffff);
ones = pci_read_config32(dev, reg);
pci_write_config32(dev, reg, 0x00000000);
zeroes = pci_read_config32(dev, reg);
pci_write_config32(dev, reg, value);
return ones ^ zeroes;
}
unsigned pci_find_capability(device_t dev, unsigned cap)
{
unsigned pos;
pos = 0;
switch(dev->hdr_type & 0x7f) {
case PCI_HEADER_TYPE_NORMAL:
case PCI_HEADER_TYPE_BRIDGE:
pos = PCI_CAPABILITY_LIST;
break;
}
if (pos > PCI_CAP_LIST_NEXT) {
pos = pci_read_config8(dev, pos);
}
while(pos != 0) { /* loop through the linked list */
int this_cap;
this_cap = pci_read_config8(dev, pos + PCI_CAP_LIST_ID);
if (this_cap == cap) {
return pos;
}
}
return 0;
}
/** Given a device and register, read the size of the BAR for that register.
* @param dev Pointer to the device structure
* @param resource Pointer to the resource structure
* @param index Address of the pci configuration register
*/
struct resource *pci_get_resource(struct device *dev, unsigned long index)
{
struct resource *resource;
unsigned long value, attr;
resource_t moving, limit;
/* Initialize the resources to nothing */
resource = new_resource(dev, index);
/* Get the initial value */
value = pci_read_config32(dev, index);
/* See which bits move */
moving = pci_moving_config32(dev, index);
/* Initialize attr to the bits that do not move */
attr = value & ~moving;
/* If it is a 64bit resource look at the high half as well */
if (((attr & PCI_BASE_ADDRESS_SPACE_IO) == 0) &&
((attr & PCI_BASE_ADDRESS_MEM_LIMIT_MASK) == PCI_BASE_ADDRESS_MEM_LIMIT_64))
{
/* Find the high bits that move */
moving |= ((resource_t)pci_moving_config32(dev, index + 4)) << 32;
}
/* Find the resource constraints.
*
* Start by finding the bits that move. From there:
* - Size is the least significant bit of the bits that move.
* - Limit is all of the bits that move plus all of the lower bits.
* See PCI Spec 6.2.5.1 ...
*/
limit = 0;
if (moving) {
resource->size = 1;
resource->align = resource->gran = 0;
while(!(moving & resource->size)) {
resource->size <<= 1;
resource->align += 1;
resource->gran += 1;
}
resource->limit = limit = moving | (resource->size - 1);
}
/*
* some broken hardware has read-only registers that do not
* really size correctly.
* Example: the acer m7229 has BARs 1-4 normally read-only.
* so BAR1 at offset 0x10 reads 0x1f1. If you size that register
* by writing 0xffffffff to it, it will read back as 0x1f1 -- a
* violation of the spec.
* We catch this case and ignore it by observing which bits move,
* This also catches the common case unimplemented registers
* that always read back as 0.
*/
if (moving == 0) {
if (value != 0) {
printk_debug(
"%s register %02x(%08x), read-only ignoring it\n",
dev_path(dev), index, value);
}
resource->flags = 0;
}
else if (attr & PCI_BASE_ADDRESS_SPACE_IO) {
/* An I/O mapped base address */
attr &= PCI_BASE_ADDRESS_IO_ATTR_MASK;
resource->flags |= IORESOURCE_IO;
/* I don't want to deal with 32bit I/O resources */
resource->limit = 0xffff;
}
else {
/* A Memory mapped base address */
attr &= PCI_BASE_ADDRESS_MEM_ATTR_MASK;
resource->flags |= IORESOURCE_MEM;
if (attr & PCI_BASE_ADDRESS_MEM_PREFETCH) {
resource->flags |= IORESOURCE_PREFETCH;
}
attr &= PCI_BASE_ADDRESS_MEM_LIMIT_MASK;
if (attr == PCI_BASE_ADDRESS_MEM_LIMIT_32) {
/* 32bit limit */
resource->limit = 0xffffffffUL;
}
else if (attr == PCI_BASE_ADDRESS_MEM_LIMIT_1M) {
/* 1MB limit */
resource->limit = 0x000fffffUL;
}
else if (attr == PCI_BASE_ADDRESS_MEM_LIMIT_64) {
/* 64bit limit */
resource->limit = 0xffffffffffffffffULL;
resource->flags |= IORESOURCE_PCI64;
}
else {
/* Invalid value */
resource->flags = 0;
}
}
/* Don't let the limit exceed which bits can move */
if (resource->limit > limit) {
resource->limit = limit;
}
#if 0
if (resource->flags) {
printk_debug("%s %02x ->",
dev_path(dev), resource->index);
printk_debug(" value: 0x%08Lx zeroes: 0x%08Lx ones: 0x%08Lx attr: %08lx\n",
value, zeroes, ones, attr);
printk_debug(
"%s %02x -> size: 0x%08Lx max: 0x%08Lx %s%s\n ",
dev_path(dev),
resource->index,
resource->size, resource->limit,
(resource->flags == 0) ? "unused":
(resource->flags & IORESOURCE_IO)? "io":
(resource->flags & IORESOURCE_PREFETCH)? "prefmem": "mem",
(resource->flags & IORESOURCE_PCI64)?"64":"");
}
#endif
return resource;
}
/** Read the base address registers for a given device.
* @param dev Pointer to the dev structure
* @param howmany How many registers to read (6 for device, 2 for bridge)
*/
static void pci_read_bases(struct device *dev, unsigned int howmany)
{
unsigned long index;
for(index = PCI_BASE_ADDRESS_0; (index < PCI_BASE_ADDRESS_0 + (howmany << 2)); ) {
struct resource *resource;
resource = pci_get_resource(dev, index);
index += (resource->flags & IORESOURCE_PCI64)?8:4;
}
compact_resources(dev);
}
static void pci_set_resource(struct device *dev, struct resource *resource);
static void pci_record_bridge_resource(
struct device *dev, resource_t moving,
unsigned index, unsigned long mask, unsigned long type)
{
/* Initiliaze the constraints on the current bus */
struct resource *resource;
resource = 0;
if (moving) {
unsigned long gran;
resource_t step;
resource = new_resource(dev, index);
resource->size = 0;
gran = 0;
step = 1;
while((moving & step) == 0) {
gran += 1;
step <<= 1;
}
resource->gran = gran;
resource->align = gran;
resource->limit = moving | (step - 1);
resource->flags = type | IORESOURCE_PCI_BRIDGE;
compute_allocate_resource(&dev->link[0], resource, mask, type);
/* If there is nothing behind the resource,
* clear it and forget it.
*/
if (resource->size == 0) {
resource->base = moving;
resource->flags |= IORESOURCE_ASSIGNED;
resource->flags &= ~IORESOURCE_STORED;
pci_set_resource(dev, resource);
resource->flags = 0;
}
}
return;
}
static void pci_bridge_read_bases(struct device *dev)
{
resource_t moving_base, moving_limit, moving;
/* See if the bridge I/O resources are implemented */
moving_base = ((uint32_t)pci_moving_config8(dev, PCI_IO_BASE)) << 8;
moving_base |= ((uint32_t)pci_moving_config16(dev, PCI_IO_BASE_UPPER16)) << 16;
moving_limit = ((uint32_t)pci_moving_config8(dev, PCI_IO_LIMIT)) << 8;
moving_limit |= ((uint32_t)pci_moving_config16(dev, PCI_IO_LIMIT_UPPER16)) << 16;
moving = moving_base & moving_limit;
/* Initialize the io space constraints on the current bus */
pci_record_bridge_resource(
dev, moving, PCI_IO_BASE,
IORESOURCE_IO, IORESOURCE_IO);
/* See if the bridge prefmem resources are implemented */
moving_base = ((resource_t)pci_moving_config16(dev, PCI_PREF_MEMORY_BASE)) << 16;
moving_base |= ((resource_t)pci_moving_config32(dev, PCI_PREF_BASE_UPPER32)) << 32;
moving_limit = ((resource_t)pci_moving_config16(dev, PCI_PREF_MEMORY_LIMIT)) << 16;
moving_limit |= ((resource_t)pci_moving_config32(dev, PCI_PREF_LIMIT_UPPER32)) << 32;
moving = moving_base & moving_limit;
/* Initiliaze the prefetchable memory constraints on the current bus */
pci_record_bridge_resource(
dev, moving, PCI_PREF_MEMORY_BASE,
IORESOURCE_MEM | IORESOURCE_PREFETCH,
IORESOURCE_MEM | IORESOURCE_PREFETCH);
/* See if the bridge mem resources are implemented */
moving_base = ((uint32_t)pci_moving_config16(dev, PCI_MEMORY_BASE)) << 16;
moving_limit = ((uint32_t)pci_moving_config16(dev, PCI_MEMORY_LIMIT)) << 16;
moving = moving_base & moving_limit;
/* Initialize the memory resources on the current bus */
pci_record_bridge_resource(
dev, moving, PCI_MEMORY_BASE,
IORESOURCE_MEM | IORESOURCE_PREFETCH,
IORESOURCE_MEM);
compact_resources(dev);
}
void pci_dev_read_resources(struct device *dev)
{
uint32_t addr;
pci_read_bases(dev, 6);
addr = pci_read_config32(dev, PCI_ROM_ADDRESS);
dev->rom_address = (addr == 0xffffffff)? 0 : addr;
}
void pci_bus_read_resources(struct device *dev)
{
uint32_t addr;
pci_bridge_read_bases(dev);
pci_read_bases(dev, 2);
addr = pci_read_config32(dev, PCI_ROM_ADDRESS1);
dev->rom_address = (addr == 0xffffffff)? 0 : addr;
}
static void pci_set_resource(struct device *dev, struct resource *resource)
{
resource_t base, end;
/* Make certain the resource has actually been set */
if (!(resource->flags & IORESOURCE_ASSIGNED)) {
printk_err("ERROR: %s %02x not allocated\n",
dev_path(dev), resource->index);
return;
}
/* If I have already stored this resource don't worry about it */
if (resource->flags & IORESOURCE_STORED) {
return;
}
/* If the resources is substractive don't worry about it */
if (resource->flags & IORESOURCE_SUBTRACTIVE) {
return;
}
/* Only handle PCI memory and IO resources for now */
if (!(resource->flags & (IORESOURCE_MEM |IORESOURCE_IO)))
return;
/* Enable the resources in the command register */
if (resource->size) {
if (resource->flags & IORESOURCE_MEM) {
dev->command |= PCI_COMMAND_MEMORY;
}
if (resource->flags & IORESOURCE_IO) {
dev->command |= PCI_COMMAND_IO;
}
if (resource->flags & IORESOURCE_PCI_BRIDGE) {
dev->command |= PCI_COMMAND_MASTER;
}
}
/* Get the base address */
base = resource->base;
/* Get the end */
end = resource_end(resource);
/* Now store the resource */
resource->flags |= IORESOURCE_STORED;
if (!(resource->flags & IORESOURCE_PCI_BRIDGE)) {
unsigned long base_lo, base_hi;
/*
* some chipsets allow us to set/clear the IO bit.
* (e.g. VIA 82c686a.) So set it to be safe)
*/
base_lo = base & 0xffffffff;
base_hi = (base >> 32) & 0xffffffff;
if (resource->flags & IORESOURCE_IO) {
base_lo |= PCI_BASE_ADDRESS_SPACE_IO;
}
pci_write_config32(dev, resource->index, base_lo);
if (resource->flags & IORESOURCE_PCI64) {
pci_write_config32(dev, resource->index + 4, base_hi);
}
}
else if (resource->index == PCI_IO_BASE) {
/* set the IO ranges */
compute_allocate_resource(&dev->link[0], resource,
IORESOURCE_IO, IORESOURCE_IO);
pci_write_config8(dev, PCI_IO_BASE, base >> 8);
pci_write_config16(dev, PCI_IO_BASE_UPPER16, base >> 16);
pci_write_config8(dev, PCI_IO_LIMIT, end >> 8);
pci_write_config16(dev, PCI_IO_LIMIT_UPPER16, end >> 16);
}
else if (resource->index == PCI_MEMORY_BASE) {
/* set the memory range */
compute_allocate_resource(&dev->link[0], resource,
IORESOURCE_MEM | IORESOURCE_PREFETCH,
IORESOURCE_MEM);
pci_write_config16(dev, PCI_MEMORY_BASE, base >> 16);
pci_write_config16(dev, PCI_MEMORY_LIMIT, end >> 16);
}
else if (resource->index == PCI_PREF_MEMORY_BASE) {
/* set the prefetchable memory range */
compute_allocate_resource(&dev->link[0], resource,
IORESOURCE_MEM | IORESOURCE_PREFETCH,
IORESOURCE_MEM | IORESOURCE_PREFETCH);
pci_write_config16(dev, PCI_PREF_MEMORY_BASE, base >> 16);
pci_write_config32(dev, PCI_PREF_BASE_UPPER32, base >> 32);
pci_write_config16(dev, PCI_PREF_MEMORY_LIMIT, end >> 16);
pci_write_config32(dev, PCI_PREF_LIMIT_UPPER32, end >> 32);
}
else {
/* Don't let me think I stored the resource */
resource->flags &= ~IORESOURCE_STORED;
printk_err("ERROR: invalid resource->index %x\n",
resource->index);
}
report_resource_stored(dev, resource, "");
return;
}
void pci_dev_set_resources(struct device *dev)
{
struct resource *resource, *last;
unsigned link;
uint8_t line;
last = &dev->resource[dev->resources];
for(resource = &dev->resource[0]; resource < last; resource++) {
pci_set_resource(dev, resource);
}
for(link = 0; link < dev->links; link++) {
struct bus *bus;
bus = &dev->link[link];
if (bus->children) {
assign_resources(bus);
}
}
/* set a default latency timer */
pci_write_config8(dev, PCI_LATENCY_TIMER, 0x40);
/* set a default secondary latency timer */
if ((dev->hdr_type & 0x7f) == PCI_HEADER_TYPE_BRIDGE) {
pci_write_config8(dev, PCI_SEC_LATENCY_TIMER, 0x40);
}
/* zero the irq settings */
line = pci_read_config8(dev, PCI_INTERRUPT_PIN);
if (line) {
pci_write_config8(dev, PCI_INTERRUPT_LINE, 0);
}
/* set the cache line size, so far 64 bytes is good for everyone */
pci_write_config8(dev, PCI_CACHE_LINE_SIZE, 64 >> 2);
}
void pci_dev_enable_resources(struct device *dev)
{
const struct pci_operations *ops;
uint16_t command;
/* Set the subsystem vendor and device id for mainboard devices */
ops = ops_pci(dev);
if (dev->on_mainboard && ops && ops->set_subsystem) {
printk_debug("%s subsystem <- %02x/%02x\n",
dev_path(dev),
MAINBOARD_PCI_SUBSYSTEM_VENDOR_ID,
MAINBOARD_PCI_SUBSYSTEM_DEVICE_ID);
ops->set_subsystem(dev,
MAINBOARD_PCI_SUBSYSTEM_VENDOR_ID,
MAINBOARD_PCI_SUBSYSTEM_DEVICE_ID);
}
command = pci_read_config16(dev, PCI_COMMAND);
command |= dev->command;
command |= (PCI_COMMAND_PARITY + PCI_COMMAND_SERR); /* error check */
printk_debug("%s cmd <- %02x\n", dev_path(dev), command);
pci_write_config16(dev, PCI_COMMAND, command);
}
void pci_bus_enable_resources(struct device *dev)
{
uint16_t ctrl;
ctrl = pci_read_config16(dev, PCI_BRIDGE_CONTROL);
ctrl |= dev->link[0].bridge_ctrl;
ctrl |= (PCI_BRIDGE_CTL_PARITY + PCI_BRIDGE_CTL_SERR); /* error check */
printk_debug("%s bridge ctrl <- %04x\n", dev_path(dev), ctrl);
pci_write_config16(dev, PCI_BRIDGE_CONTROL, ctrl);
pci_dev_enable_resources(dev);
enable_childrens_resources(dev);
}
void pci_dev_set_subsystem(device_t dev, unsigned vendor, unsigned device)
{
pci_write_config32(dev, PCI_SUBSYSTEM_VENDOR_ID,
((device & 0xffff) << 16) | (vendor & 0xffff));
}
/** Default device operation for PCI devices */
static struct pci_operations pci_dev_ops_pci = {
.set_subsystem = pci_dev_set_subsystem,
};
struct device_operations default_pci_ops_dev = {
.read_resources = pci_dev_read_resources,
.set_resources = pci_dev_set_resources,
.enable_resources = pci_dev_enable_resources,
.init = 0,
.scan_bus = 0,
.enable = 0,
.ops_pci = &pci_dev_ops_pci,
};
/** Default device operations for PCI bridges */
static struct pci_operations pci_bus_ops_pci = {
.set_subsystem = 0,
};
struct device_operations default_pci_ops_bus = {
.read_resources = pci_bus_read_resources,
.set_resources = pci_dev_set_resources,
.enable_resources = pci_bus_enable_resources,
.init = 0,
.scan_bus = pci_scan_bridge,
.enable = 0,
.ops_pci = &pci_bus_ops_pci,
};
/**
* @brief Set up PCI device operation
*
*
* @param dev
*
* @see pci_drivers
*/
static void set_pci_ops(struct device *dev)
{
struct pci_driver *driver;
if (dev->ops) {
return;
}
/* Look through the list of setup drivers and find one for
* this pci device
*/
for(driver = &pci_drivers[0]; driver != &epci_drivers[0]; driver++) {
if ((driver->vendor == dev->vendor) &&
(driver->device == dev->device))
{
dev->ops = driver->ops;
printk_debug("%s [%04x/%04x] %sops\n",
dev_path(dev),
driver->vendor, driver->device,
(driver->ops->scan_bus?"bus ":""));
return;
}
}
/* If I don't have a specific driver use the default operations */
switch(dev->hdr_type & 0x7f) { /* header type */
case PCI_HEADER_TYPE_NORMAL: /* standard header */
if ((dev->class >> 8) == PCI_CLASS_BRIDGE_PCI)
goto bad;
dev->ops = &default_pci_ops_dev;
break;
case PCI_HEADER_TYPE_BRIDGE:
if ((dev->class >> 8) != PCI_CLASS_BRIDGE_PCI)
goto bad;
dev->ops = &default_pci_ops_bus;
break;
default:
bad:
if (dev->enabled) {
printk_err("%s [%04x/%04x/%06x] has unknown header "
"type %02x, ignoring.\n",
dev_path(dev),
dev->vendor, dev->device,
dev->class >> 8, dev->hdr_type);
}
}
return;
}
/**
* @brief See if we have already allocated a device structure for a given devfn.
*
* Given a linked list of PCI device structures and a devfn number, find the
* device structure correspond to the devfn, if present.
*
* @param list the device structure list
* @param devfn a device/function number
*
* @return pointer to the device structure found or null of we have not allocated
* a device for this devfn yet.
*/
static struct device *pci_scan_get_dev(struct device **list, unsigned int devfn)
{
struct device *dev;
dev = 0;
for(; *list; list = &(*list)->sibling) {
if ((*list)->path.type != DEVICE_PATH_PCI) {
printk_err("child %s not a pci device\n",
dev_path(*list));
continue;
}
if ((*list)->path.u.pci.devfn == devfn) {
/* Unlink from the list */
dev = *list;
*list = (*list)->sibling;
dev->sibling = 0;
break;
}
}
/* Just like alloc_dev add the device to the
* list of device on the bus. When the list of devices was formed
* we removed all of the parents children, and now we are interleaving
* static and dynamic devices in order on the bus.
*/
if (dev) {
device_t child;
/* Find the last child of our parent */
for(child = dev->bus->children; child && child->sibling; ) {
child = child->sibling;
}
/* Place the device on the list of children of it's parent. */
if (child) {
child->sibling = dev;
} else {
dev->bus->children = dev;
}
}
return dev;
}
/**
* @brief Scan a PCI bus.
*
* Determine the existence of devices and bridges on a PCI bus. If there are
* bridges on the bus, recursively scan the buses behind the bridges.
*
* This function is the default scan_bus() method for the root device
* 'dev_root'.
*
* @param bus pointer to the bus structure
* @param min_devfn minimum devfn to look at in the scan usually 0x00
* @param max_devfn maximum devfn to look at in the scan usually 0xff
* @param max current bus number
*
* @return The maximum bus number found, after scanning all subordinate busses
*/
unsigned int pci_scan_bus(struct bus *bus,
unsigned min_devfn, unsigned max_devfn,
unsigned int max)
{
unsigned int devfn;
device_t dev;
device_t old_devices;
device_t child;
printk_debug("PCI: pci_scan_bus for bus %d\n", bus->secondary);
old_devices = bus->children;
bus->children = 0;
post_code(0x24);
/* probe all devices/functions on this bus with some optimization for
* non-existence and single funcion devices
*/
for (devfn = min_devfn; devfn <= max_devfn; devfn++) {
uint32_t id, class;
uint8_t hdr_type;
/* First thing setup the device structure */
dev = pci_scan_get_dev(&old_devices, devfn);
/* Detect if a device is present */
if (!dev) {
struct device dummy;
dummy.bus = bus;
dummy.path.type = DEVICE_PATH_PCI;
dummy.path.u.pci.devfn = devfn;
id = pci_read_config32(&dummy, PCI_VENDOR_ID);
/* some broken boards return 0 if a slot is empty: */
if ( (id == 0xffffffff) || (id == 0x00000000) ||
(id == 0x0000ffff) || (id == 0xffff0000))
{
printk_spew("PCI: devfn 0x%x, bad id 0x%x\n", devfn, id);
if (PCI_FUNC(devfn) == 0x00) {
/* if this is a function 0 device and
* it is not present,
* skip to next device
*/
devfn += 0x07;
}
/* This function in a multi function device is
* not present, skip to the next function.
*/
continue;
}
dev = alloc_dev(bus, &dummy.path);
}
else {
/* Enable/disable the device. Once we have
* found the device specific operations this
* operations we will disable the device with
* those as well.
*
* This is geared toward devices that have subfunctions
* that do not show up by default.
*
* If a device is a stuff option on the motherboard
* it may be absent and enable_dev must cope.
*
*/
if (dev->chip_ops && dev->chip_ops->enable_dev)
{
dev->chip_ops->enable_dev(dev);
}
/* Now read the vendor and device id */
id = pci_read_config32(dev, PCI_VENDOR_ID);
/* If the device does not have a pci id disable it.
* Possibly this is because we have already disabled
* the device. But this also handles optional devices
* that may not always show up.
*/
if (id == 0xffffffff || id == 0x00000000 ||
id == 0x0000ffff || id == 0xffff0000)
{
if (dev->enabled) {
printk_info("Disabling static device: %s\n",
dev_path(dev));
dev->enabled = 0;
}
}
}
/* Read the rest of the pci configuration information */
hdr_type = pci_read_config8(dev, PCI_HEADER_TYPE);
class = pci_read_config32(dev, PCI_CLASS_REVISION);
/* Store the interesting information in the device structure */
dev->vendor = id & 0xffff;
dev->device = (id >> 16) & 0xffff;
dev->hdr_type = hdr_type;
/* class code, the upper 3 bytes of PCI_CLASS_REVISION */
dev->class = class >> 8;
/* Architectural/System devices always need to
* be bus masters.
*/
if ((dev->class >> 16) == PCI_BASE_CLASS_SYSTEM) {
dev->command |= PCI_COMMAND_MASTER;
}
/* Look at the vendor and device id, or at least the
* header type and class and figure out which set of
* configuration methods to use. Unless we already
* have some pci ops.
*/
set_pci_ops(dev);
/* Error if we don't have some pci operations for it */
if (!dev->ops) {
printk_err("%s No device operations\n",
dev_path(dev));
continue;
}
/* Now run the magic enable/disable sequence for the device */
if (dev->ops && dev->ops->enable) {
dev->ops->enable(dev);
}
printk_debug("%s [%04x/%04x] %s\n",
dev_path(dev),
dev->vendor, dev->device,
dev->enabled?"enabled": "disabled");
if (PCI_FUNC(devfn) == 0x00 && (hdr_type & 0x80) != 0x80) {
/* if this is not a multi function device,
* don't waste time probing another function.
* Skip to next device.
*/
devfn += 0x07;
}
}
post_code(0x25);
/* For all children that implement scan_bus (i.e. bridges)
* scan the bus behind that child.
*/
for(child = bus->children; child; child = child->sibling) {
if (!child->enabled ||
!child->ops ||
!child->ops->scan_bus)
{
continue;
}
max = child->ops->scan_bus(child, max);
}
/*
* We've scanned the bus and so we know all about what's on
* the other side of any bridges that may be on this bus plus
* any devices.
*
* Return how far we've got finding sub-buses.
*/
printk_debug("PCI: pci_scan_bus returning with max=%02x\n", max);
post_code(0x55);
return max;
}
/**
* @brief Scan a PCI bridge and the buses behind the bridge.
*
* Determine the existence of buses behind the bridge. Set up the bridge
* according to the result of the scan.
*
* This function is the default scan_bus() method for PCI bridge devices.
*
* @param dev pointer to the bridge device
* @param max the highest bus number assgined up to now
*
* @return The maximum bus number found, after scanning all subordinate busses
*/
unsigned int pci_scan_bridge(struct device *dev, unsigned int max)
{
struct bus *bus;
uint32_t buses;
uint16_t cr;
bus = &dev->link[0];
bus->dev = dev;
dev->links = 1;
/* Set up the primary, secondary and subordinate bus numbers. We have
* no idea how many buses are behind this bridge yet, so we set the
* subordinate bus number to 0xff for the moment.
*/
bus->secondary = ++max;
bus->subordinate = 0xff;
/* Clear all status bits and turn off memory, I/O and master enables. */
cr = pci_read_config16(dev, PCI_COMMAND);
pci_write_config16(dev, PCI_COMMAND, 0x0000);
pci_write_config16(dev, PCI_STATUS, 0xffff);
/*
* Read the existing primary/secondary/subordinate bus
* number configuration.
*/
buses = pci_read_config32(dev, PCI_PRIMARY_BUS);
/* Configure the bus numbers for this bridge: the configuration
* transactions will not be propagated by the bridge if it is not
* correctly configured.
*/
buses &= 0xff000000;
buses |= (((unsigned int) (dev->bus->secondary) << 0) |
((unsigned int) (bus->secondary) << 8) |
((unsigned int) (bus->subordinate) << 16));
pci_write_config32(dev, PCI_PRIMARY_BUS, buses);
/* Now we can scan all subordinate buses
* i.e. the bus behind the bridge.
*/
max = pci_scan_bus(bus, 0x00, 0xff, max);
/* We know the number of buses behind this bridge. Set the subordinate
* bus number to its real value.
*/
bus->subordinate = max;
buses = (buses & 0xff00ffff) |
((unsigned int) (bus->subordinate) << 16);
pci_write_config32(dev, PCI_PRIMARY_BUS, buses);
pci_write_config16(dev, PCI_COMMAND, cr);
printk_spew("%s returns max %d\n", __func__, max);
return max;
}
/*
Tell the EISA int controller this int must be level triggered
THIS IS A KLUDGE -- sorry, this needs to get cleaned up.
*/
static void pci_level_irq(unsigned char intNum)
{
unsigned short intBits = inb(0x4d0) | (((unsigned) inb(0x4d1)) << 8);
printk_spew("%s: current ints are 0x%x\n", __func__, intBits);
intBits |= (1 << intNum);
printk_spew("%s: try to set ints 0x%x\n", __func__, intBits);
// Write new values
outb((unsigned char) intBits, 0x4d0);
outb((unsigned char) (intBits >> 8), 0x4d1);
/* this seems like an error but is not ... */
#if 1
if (inb(0x4d0) != (intBits & 0xf)) {
printk_err("%s: lower order bits are wrong: want 0x%x, got 0x%x\n",
__func__, intBits &0xf, inb(0x4d0));
}
if (inb(0x4d1) != ((intBits >> 8) & 0xf)) {
printk_err("%s: lower order bits are wrong: want 0x%x, got 0x%x\n",
__func__, (intBits>>8) &0xf, inb(0x4d1));
}
#endif
}
/*
This function assigns IRQs for all functions contained within
the indicated device address. If the device does not exist or does
not require interrupts then this function has no effect.
This function should be called for each PCI slot in your system.
pIntAtoD is an array of IRQ #s that are assigned to PINTA through PINTD of
this slot.
The particular irq #s that are passed in depend on the routing inside
your southbridge and on your motherboard.
-kevinh@ispiri.com
*/
void pci_assign_irqs(unsigned bus, unsigned slot,
const unsigned char pIntAtoD[4])
{
unsigned functNum;
device_t pdev;
unsigned char line;
unsigned char irq;
unsigned char readback;
/* Each slot may contain up to eight functions */
for (functNum = 0; functNum < 8; functNum++) {
pdev = dev_find_slot(bus, (slot << 3) + functNum);
if (pdev) {
line = pci_read_config8(pdev, PCI_INTERRUPT_PIN);
// PCI spec says all other values are reserved
if ((line >= 1) && (line <= 4)) {
irq = pIntAtoD[line - 1];
printk_debug("Assigning IRQ %d to %d:%x.%d\n", \
irq, bus, slot, functNum);
pci_write_config8(pdev, PCI_INTERRUPT_LINE,\
pIntAtoD[line - 1]);
readback = pci_read_config8(pdev, PCI_INTERRUPT_LINE);
printk_debug(" Readback = %d\n", readback);
// Change to level triggered
pci_level_irq(pIntAtoD[line - 1]);
}
}
}
}
|