1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
|
/* SPDX-License-Identifier: GPL-2.0-only */
#include <console/console.h>
#include <fsp/util.h>
#include <memory_info.h>
#include <soc/meminit.h>
#include <stddef.h> /* required for FspmUpd.h */
#include <fsp/soc_binding.h>
#include <string.h>
static size_t memory_size_mib;
size_t memory_in_system_in_mib(void)
{
return memory_size_mib;
}
static void accumulate_channel_memory(int density, int dual_rank)
{
/* For this platform LPDDR4 memory is 4 DRAM parts that are x32. 2 of
the parts are composed into a x64 memory channel. Thus there are 2
channels composed of 2 DRAMs. */
size_t sz;
/* Per rank density in Gb */
switch (density) {
case LP4_8Gb_DENSITY:
sz = 8;
break;
case LP4_12Gb_DENSITY:
sz = 12;
break;
case LP4_16Gb_DENSITY:
sz = 16;
break;
default:
printk(BIOS_ERR, "Invalid DRAM density: %d\n", density);
sz = 0;
break;
}
/* Two DRAMs per channel. */
sz *= 2;
/* Two ranks per channel. */
if (dual_rank)
sz *= 2;
sz *= GiB / MiB;
memory_size_mib += sz;
}
size_t iohole_in_mib(void)
{
return 2 * (GiB / MiB);
}
static void set_lpddr4_defaults(FSP_M_CONFIG *cfg)
{
uint8_t odt_config;
/* Enable memory down BGA since it's the only LPDDR4 packaging. */
cfg->Package = 1;
cfg->MemoryDown = 1;
cfg->ScramblerSupport = 1;
cfg->ChannelHashMask = 0x36;
cfg->SliceHashMask = 0x9;
cfg->InterleavedMode = 2;
cfg->ChannelsSlicesEnable = 0;
cfg->MinRefRate2xEnable = 0;
cfg->DualRankSupportEnable = 1;
/* Don't enforce a memory size limit. */
cfg->MemorySizeLimit = 0;
/* Field is in MiB units. */
cfg->LowMemoryMaxValue = iohole_in_mib();
/* No restrictions on memory above 4GiB */
cfg->HighMemoryMaxValue = 0;
/* Always default to attempt to use saved training data. */
cfg->DisableFastBoot = 0;
/* LPDDR4 is memory down so no SPD addresses. */
cfg->DIMM0SPDAddress = 0;
cfg->DIMM1SPDAddress = 0;
/* Clear all the rank enables. */
cfg->Ch0_RankEnable = 0x0;
cfg->Ch1_RankEnable = 0x0;
cfg->Ch2_RankEnable = 0x0;
cfg->Ch3_RankEnable = 0x0;
/*
* Set the device width to x16 which is half a LPDDR4 module as that's
* what the reference code expects.
*/
cfg->Ch0_DeviceWidth = 0x1;
cfg->Ch1_DeviceWidth = 0x1;
cfg->Ch2_DeviceWidth = 0x1;
cfg->Ch3_DeviceWidth = 0x1;
/*
* Enable bank hashing (bit 1) and rank interleaving (bit 0) with
* a 1KiB address mapping (bits 5:4).
*/
cfg->Ch0_Option = 0x3;
cfg->Ch1_Option = 0x3;
cfg->Ch2_Option = 0x3;
cfg->Ch3_Option = 0x3;
/* Set CA ODT with default setting of ODT pins of LPDDR4 modules pulled
up to 1.1V. */
odt_config = ODT_A_B_HIGH_HIGH;
cfg->Ch0_OdtConfig = odt_config;
cfg->Ch1_OdtConfig = odt_config;
cfg->Ch2_OdtConfig = odt_config;
cfg->Ch3_OdtConfig = odt_config;
}
struct speed_mapping {
int logical;
int fsp_value;
};
struct fsp_speed_profiles {
const struct speed_mapping *mappings;
size_t num_mappings;
};
static const struct speed_mapping apl_mappings[] = {
{ .logical = LP4_SPEED_1600, .fsp_value = 0x9 },
{ .logical = LP4_SPEED_2133, .fsp_value = 0xa },
{ .logical = LP4_SPEED_2400, .fsp_value = 0xb },
};
static const struct fsp_speed_profiles apl_profile = {
.mappings = apl_mappings,
.num_mappings = ARRAY_SIZE(apl_mappings),
};
static const struct speed_mapping glk_mappings[] = {
{ .logical = LP4_SPEED_1600, .fsp_value = 0x4 },
{ .logical = LP4_SPEED_2133, .fsp_value = 0x6 },
{ .logical = LP4_SPEED_2400, .fsp_value = 0x7 },
};
static const struct fsp_speed_profiles glk_profile = {
.mappings = glk_mappings,
.num_mappings = ARRAY_SIZE(glk_mappings),
};
static const struct fsp_speed_profiles *get_fsp_profile(void)
{
if (CONFIG(SOC_INTEL_GLK))
return &glk_profile;
else
return &apl_profile;
}
static int validate_speed(int speed)
{
const struct fsp_speed_profiles *fsp_profile = get_fsp_profile();
size_t i;
for (i = 0; i < fsp_profile->num_mappings; i++) {
/* Mapping exists. */
if (fsp_profile->mappings[i].logical == speed)
return speed;
}
printk(BIOS_WARNING, "Invalid LPDDR4 speed: %d\n", speed);
/* Default to slowest speed */
return LP4_SPEED_1600;
}
static int fsp_memory_profile(int speed)
{
const struct fsp_speed_profiles *fsp_profile = get_fsp_profile();
size_t i;
for (i = 0; i < fsp_profile->num_mappings; i++) {
if (fsp_profile->mappings[i].logical == speed)
return fsp_profile->mappings[i].fsp_value;
}
/* should never happen. */
return -1;
}
void meminit_lpddr4(FSP_M_CONFIG *cfg, int speed)
{
speed = validate_speed(speed);
printk(BIOS_INFO, "LP4DDR speed is %dMHz\n", speed);
cfg->Profile = fsp_memory_profile(speed);
set_lpddr4_defaults(cfg);
}
static void enable_logical_chan0(FSP_M_CONFIG *cfg,
int rank_density, int dual_rank,
const struct lpddr4_swizzle_cfg *scfg)
{
const struct lpddr4_chan_swizzle_cfg *chan;
/* Number of bytes to copy per DQS. */
const size_t sz = DQ_BITS_PER_DQS;
int rank_mask;
/*
* Logical channel 0 is comprised of physical channel 0 and 1.
* Physical channel 0 is comprised of the CH0_DQB signals.
* Physical channel 1 is comprised of the CH0_DQA signals.
*/
cfg->Ch0_DramDensity = rank_density;
cfg->Ch1_DramDensity = rank_density;
/* Enable ranks on both channels depending on dual rank option. */
rank_mask = dual_rank ? 0x3 : 0x1;
cfg->Ch0_RankEnable = rank_mask;
cfg->Ch1_RankEnable = rank_mask;
/*
* CH0_DQB byte lanes in the bit swizzle configuration field are
* not 1:1. The mapping within the swizzling field is:
* indices [0:7] - byte lane 1 (DQS1) DQ[8:15]
* indices [8:15] - byte lane 0 (DQS0) DQ[0:7]
* indices [16:23] - byte lane 3 (DQS3) DQ[24:31]
* indices [24:31] - byte lane 2 (DQS2) DQ[16:23]
*/
chan = &scfg->phys[LP4_PHYS_CH0B];
memcpy(&cfg->Ch0_Bit_swizzling[0], &chan->dqs[LP4_DQS1], sz);
memcpy(&cfg->Ch0_Bit_swizzling[8], &chan->dqs[LP4_DQS0], sz);
memcpy(&cfg->Ch0_Bit_swizzling[16], &chan->dqs[LP4_DQS3], sz);
memcpy(&cfg->Ch0_Bit_swizzling[24], &chan->dqs[LP4_DQS2], sz);
/*
* CH0_DQA byte lanes in the bit swizzle configuration field are 1:1.
*/
chan = &scfg->phys[LP4_PHYS_CH0A];
memcpy(&cfg->Ch1_Bit_swizzling[0], &chan->dqs[LP4_DQS0], sz);
memcpy(&cfg->Ch1_Bit_swizzling[8], &chan->dqs[LP4_DQS1], sz);
memcpy(&cfg->Ch1_Bit_swizzling[16], &chan->dqs[LP4_DQS2], sz);
memcpy(&cfg->Ch1_Bit_swizzling[24], &chan->dqs[LP4_DQS3], sz);
}
static void enable_logical_chan1(FSP_M_CONFIG *cfg,
int rank_density, int dual_rank,
const struct lpddr4_swizzle_cfg *scfg)
{
const struct lpddr4_chan_swizzle_cfg *chan;
/* Number of bytes to copy per DQS. */
const size_t sz = DQ_BITS_PER_DQS;
int rank_mask;
/*
* Logical channel 1 is comprised of physical channel 2 and 3.
* Physical channel 2 is comprised of the CH1_DQB signals.
* Physical channel 3 is comprised of the CH1_DQA signals.
*/
cfg->Ch2_DramDensity = rank_density;
cfg->Ch3_DramDensity = rank_density;
/* Enable ranks on both channels depending on dual rank option. */
rank_mask = dual_rank ? 0x3 : 0x1;
cfg->Ch2_RankEnable = rank_mask;
cfg->Ch3_RankEnable = rank_mask;
/*
* CH1_DQB byte lanes in the bit swizzle configuration field are
* not 1:1. The mapping within the swizzling field is:
* indices [0:7] - byte lane 1 (DQS1) DQ[8:15]
* indices [8:15] - byte lane 0 (DQS0) DQ[0:7]
* indices [16:23] - byte lane 3 (DQS3) DQ[24:31]
* indices [24:31] - byte lane 2 (DQS2) DQ[16:23]
*/
chan = &scfg->phys[LP4_PHYS_CH1B];
memcpy(&cfg->Ch2_Bit_swizzling[0], &chan->dqs[LP4_DQS1], sz);
memcpy(&cfg->Ch2_Bit_swizzling[8], &chan->dqs[LP4_DQS0], sz);
memcpy(&cfg->Ch2_Bit_swizzling[16], &chan->dqs[LP4_DQS3], sz);
memcpy(&cfg->Ch2_Bit_swizzling[24], &chan->dqs[LP4_DQS2], sz);
/*
* CH1_DQA byte lanes in the bit swizzle configuration field are 1:1.
*/
chan = &scfg->phys[LP4_PHYS_CH1A];
memcpy(&cfg->Ch3_Bit_swizzling[0], &chan->dqs[LP4_DQS0], sz);
memcpy(&cfg->Ch3_Bit_swizzling[8], &chan->dqs[LP4_DQS1], sz);
memcpy(&cfg->Ch3_Bit_swizzling[16], &chan->dqs[LP4_DQS2], sz);
memcpy(&cfg->Ch3_Bit_swizzling[24], &chan->dqs[LP4_DQS3], sz);
}
void meminit_lpddr4_enable_channel(FSP_M_CONFIG *cfg, int logical_chan,
int rank_density, int dual_rank,
const struct lpddr4_swizzle_cfg *scfg)
{
if (rank_density < LP4_8Gb_DENSITY ||
rank_density > LP4_16Gb_DENSITY) {
printk(BIOS_ERR, "Invalid LPDDR4 density: %d\n", rank_density);
return;
}
switch (logical_chan) {
case LP4_LCH0:
enable_logical_chan0(cfg, rank_density, dual_rank, scfg);
break;
case LP4_LCH1:
enable_logical_chan1(cfg, rank_density, dual_rank, scfg);
break;
default:
printk(BIOS_ERR, "Invalid logical channel: %d\n", logical_chan);
return;
}
accumulate_channel_memory(rank_density, dual_rank);
}
void meminit_lpddr4_by_sku(FSP_M_CONFIG *cfg,
const struct lpddr4_cfg *lpcfg, size_t sku_id)
{
const struct lpddr4_sku *sku;
if (sku_id >= lpcfg->num_skus) {
printk(BIOS_ERR, "Too few LPDDR4 SKUs: 0x%zx/0x%zx\n",
sku_id, lpcfg->num_skus);
return;
}
printk(BIOS_INFO, "LPDDR4 SKU id = 0x%zx\n", sku_id);
sku = &lpcfg->skus[sku_id];
meminit_lpddr4(cfg, sku->speed);
if (sku->ch0_rank_density) {
printk(BIOS_INFO, "LPDDR4 Ch0 density = %d\n",
sku->ch0_rank_density);
meminit_lpddr4_enable_channel(cfg, LP4_LCH0,
sku->ch0_rank_density,
sku->ch0_dual_rank,
lpcfg->swizzle_config);
}
if (sku->ch1_rank_density) {
printk(BIOS_INFO, "LPDDR4 Ch1 density = %d\n",
sku->ch1_rank_density);
meminit_lpddr4_enable_channel(cfg, LP4_LCH1,
sku->ch1_rank_density,
sku->ch1_dual_rank,
lpcfg->swizzle_config);
}
cfg->PeriodicRetrainingDisable = sku->disable_periodic_retraining;
}
uint8_t fsp_memory_soc_version(void)
{
/* Bump this value when the memory configuration parameters change. */
return 1;
}
|