summaryrefslogtreecommitdiff
path: root/src/soc/qualcomm/qcs405/clock.c
blob: 369bcdf531f9b090f5b720cace1212682e39b0eb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
 /* This file is part of the coreboot project.
 *
 * Copyright 2018 Qualcomm Inc.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 and
 * only version 2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <device/mmio.h>
#include <types.h>
#include <delay.h>
#include <timestamp.h>
#include <commonlib/helpers.h>
#include <string.h>
#include <soc/clock.h>

#define DIV(div) (div ? (2*div - 1) : 0)
#define HALF_DIVIDER(div2x)  (div2x ? (div2x - 1) : 0)

struct clock_config uart_cfg[] = {
	{
		.hz = 1843200,
		.hw_ctl = 0x0,
		.src = SRC_GPLL0_MAIN_800MHZ,
		.div = DIV(0),
		.m = 36,
		.n = 15625,
		.d_2 = 15625,
	},
	{
		.hz = 3686400,
		.hw_ctl = 0x0,
		.src = SRC_GPLL0_MAIN_800MHZ,
		.div = DIV(0),
		.m = 72,
		.n = 15625,
		.d_2 = 15625,
	}
};

struct clock_config i2c_cfg[] = {
	{
		.hz = 19200000,
		.hw_ctl = 0x0,
		.src = SRC_XO_19_2MHZ,
		.div = DIV(0),
	},
	{
		.hz = 50000000,
		.hw_ctl = 0x0,
		.src = SRC_GPLL0_MAIN_800MHZ,
		.div = DIV(32),
	}
};

struct clock_config spi_cfg[] = {
	{
		.hz = 1000000,
		.hw_ctl = 0x0,
		.src = SRC_XO_19_2MHZ,
		.div = DIV(48),
	},
	{
		.hz = 7372800,
		.src = SRC_GPLL0_MAIN_800MHZ,
		.div = DIV(1),
		.m = 144,
		.n = 15625,
		.d_2 = 15625,
	},
	{
		.hz = 19200000,
		.hw_ctl = 0x0,
		.src = SRC_XO_19_2MHZ,
		.div = DIV(0),
	},
	{
		.hz = 30000000,
		.hw_ctl = 0x0,
		.src = SRC_XO_19_2MHZ,
		.div = DIV(0),
	},
	{
		.hz = 50000000,
		.hw_ctl = 0x0,
		.src = SRC_GPLL0_MAIN_800MHZ,
		.div = DIV(32),
	}
};

static int clock_configure_gpll0(void)
{
	/* Keep existing GPLL0 configuration, in RUN mode @800Mhz. */
	setbits_le32(&gcc->gpll0.user_ctl,
			1 << CLK_CTL_GPLL_PLLOUT_LV_EARLY_SHFT |
			1 << CLK_CTL_GPLL_PLLOUT_AUX2_SHFT |
			1 << CLK_CTL_GPLL_PLLOUT_AUX_SHFT |
			1 << CLK_CTL_GPLL_PLLOUT_MAIN_SHFT);
	return 0;
}

static int clock_configure_mnd(struct qcs405_clock *clk, uint32_t m, uint32_t n,
				uint32_t d_2)
{
	uint32_t reg_val;

	/* Configure Root Clock Generator(RCG) for Dual Edge Mode */
	reg_val = read32(&clk->rcg.cfg);
	reg_val |= (2 << CLK_CTL_CFG_MODE_SHFT);
	write32(&clk->rcg.cfg, reg_val);

	/* Set M/N/D config */
	write32(&clk->m, m & CLK_CTL_RCG_MND_BMSK);
	write32(&clk->n, ~(n-m) & CLK_CTL_RCG_MND_BMSK);
	write32(&clk->d_2, ~(d_2) & CLK_CTL_RCG_MND_BMSK);

	return 0;
}

static int clock_configure(struct qcs405_clock *clk,
				struct clock_config *clk_cfg,
				uint32_t hz, uint32_t num_perfs)
{
	uint32_t reg_val;
	uint32_t idx;

	for (idx = 0; idx < num_perfs; idx++)
		if (hz <= clk_cfg[idx].hz)
			break;

	reg_val = (clk_cfg[idx].src << CLK_CTL_CFG_SRC_SEL_SHFT) |
			(clk_cfg[idx].div << CLK_CTL_CFG_SRC_DIV_SHFT);

	/* Set clock config */
	write32(&clk->rcg.cfg, reg_val);

	if (clk_cfg[idx].m != 0)
		clock_configure_mnd(clk, clk_cfg[idx].m, clk_cfg[idx].n,
				clk_cfg[idx].d_2);

	/* Commit config to RCG*/
	setbits_le32(&clk->rcg.cmd, BIT(CLK_CTL_CMD_UPDATE_SHFT));

	return 0;
}

static bool clock_is_off(void *cbcr_addr)
{
	return (read32(cbcr_addr) & CLK_CTL_CBC_CLK_OFF_BMSK);
}

static int clock_enable_vote(void *cbcr_addr, void *vote_addr,
				uint32_t vote_bit)
{

	/* Set clock vote bit */
	setbits_le32(vote_addr, BIT(vote_bit));

	/* Ensure clock is enabled */
	while (clock_is_off(cbcr_addr));

	return 0;
}

static int clock_enable(void *cbcr_addr)
{

	/* Set clock enable bit */
	setbits_le32(cbcr_addr, BIT(CLK_CTL_CBC_CLK_EN_SHFT));

	/* Ensure clock is enabled */
	while (clock_is_off(cbcr_addr))
		;

	return 0;
}

static int clock_disable(void *cbcr_addr)
{

	/* Set clock enable bit */
	clrbits_le32(cbcr_addr, BIT(CLK_CTL_CBC_CLK_EN_SHFT));
	return 0;
}

int clock_reset_bcr(void *bcr_addr, bool reset)
{
	struct qcs405_bcr *bcr = bcr_addr;

	if (reset)
		setbits_le32(&bcr->bcr, BIT(CLK_CTL_BCR_BLK_ARES_SHFT));
	else
		clrbits_le32(&bcr->bcr, BIT(CLK_CTL_BCR_BLK_ARES_SHFT));

	return 0;
}

void clock_configure_uart(uint32_t hz)
{
	struct qcs405_clock *uart_clk = (struct qcs405_clock *)
					&gcc->blsp1_uart2_apps_clk;

	clock_configure(uart_clk, uart_cfg, hz, ARRAY_SIZE(uart_cfg));
}

void clock_configure_spi(int blsp, uint32_t hz)
{
	struct qcs405_clock *spi_clk = (blsp == 1) ?
		(struct qcs405_clock *)&gcc->blsp1_qup4_spi_clk
		: (struct qcs405_clock *)&gcc->blsp2_qup0_spi_clk;

	clock_configure(spi_clk, spi_cfg, hz, ARRAY_SIZE(spi_cfg));
}

void clock_enable_uart(void)
{
	clock_enable(&gcc->blsp1_uart2_apps_cbcr);
}

void clock_disable_uart(void)
{
	clock_disable(&gcc->blsp1_uart2_apps_cbcr);
}

void clock_enable_spi(int blsp)
{
	(blsp == 1) ? clock_enable(&gcc->blsp1_qup4_spi_apps_cbcr)
	: clock_enable(&gcc->blsp2_qup0_spi_apps_cbcr);
}

void clock_disable_spi(int blsp)
{
	(blsp == 1) ? clock_disable(&gcc->blsp1_qup4_spi_apps_cbcr)
	: clock_disable(&gcc->blsp2_qup0_spi_apps_cbcr);
}

void clock_init(void)
{

	clock_configure_gpll0();

	clock_configure(&gcc->blsp1_uart2_apps_clk, uart_cfg, 1843200,
			ARRAY_SIZE(uart_cfg));

	clock_enable(&gcc->blsp1_uart2_apps_cbcr);
	clock_enable_vote(&gcc->blsp1_ahb_cbcr,
				&gcc->gcc_apcs_clock_branch_en_vote,
				BLSP1_AHB_CLK_ENA);

	clock_configure(&gcc->blsp1_qup4_spi_clk, spi_cfg, 1000000,
			ARRAY_SIZE(spi_cfg));
	clock_enable(&gcc->blsp1_qup4_spi_apps_cbcr);

	clock_configure(&gcc->blsp2_qup0_spi_clk, spi_cfg, 50000000,
			ARRAY_SIZE(spi_cfg));
	clock_enable(&gcc->blsp2_qup0_spi_apps_cbcr);
	clock_enable_vote(&gcc->blsp2_ahb_cbcr,
				&gcc->gcc_apcs_clock_branch_en_vote,
				BLSP2_AHB_CLK_ENA);
}