summaryrefslogtreecommitdiff
path: root/src/mainboard/amd/parmer/BiosCallOuts.c
blob: a5e274ae22a5c0ee3b11b7c385546a0634e56a46 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
/*
 * This file is part of the coreboot project.
 *
 * Copyright (C) 2012 Advanced Micro Devices, Inc.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; version 2 of the License.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301 USA
 */

#include "agesawrapper.h"
#include "amdlib.h"
#include "dimmSpd.h"
#include "BiosCallOuts.h"
#include "Ids.h"
#include "OptionsIds.h"
#include "heapManager.h"
#include "FchPlatform.h"
#include "cbfs.h"

STATIC CONST BIOS_CALLOUT_STRUCT BiosCallouts[] =
{
	{AGESA_ALLOCATE_BUFFER,
	 BiosAllocateBuffer
	},

	{AGESA_DEALLOCATE_BUFFER,
	 BiosDeallocateBuffer
	},

	{AGESA_DO_RESET,
	 BiosReset
	},

	{AGESA_LOCATE_BUFFER,
	 BiosLocateBuffer
	},

	{AGESA_READ_SPD,
	 BiosReadSpd
	},

	{AGESA_READ_SPD_RECOVERY,
	 BiosDefaultRet
	},

	{AGESA_RUNFUNC_ONAP,
	 BiosRunFuncOnAp
	},

	{AGESA_GET_IDS_INIT_DATA,
	 BiosGetIdsInitData
	},

	{AGESA_HOOKBEFORE_DQS_TRAINING,
	 BiosHookBeforeDQSTraining
	},

	{AGESA_HOOKBEFORE_EXIT_SELF_REF,
	 BiosHookBeforeExitSelfRefresh
	},

	{AGESA_FCH_OEM_CALLOUT,
	 Fch_Oem_config
	},
	{AGESA_GNB_GFX_GET_VBIOS_IMAGE,
	 BiosHookGfxGetVbiosImage
	}
};

AGESA_STATUS GetBiosCallout (UINT32 Func, UINT32 Data, VOID *ConfigPtr)
{
	UINTN i;
	AGESA_STATUS CalloutStatus;
	UINTN CallOutCount = sizeof (BiosCallouts) / sizeof (BiosCallouts [0]);

	for (i = 0; i < CallOutCount; i++)
	{
		if (BiosCallouts[i].CalloutName == Func)
		{
			break;
		}
	}

	if(i >= CallOutCount)
	{
		return AGESA_UNSUPPORTED;
	}

	CalloutStatus = BiosCallouts[i].CalloutPtr (Func, Data, ConfigPtr);

	return CalloutStatus;
}

CONST IDS_NV_ITEM IdsData[] =
{
	/*{
	  AGESA_IDS_NV_MAIN_PLL_CON,
	  0x1
	  },
	  {
	  AGESA_IDS_NV_MAIN_PLL_FID_EN,
	  0x1
	  },
	  {
	  AGESA_IDS_NV_MAIN_PLL_FID,
	  0x8
	  },

	  {
	  AGESA_IDS_NV_CUSTOM_NB_PSTATE,
	  },
	  {
	  AGESA_IDS_NV_CUSTOM_NB_P0_DIV_CTRL,
	  },
	  {
	  AGESA_IDS_NV_CUSTOM_NB_P1_DIV_CTRL,
	  },
	  {
	  AGESA_IDS_NV_FORCE_NB_PSTATE,
	  },
	  */
	{
		0xFFFF,
		0xFFFF
	}
};

#define   NUM_IDS_ENTRIES    (sizeof (IdsData) / sizeof (IDS_NV_ITEM))

AGESA_STATUS BiosGetIdsInitData (UINT32 Func, UINT32 Data, VOID *ConfigPtr)
{
	UINTN   i;
	IDS_NV_ITEM *IdsPtr;

	IdsPtr = ((IDS_CALLOUT_STRUCT *) ConfigPtr)->IdsNvPtr;

	if (Data == IDS_CALLOUT_INIT) {
		for (i = 0; i < NUM_IDS_ENTRIES; i++) {
			IdsPtr[i].IdsNvValue = IdsData[i].IdsNvValue;
			IdsPtr[i].IdsNvId = IdsData[i].IdsNvId;
		}
	}
	return AGESA_SUCCESS;
}

AGESA_STATUS BiosAllocateBuffer (UINT32 Func, UINT32 Data, VOID *ConfigPtr)
{
	UINT32              AvailableHeapSize;
	UINT8               *BiosHeapBaseAddr;
	UINT32              CurrNodeOffset;
	UINT32              PrevNodeOffset;
	UINT32              FreedNodeOffset;
	UINT32              BestFitNodeOffset;
	UINT32              BestFitPrevNodeOffset;
	UINT32              NextFreeOffset;
	BIOS_BUFFER_NODE   *CurrNodePtr;
	BIOS_BUFFER_NODE   *FreedNodePtr;
	BIOS_BUFFER_NODE   *BestFitNodePtr;
	BIOS_BUFFER_NODE   *BestFitPrevNodePtr;
	BIOS_BUFFER_NODE   *NextFreePtr;
	BIOS_HEAP_MANAGER  *BiosHeapBasePtr;
	AGESA_BUFFER_PARAMS *AllocParams;

	AllocParams = ((AGESA_BUFFER_PARAMS *) ConfigPtr);
	AllocParams->BufferPointer = NULL;

	AvailableHeapSize = BIOS_HEAP_SIZE - sizeof (BIOS_HEAP_MANAGER);
	BiosHeapBaseAddr = (UINT8 *) GetHeapBase(&(AllocParams->StdHeader));
	BiosHeapBasePtr = (BIOS_HEAP_MANAGER *) BiosHeapBaseAddr;

	if (BiosHeapBasePtr->StartOfAllocatedNodes == 0) {
		/* First allocation */
		CurrNodeOffset = sizeof (BIOS_HEAP_MANAGER);
		CurrNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + CurrNodeOffset);
		CurrNodePtr->BufferHandle = AllocParams->BufferHandle;
		CurrNodePtr->BufferSize = AllocParams->BufferLength;
		CurrNodePtr->NextNodeOffset = 0;
		AllocParams->BufferPointer = (UINT8 *) CurrNodePtr + sizeof (BIOS_BUFFER_NODE);

		/* Update the remaining free space */
		FreedNodeOffset = CurrNodeOffset + CurrNodePtr->BufferSize + sizeof (BIOS_BUFFER_NODE);
		FreedNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + FreedNodeOffset);
		FreedNodePtr->BufferSize = AvailableHeapSize - sizeof (BIOS_BUFFER_NODE) - CurrNodePtr->BufferSize;
		FreedNodePtr->NextNodeOffset = 0;

		/* Update the offsets for Allocated and Freed nodes */
		BiosHeapBasePtr->StartOfAllocatedNodes = CurrNodeOffset;
		BiosHeapBasePtr->StartOfFreedNodes = FreedNodeOffset;
	} else {
		/* Find out whether BufferHandle has been allocated on the heap. */
		/* If it has, return AGESA_BOUNDS_CHK */
		CurrNodeOffset = BiosHeapBasePtr->StartOfAllocatedNodes;
		CurrNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + CurrNodeOffset);

		while (CurrNodeOffset != 0) {
			CurrNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + CurrNodeOffset);
			if (CurrNodePtr->BufferHandle == AllocParams->BufferHandle) {
				return AGESA_BOUNDS_CHK;
			}
			CurrNodeOffset = CurrNodePtr->NextNodeOffset;
			/* If BufferHandle has not been allocated on the heap, CurrNodePtr here points
			   to the end of the allocated nodes list.
			*/

		}
		/* Find the node that best fits the requested buffer size */
		FreedNodeOffset = BiosHeapBasePtr->StartOfFreedNodes;
		PrevNodeOffset = FreedNodeOffset;
		BestFitNodeOffset = 0;
		BestFitPrevNodeOffset = 0;
		while (FreedNodeOffset != 0) {
			FreedNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + FreedNodeOffset);
			if (FreedNodePtr->BufferSize >= (AllocParams->BufferLength + sizeof (BIOS_BUFFER_NODE))) {
				if (BestFitNodeOffset == 0) {
					/* First node that fits the requested buffer size */
					BestFitNodeOffset = FreedNodeOffset;
					BestFitPrevNodeOffset = PrevNodeOffset;
				} else {
					/* Find out whether current node is a better fit than the previous nodes */
					BestFitNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + BestFitNodeOffset);
					if (BestFitNodePtr->BufferSize > FreedNodePtr->BufferSize) {
						BestFitNodeOffset = FreedNodeOffset;
						BestFitPrevNodeOffset = PrevNodeOffset;
					}
				}
			}
			PrevNodeOffset = FreedNodeOffset;
			FreedNodeOffset = FreedNodePtr->NextNodeOffset;
		} /* end of while loop */

		if (BestFitNodeOffset == 0) {
			/* If we could not find a node that fits the requested buffer */
			/* size, return AGESA_BOUNDS_CHK */
			return AGESA_BOUNDS_CHK;
		} else {
			BestFitNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + BestFitNodeOffset);
			BestFitPrevNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + BestFitPrevNodeOffset);

			/* If BestFitNode is larger than the requested buffer, fragment the node further */
			if (BestFitNodePtr->BufferSize > (AllocParams->BufferLength + sizeof (BIOS_BUFFER_NODE))) {
				NextFreeOffset = BestFitNodeOffset + AllocParams->BufferLength + sizeof (BIOS_BUFFER_NODE);

				NextFreePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + NextFreeOffset);
				NextFreePtr->BufferSize = BestFitNodePtr->BufferSize - (AllocParams->BufferLength + sizeof (BIOS_BUFFER_NODE));
				NextFreePtr->NextNodeOffset = BestFitNodePtr->NextNodeOffset;
			} else {
				/* Otherwise, next free node is NextNodeOffset of BestFitNode */
				NextFreeOffset = BestFitNodePtr->NextNodeOffset;
			}

			/* If BestFitNode is the first buffer in the list, then update
			   StartOfFreedNodes to reflect the new free node
			*/
			if (BestFitNodeOffset == BiosHeapBasePtr->StartOfFreedNodes) {
				BiosHeapBasePtr->StartOfFreedNodes = NextFreeOffset;
			} else {
				BestFitPrevNodePtr->NextNodeOffset = NextFreeOffset;
			}

			/* Add BestFitNode to the list of Allocated nodes */
			CurrNodePtr->NextNodeOffset = BestFitNodeOffset;
			BestFitNodePtr->BufferSize = AllocParams->BufferLength;
			BestFitNodePtr->BufferHandle = AllocParams->BufferHandle;
			BestFitNodePtr->NextNodeOffset = 0;

			/* Remove BestFitNode from list of Freed nodes */
			AllocParams->BufferPointer = (UINT8 *) BestFitNodePtr + sizeof (BIOS_BUFFER_NODE);
		}
	}

	return AGESA_SUCCESS;
}

AGESA_STATUS BiosDeallocateBuffer (UINT32 Func, UINT32 Data, VOID *ConfigPtr)
{

	UINT8               *BiosHeapBaseAddr;
	UINT32              AllocNodeOffset;
	UINT32              PrevNodeOffset;
	UINT32              NextNodeOffset;
	UINT32              FreedNodeOffset;
	UINT32              EndNodeOffset;
	BIOS_BUFFER_NODE   *AllocNodePtr;
	BIOS_BUFFER_NODE   *PrevNodePtr;
	BIOS_BUFFER_NODE   *FreedNodePtr;
	BIOS_BUFFER_NODE   *NextNodePtr;
	BIOS_HEAP_MANAGER  *BiosHeapBasePtr;
	AGESA_BUFFER_PARAMS *AllocParams;

	BiosHeapBaseAddr = (UINT8 *) GetHeapBase(&(AllocParams->StdHeader));
	BiosHeapBasePtr = (BIOS_HEAP_MANAGER *) BiosHeapBaseAddr;

	AllocParams = (AGESA_BUFFER_PARAMS *) ConfigPtr;

	/* Find target node to deallocate in list of allocated nodes.
	   Return AGESA_BOUNDS_CHK if the BufferHandle is not found
	*/
	AllocNodeOffset = BiosHeapBasePtr->StartOfAllocatedNodes;
	AllocNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + AllocNodeOffset);
	PrevNodeOffset = AllocNodeOffset;

	while (AllocNodePtr->BufferHandle !=  AllocParams->BufferHandle) {
		if (AllocNodePtr->NextNodeOffset == 0) {
			return AGESA_BOUNDS_CHK;
		}
		PrevNodeOffset = AllocNodeOffset;
		AllocNodeOffset = AllocNodePtr->NextNodeOffset;
		AllocNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + AllocNodeOffset);
	}

	/* Remove target node from list of allocated nodes */
	PrevNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + PrevNodeOffset);
	PrevNodePtr->NextNodeOffset = AllocNodePtr->NextNodeOffset;

	/* Zero out the buffer, and clear the BufferHandle */
	LibAmdMemFill ((UINT8 *)AllocNodePtr + sizeof (BIOS_BUFFER_NODE), 0, AllocNodePtr->BufferSize, &(AllocParams->StdHeader));
	AllocNodePtr->BufferHandle = 0;
	AllocNodePtr->BufferSize += sizeof (BIOS_BUFFER_NODE);

	/* Add deallocated node in order to the list of freed nodes */
	FreedNodeOffset = BiosHeapBasePtr->StartOfFreedNodes;
	FreedNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + FreedNodeOffset);

	EndNodeOffset = AllocNodeOffset + AllocNodePtr->BufferSize;

	if (AllocNodeOffset < FreedNodeOffset) {
		/* Add to the start of the freed list */
		if (EndNodeOffset == FreedNodeOffset) {
			/* If the freed node is adjacent to the first node in the list, concatenate both nodes */
			AllocNodePtr->BufferSize += FreedNodePtr->BufferSize;
			AllocNodePtr->NextNodeOffset = FreedNodePtr->NextNodeOffset;

			/* Clear the BufferSize and NextNodeOffset of the previous first node */
			FreedNodePtr->BufferSize = 0;
			FreedNodePtr->NextNodeOffset = 0;

		} else {
			/* Otherwise, add freed node to the start of the list
			   Update NextNodeOffset and BufferSize to include the
			   size of BIOS_BUFFER_NODE
			*/
			AllocNodePtr->NextNodeOffset = FreedNodeOffset;
		}
		/* Update StartOfFreedNodes to the new first node */
		BiosHeapBasePtr->StartOfFreedNodes = AllocNodeOffset;
	} else {
		/* Traverse list of freed nodes to find where the deallocated node
		   should be place
		*/
		NextNodeOffset = FreedNodeOffset;
		NextNodePtr = FreedNodePtr;
		while (AllocNodeOffset > NextNodeOffset) {
			PrevNodeOffset = NextNodeOffset;
			if (NextNodePtr->NextNodeOffset == 0) {
				break;
			}
			NextNodeOffset = NextNodePtr->NextNodeOffset;
			NextNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + NextNodeOffset);
		}

		/* If deallocated node is adjacent to the next node,
		   concatenate both nodes
		*/
		if (NextNodeOffset == EndNodeOffset) {
			NextNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + NextNodeOffset);
			AllocNodePtr->BufferSize += NextNodePtr->BufferSize;
			AllocNodePtr->NextNodeOffset = NextNodePtr->NextNodeOffset;

			NextNodePtr->BufferSize = 0;
			NextNodePtr->NextNodeOffset = 0;
		} else {
			/*AllocNodePtr->NextNodeOffset = FreedNodePtr->NextNodeOffset; */
			AllocNodePtr->NextNodeOffset = NextNodeOffset;
		}
		/* If deallocated node is adjacent to the previous node,
		   concatenate both nodes
		*/
		PrevNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + PrevNodeOffset);
		EndNodeOffset = PrevNodeOffset + PrevNodePtr->BufferSize;
		if (AllocNodeOffset == EndNodeOffset) {
			PrevNodePtr->NextNodeOffset = AllocNodePtr->NextNodeOffset;
			PrevNodePtr->BufferSize += AllocNodePtr->BufferSize;

			AllocNodePtr->BufferSize = 0;
			AllocNodePtr->NextNodeOffset = 0;
		} else {
			PrevNodePtr->NextNodeOffset = AllocNodeOffset;
		}
	}
	return AGESA_SUCCESS;
}

AGESA_STATUS BiosLocateBuffer (UINT32 Func, UINT32 Data, VOID *ConfigPtr)
{
	UINT32              AllocNodeOffset;
	UINT8               *BiosHeapBaseAddr;
	BIOS_BUFFER_NODE   *AllocNodePtr;
	BIOS_HEAP_MANAGER  *BiosHeapBasePtr;
	AGESA_BUFFER_PARAMS *AllocParams;

	AllocParams = (AGESA_BUFFER_PARAMS *) ConfigPtr;

	BiosHeapBaseAddr = (UINT8 *) GetHeapBase(&(AllocParams->StdHeader));
	BiosHeapBasePtr = (BIOS_HEAP_MANAGER *) BiosHeapBaseAddr;

	AllocNodeOffset = BiosHeapBasePtr->StartOfAllocatedNodes;
	AllocNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + AllocNodeOffset);

	while (AllocParams->BufferHandle != AllocNodePtr->BufferHandle) {
		if (AllocNodePtr->NextNodeOffset == 0) {
			AllocParams->BufferPointer = NULL;
			AllocParams->BufferLength = 0;
			return AGESA_BOUNDS_CHK;
		} else {
			AllocNodeOffset = AllocNodePtr->NextNodeOffset;
			AllocNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + AllocNodeOffset);
		}
	}

	AllocParams->BufferPointer = (UINT8 *) ((UINT8 *) AllocNodePtr + sizeof (BIOS_BUFFER_NODE));
	AllocParams->BufferLength = AllocNodePtr->BufferSize;

	return AGESA_SUCCESS;

}

AGESA_STATUS BiosRunFuncOnAp (UINT32 Func, UINT32 Data, VOID *ConfigPtr)
{
	AGESA_STATUS        Status;

	Status = agesawrapper_amdlaterunaptask (Func, Data, ConfigPtr);
	return Status;
}

AGESA_STATUS BiosReset (UINT32 Func, UINT32 Data, VOID *ConfigPtr)
{
	AGESA_STATUS        Status;
	UINT8                 Value;
	UINTN               ResetType;
	AMD_CONFIG_PARAMS   *StdHeader;

	ResetType = Data;
	StdHeader = ConfigPtr;

	//
	// Perform the RESET based upon the ResetType. In case of
	// WARM_RESET_WHENVER and COLD_RESET_WHENEVER, the request will go to
	// AmdResetManager. During the critical condition, where reset is required
	// immediately, the reset will be invoked directly by writing 0x04 to port
	// 0xCF9 (Reset Port).
	//
	switch (ResetType) {
	case WARM_RESET_WHENEVER:
	case COLD_RESET_WHENEVER:
		break;

	case WARM_RESET_IMMEDIATELY:
	case COLD_RESET_IMMEDIATELY:
		Value = 0x06;
		LibAmdIoWrite (AccessWidth8, 0xCf9, &Value, StdHeader);
		break;

	default:
		break;
	}

	Status = 0;
	return Status;
}

AGESA_STATUS BiosReadSpd (UINT32 Func, UINT32 Data, VOID *ConfigPtr)
{
	AGESA_STATUS Status;
	Status = AmdMemoryReadSPD (Func, Data, ConfigPtr);

	return Status;
}

AGESA_STATUS BiosDefaultRet (UINT32 Func, UINT32 Data, VOID *ConfigPtr)
{
	return AGESA_UNSUPPORTED;
}

/*  Call the host environment interface to provide a user hook opportunity. */
AGESA_STATUS BiosHookBeforeDQSTraining (UINT32 Func, UINT32 Data, VOID *ConfigPtr)
{
	return AGESA_SUCCESS;
}

/*  Call the host environment interface to provide a user hook opportunity. */
AGESA_STATUS BiosHookBeforeExitSelfRefresh (UINT32 Func, UINT32 Data, VOID *ConfigPtr)
{
	return AGESA_SUCCESS;
}

/**
 * AMD Parmer Platform ALC272 Verb Table
 */
const CODEC_ENTRY Parmer_Alc272_VerbTbl[] = {
	{0x11, 0x411111F0},
	{0x12, 0x411111F0},
	{0x13, 0x411111F0},
	{0x14, 0x411111F0},
	{0x15, 0x411111F0},
	{0x16, 0x411111F0},
	{0x17, 0x411111F0},
	{0x18, 0x01a19840},
	{0x19, 0x411111F0},
	{0x1a, 0x01813030},
	{0x1b, 0x411111F0},
	{0x1d, 0x40130605},
	{0x1e, 0x01441120},
	{0x21, 0x01211010},
	{0xff, 0xffffffff}
};

const CODEC_TBL_LIST ParmerCodecTableList[] =
{
	{0x10ec0272, (CODEC_ENTRY*)&Parmer_Alc272_VerbTbl[0]},
	{(UINT32)0x0FFFFFFFF, (CODEC_ENTRY*)0x0FFFFFFFFUL}
};

#define FAN_INPUT_INTERNAL_DIODE	0
#define FAN_INPUT_TEMP0			1
#define FAN_INPUT_TEMP1			2
#define FAN_INPUT_TEMP2			3
#define FAN_INPUT_TEMP3			4
#define FAN_INPUT_TEMP0_FILTER		5
#define FAN_INPUT_ZERO			6
#define FAN_INPUT_DISABLED		7

#define FAN_AUTOMODE			(1 << 0)
#define FAN_LINEARMODE			(1 << 1)
#define FAN_STEPMODE			~(1 << 1)
#define FAN_POLARITY_HIGH		(1 << 2)
#define FAN_POLARITY_LOW		~(1 << 2)

/* Normally, 4-wire fan runs at 25KHz and 3-wire fan runs at 100Hz */
#define FREQ_28KHZ			0x0
#define FREQ_25KHZ			0x1
#define FREQ_23KHZ			0x2
#define FREQ_21KHZ			0x3
#define FREQ_29KHZ			0x4
#define FREQ_18KHZ			0x5
#define FREQ_100HZ			0xF7
#define FREQ_87HZ			0xF8
#define FREQ_58HZ			0xF9
#define FREQ_44HZ			0xFA
#define FREQ_35HZ			0xFB
#define FREQ_29HZ			0xFC
#define FREQ_22HZ			0xFD
#define FREQ_14HZ			0xFE
#define FREQ_11HZ			0xFF

/* Parmer Hardware Monitor Fan Control
 * Hardware limitation:
 *  HWM failed to read the input temperture vi I2C,
 *  if other software switch the I2C switch by mistake or intention.
 *  We recommend to using IMC to control Fans, instead of HWM.
 */
static void oem_fan_control(FCH_DATA_BLOCK *FchParams)
{
	FCH_HWM_FAN_CTR oem_factl[5] = {
		/*temperatuer input, fan mode, frequency, low_duty, med_duty, multiplier, lowtemp, medtemp, hightemp, LinearRange, LinearHoldCount */
		/* Parmer FanOUT0 Fan header J32 */
		{FAN_INPUT_INTERNAL_DIODE, (FAN_STEPMODE | FAN_POLARITY_HIGH), FREQ_100HZ, 40, 60,  0, 40, 65, 85, 0, 0},
		/* Parmer FanOUT1 Fan header J31*/
		{FAN_INPUT_INTERNAL_DIODE, (FAN_STEPMODE | FAN_POLARITY_HIGH), FREQ_100HZ, 40, 60,  0, 40, 65, 85, 0, 0},
		{FAN_INPUT_INTERNAL_DIODE, (FAN_STEPMODE | FAN_POLARITY_HIGH), FREQ_100HZ, 40, 60,  0, 40, 65, 85, 0, 0},
		{FAN_INPUT_INTERNAL_DIODE, (FAN_STEPMODE | FAN_POLARITY_HIGH), FREQ_100HZ, 40, 60,  0, 40, 65, 85, 0, 0},
		{FAN_INPUT_INTERNAL_DIODE, (FAN_STEPMODE | FAN_POLARITY_HIGH), FREQ_100HZ, 40, 60,  0, 40, 65, 85, 0, 0},
	};
	LibAmdMemCopy ((VOID *)(FchParams->Hwm.HwmFanControl), &oem_factl, (sizeof (FCH_HWM_FAN_CTR) * 5), FchParams->StdHeader);

	/* Enable IMC fan control. the recommand way */
#if defined CONFIG_HUDSON_IMC_FWM && (CONFIG_HUDSON_IMC_FWM == 1)
	/* HwMonitorEnable = TRUE &&  HwmFchtsiAutoOpll ==FALSE to call FchECfancontrolservice */
	FchParams->Hwm.HwMonitorEnable = TRUE;
	FchParams->Hwm.HwmFchtsiAutoPoll = FALSE;/* 0 disable, 1 enable TSI Auto Polling */

	FchParams->Imc.ImcEnable = TRUE;
	FchParams->Hwm.HwmControl = 1;	/* 1 IMC, 0 HWM */
	FchParams->Imc.ImcEnableOverWrite = 1; /* 2 disable IMC , 1 enable IMC, 0 following hw strap setting */

	LibAmdMemFill(&(FchParams->Imc.EcStruct), 0, sizeof(FCH_EC), FchParams->StdHeader);

	/* Thermal Zone Parameter */
	FchParams->Imc.EcStruct.MsgFun81Zone0MsgReg0 = 0x00;
	FchParams->Imc.EcStruct.MsgFun81Zone0MsgReg1 = 0x00;	/* Zone */
	FchParams->Imc.EcStruct.MsgFun81Zone0MsgReg2 = 0x00; //BIT0 | BIT2 | BIT5;
	FchParams->Imc.EcStruct.MsgFun81Zone0MsgReg3 = 0x00;//6 | BIT3;
	FchParams->Imc.EcStruct.MsgFun81Zone0MsgReg4 = 0x00;
	FchParams->Imc.EcStruct.MsgFun81Zone0MsgReg5 = 0x00;
	FchParams->Imc.EcStruct.MsgFun81Zone0MsgReg6 = 0x98;	/* SMBUS Address for SMBUS based temperature sensor such as SB-TSI and ADM1032 */
	FchParams->Imc.EcStruct.MsgFun81Zone0MsgReg7 = 2;
	FchParams->Imc.EcStruct.MsgFun81Zone0MsgReg8 = 0;	/* PWM steping rate in unit of PWM level percentage */
	FchParams->Imc.EcStruct.MsgFun81Zone0MsgReg9 = 0;

	/* IMC Fan Policy temperature thresholds */
	FchParams->Imc.EcStruct.MsgFun83Zone0MsgReg0 = 0x00;
	FchParams->Imc.EcStruct.MsgFun83Zone0MsgReg1 = 0x00;	/* Zone */
	FchParams->Imc.EcStruct.MsgFun83Zone0MsgReg2 = 0;///80;	/*AC0 threshold in Celsius */
	FchParams->Imc.EcStruct.MsgFun83Zone0MsgReg3 = 0;	/*AC1 threshold in Celsius */
	FchParams->Imc.EcStruct.MsgFun83Zone0MsgReg4 = 0;	/*AC2 threshold in Celsius */
	FchParams->Imc.EcStruct.MsgFun83Zone0MsgReg5 = 0;	/*AC3 threshold in Celsius, 0xFF is not define */
	FchParams->Imc.EcStruct.MsgFun83Zone0MsgReg6 = 0;	/*AC4 threshold in Celsius, 0xFF is not define */
	FchParams->Imc.EcStruct.MsgFun83Zone0MsgReg7 = 0;	/*AC5 threshold in Celsius, 0xFF is not define */
	FchParams->Imc.EcStruct.MsgFun83Zone0MsgReg8 = 0;	/*AC6 threshold in Celsius, 0xFF is not define */
	FchParams->Imc.EcStruct.MsgFun83Zone0MsgReg9 = 0;	/*AC7 lowest threshold in Celsius, 0xFF is not define */
	FchParams->Imc.EcStruct.MsgFun83Zone0MsgRegA = 0;	/*critical threshold* in Celsius, 0xFF is not define */
	FchParams->Imc.EcStruct.MsgFun83Zone0MsgRegB = 0x00;

	/* IMC Fan Policy PWM Settings */
	FchParams->Imc.EcStruct.MsgFun85Zone0MsgReg0 = 0x00;
	FchParams->Imc.EcStruct.MsgFun85Zone0MsgReg1 = 0x00;	/* Zone */
	FchParams->Imc.EcStruct.MsgFun85Zone0MsgReg2 = 0;	/* AL0 percentage */
	FchParams->Imc.EcStruct.MsgFun85Zone0MsgReg3 = 0;	/* AL1 percentage */
	FchParams->Imc.EcStruct.MsgFun85Zone0MsgReg4 = 0;	/* AL2 percentage */
	FchParams->Imc.EcStruct.MsgFun85Zone0MsgReg5 = 0x00;	/* AL3 percentage */
	FchParams->Imc.EcStruct.MsgFun85Zone0MsgReg6 = 0x00;	/* AL4 percentage */
	FchParams->Imc.EcStruct.MsgFun85Zone0MsgReg7 = 0x00;	/* AL5 percentage */
	FchParams->Imc.EcStruct.MsgFun85Zone0MsgReg8 = 0x00;	/* AL6 percentage */
	FchParams->Imc.EcStruct.MsgFun85Zone0MsgReg9 = 0x00;	/* AL7 percentage */

	FchParams->Imc.EcStruct.MsgFun81Zone1MsgReg0 = 0x00;
	FchParams->Imc.EcStruct.MsgFun81Zone1MsgReg1 = 0x01;	/* Zone */
	FchParams->Imc.EcStruct.MsgFun81Zone1MsgReg2 = 0x55;//BIT0 | BIT2 | BIT5;
	FchParams->Imc.EcStruct.MsgFun81Zone1MsgReg3 = 0x17;
	FchParams->Imc.EcStruct.MsgFun81Zone1MsgReg4 = 0x00;
	FchParams->Imc.EcStruct.MsgFun81Zone1MsgReg5 = 0x00;
	FchParams->Imc.EcStruct.MsgFun81Zone1MsgReg6 = 0x90;	/* SMBUS Address for SMBUS based temperature sensor such as SB-TSI and ADM1032 */
	FchParams->Imc.EcStruct.MsgFun81Zone1MsgReg7 = 0;
	FchParams->Imc.EcStruct.MsgFun81Zone1MsgReg8 = 0;	/* PWM steping rate in unit of PWM level percentage */
	FchParams->Imc.EcStruct.MsgFun81Zone1MsgReg9 = 0;

	FchParams->Imc.EcStruct.MsgFun83Zone1MsgReg0 = 0x00;
	FchParams->Imc.EcStruct.MsgFun83Zone1MsgReg1 = 0x01;	/* zone */
	FchParams->Imc.EcStruct.MsgFun83Zone1MsgReg2 = 60;	/*AC0 threshold in Celsius */
	FchParams->Imc.EcStruct.MsgFun83Zone1MsgReg3 = 40;	/*AC1 threshold in Celsius */
	FchParams->Imc.EcStruct.MsgFun83Zone1MsgReg4 = 0;	/*AC2 threshold in Celsius */
	FchParams->Imc.EcStruct.MsgFun83Zone1MsgReg5 = 0;	/*AC3 threshold in Celsius, 0xFF is not define */
	FchParams->Imc.EcStruct.MsgFun83Zone1MsgReg6 = 0;	/*AC4 threshold in Celsius, 0xFF is not define */
	FchParams->Imc.EcStruct.MsgFun83Zone1MsgReg7 = 0;	/*AC5 threshold in Celsius, 0xFF is not define */
	FchParams->Imc.EcStruct.MsgFun83Zone1MsgReg8 = 0;	/*AC6 threshold in Celsius, 0xFF is not define */
	FchParams->Imc.EcStruct.MsgFun83Zone1MsgReg9 = 0;	/*AC7 lowest threshold in Celsius, 0xFF is not define */
	FchParams->Imc.EcStruct.MsgFun83Zone1MsgRegA = 0;	/*critical threshold* in Celsius, 0xFF is not define */
	FchParams->Imc.EcStruct.MsgFun83Zone1MsgRegB = 0x00;

	FchParams->Imc.EcStruct.MsgFun85Zone1MsgReg0 = 0x00;
	FchParams->Imc.EcStruct.MsgFun85Zone1MsgReg1 = 0x01;	/*Zone */
	FchParams->Imc.EcStruct.MsgFun85Zone1MsgReg2 = 0;	/* AL0 percentage */
	FchParams->Imc.EcStruct.MsgFun85Zone1MsgReg3 = 0;	/* AL1 percentage */
	FchParams->Imc.EcStruct.MsgFun85Zone1MsgReg4 = 0;	/* AL2 percentage */
	FchParams->Imc.EcStruct.MsgFun85Zone1MsgReg5 = 0x00;	/* AL3 percentage */
	FchParams->Imc.EcStruct.MsgFun85Zone1MsgReg6 = 0x00;	/* AL4 percentage */
	FchParams->Imc.EcStruct.MsgFun85Zone1MsgReg7 = 0x00;	/* AL5 percentage */
	FchParams->Imc.EcStruct.MsgFun85Zone1MsgReg8 = 0x00;	/* AL6 percentage */
	FchParams->Imc.EcStruct.MsgFun85Zone1MsgReg9 = 0x00;	/* AL7 percentage */

	FchParams->Imc.EcStruct.MsgFun81Zone2MsgReg0 = 0x00;
	FchParams->Imc.EcStruct.MsgFun81Zone2MsgReg1 = 0x2;	/* Zone */
	FchParams->Imc.EcStruct.MsgFun81Zone2MsgReg2 = 0x0;//BIT0 | BIT2 | BIT5;
	FchParams->Imc.EcStruct.MsgFun81Zone2MsgReg3 = 0x0;
	FchParams->Imc.EcStruct.MsgFun81Zone2MsgReg4 = 0x00;
	FchParams->Imc.EcStruct.MsgFun81Zone2MsgReg5 = 0x00;
	FchParams->Imc.EcStruct.MsgFun81Zone2MsgReg6 = 0x98;	/* SMBUS Address for SMBUS based temperature sensor such as SB-TSI and ADM1032 */
	FchParams->Imc.EcStruct.MsgFun81Zone2MsgReg7 = 2;
	FchParams->Imc.EcStruct.MsgFun81Zone2MsgReg8 = 5;	/* PWM steping rate in unit of PWM level percentage */
	FchParams->Imc.EcStruct.MsgFun81Zone2MsgReg9 = 0;

	FchParams->Imc.EcStruct.MsgFun81Zone3MsgReg0 = 0x00;
	FchParams->Imc.EcStruct.MsgFun81Zone3MsgReg1 = 0x3;	/* Zone */
	FchParams->Imc.EcStruct.MsgFun81Zone3MsgReg2 = 0x0;//BIT0 | BIT2 | BIT5;
	FchParams->Imc.EcStruct.MsgFun81Zone3MsgReg3 = 0x0;
	FchParams->Imc.EcStruct.MsgFun81Zone3MsgReg4 = 0x00;
	FchParams->Imc.EcStruct.MsgFun81Zone3MsgReg5 = 0x00;
	FchParams->Imc.EcStruct.MsgFun81Zone3MsgReg6 = 0x0;	/* SMBUS Address for SMBUS based temperature sensor such as SB-TSI and ADM1032 */
	FchParams->Imc.EcStruct.MsgFun81Zone3MsgReg7 = 0;
	FchParams->Imc.EcStruct.MsgFun81Zone3MsgReg8 = 0;	/* PWM steping rate in unit of PWM level percentage */
	FchParams->Imc.EcStruct.MsgFun81Zone3MsgReg9 = 0;

	/* IMC Function */
	FchParams->Imc.EcStruct.IMCFUNSupportBitMap = 0x333;//BIT0 | BIT4 |BIT8;

	/* NOTE:
	 * FchInitLateHwm will overwrite the EcStruct with EcDefaultMassege,
	 * AGESA put EcDefaultMassege as global data in ROM, so we can't overwride it.
	 * so we remove it from AGESA code. Please Seee FchInitLateHwm.
	 */

#else /* HWM fan control, the way not recommand */
	FchParams->Imc.ImcEnable = FALSE;
	FchParams->Hwm.HwMonitorEnable = TRUE;
	FchParams->Hwm.HwmFchtsiAutoPoll = TRUE;/* 1 enable, 0 disable TSI Auto Polling */

#endif /* CONFIG_HUDSON_IMC_FWM */
}

/**
 * Fch Oem setting callback
 *
 *  Configure platform specific Hudson device,
 *   such Azalia, SATA, GEC, IMC etc.
 */
AGESA_STATUS Fch_Oem_config(UINT32 Func, UINT32 FchData, VOID *ConfigPtr)
{
	FCH_RESET_DATA_BLOCK *FchParams = (FCH_RESET_DATA_BLOCK *)FchData;

	if (FchParams->StdHeader->Func == AMD_INIT_RESET) {
		//FCH_RESET_DATA_BLOCK *FchParams_reset =  (FCH_RESET_DATA_BLOCK *) FchData;
		printk(BIOS_DEBUG, "Fch OEM config in INIT RESET ");
		//FchParams_reset->EcChannel0 = TRUE; /* logical devicd 3 */
	} else if (FchParams->StdHeader->Func == AMD_INIT_ENV) {
		FCH_DATA_BLOCK *FchParams_env = (FCH_DATA_BLOCK *)FchData;
		printk(BIOS_DEBUG, "Fch OEM config in INIT ENV ");

		/* Azalia Controller OEM Codec Table Pointer */
		FchParams_env->Azalia.AzaliaOemCodecTablePtr = (CODEC_TBL_LIST *)(&ParmerCodecTableList[0]);
		/* Azalia Controller Front Panel OEM Table Pointer */

		/* Fan Control */
		oem_fan_control(FchParams_env);

		/* sata configuration */
	}
	printk(BIOS_DEBUG, "Done\n");

	return AGESA_SUCCESS;
}

AGESA_STATUS BiosHookGfxGetVbiosImage(UINT32 Func, UINT32 FchData, VOID *ConfigPrt)
{
	GFX_VBIOS_IMAGE_INFO  *pVbiosImageInfo = (GFX_VBIOS_IMAGE_INFO *)ConfigPrt;
	pVbiosImageInfo->ImagePtr = cbfs_find_file("pci"CONFIG_VGA_BIOS_ID".rom", CBFS_TYPE_OPTIONROM);
	/* printk(BIOS_DEBUG, "IMGptr=%x\n", pVbiosImageInfo->ImagePtr); */
	return pVbiosImageInfo->ImagePtr == NULL ? AGESA_WARNING : AGESA_SUCCESS;
}