summaryrefslogtreecommitdiff
path: root/src/southbridge/intel/common/spi.c
blob: 380940c73932aff5727cc1a60433bc9e9ad3a54e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
/* SPDX-License-Identifier: GPL-2.0-or-later */

#define __SIMPLE_DEVICE__

/* This file is derived from the flashrom project. */

#include <stdint.h>
#include <string.h>
#include <bootstate.h>
#include <commonlib/helpers.h>
#include <delay.h>
#include <device/mmio.h>
#include <device/pci_ops.h>
#include <console/console.h>
#include <device/device.h>
#include <device/pci.h>
#include <spi_flash.h>
#include <spi-generic.h>
#include <timer.h>

#include "spi.h"

#define HSFC_FCYCLE_OFF		1	/* 1-2: FLASH Cycle */
#define HSFC_FCYCLE		(0x3 << HSFC_FCYCLE_OFF)
#define HSFC_FDBC_OFF		8	/* 8-13: Flash Data Byte Count */
#define HSFC_FDBC		(0x3f << HSFC_FDBC_OFF)

static int spi_is_multichip(void);

struct ich7_spi_regs {
	uint16_t spis;
	uint16_t spic;
	uint32_t spia;
	uint64_t spid[8];
	uint64_t _pad;
	uint32_t bbar;
	uint16_t preop;
	uint16_t optype;
	uint8_t opmenu[8];
	uint32_t pbr[3];
} __packed;

struct ich9_spi_regs {
	uint32_t bfpr;
	uint16_t hsfs;
	uint16_t hsfc;
	uint32_t faddr;
	uint32_t _reserved0;
	uint32_t fdata[16];
	uint32_t frap;
	uint32_t freg[5];
	uint32_t _reserved1[3];
	uint32_t pr[5];
	uint32_t _reserved2[2];
	uint8_t ssfs;
	uint8_t ssfc[3];
	uint16_t preop;
	uint16_t optype;
	uint8_t opmenu[8];
	uint32_t bbar;
	uint8_t _reserved3[12];
	uint32_t fdoc;
	uint32_t fdod;
	uint8_t _reserved4[8];
	uint32_t afc;
	uint32_t lvscc;
	uint32_t uvscc;
	uint8_t _reserved5[4];
	uint32_t fpb;
	uint8_t _reserved6[28];
	uint32_t srdl;
	uint32_t srdc;
	uint32_t srd;
} __packed;

struct ich_spi_controller {
	int locked;
	uint32_t flmap0;
	uint32_t flcomp;
	uint32_t hsfs;

	union {
		struct ich9_spi_regs *ich9_spi;
		struct ich7_spi_regs *ich7_spi;
	};
	uint8_t *opmenu;
	int menubytes;
	uint16_t *preop;
	uint16_t *optype;
	uint32_t *addr;
	uint8_t *data;
	unsigned int databytes;
	uint8_t *status;
	uint16_t *control;
	uint32_t *bbar;
	uint32_t *fpr;
	uint8_t fpr_max;
};

static struct ich_spi_controller cntlr;

enum {
	SPIS_SCIP =		0x0001,
	SPIS_GRANT =		0x0002,
	SPIS_CDS =		0x0004,
	SPIS_FCERR =		0x0008,
	SSFS_AEL =		0x0010,
	SPIS_LOCK =		0x8000,
	SPIS_RESERVED_MASK =	0x7ff0,
	SSFS_RESERVED_MASK =	0x7fe2
};

enum {
	SPIC_SCGO =		0x000002,
	SPIC_ACS =		0x000004,
	SPIC_SPOP =		0x000008,
	SPIC_DBC =		0x003f00,
	SPIC_DS =		0x004000,
	SPIC_SME =		0x008000,
	SSFC_SCF_MASK =		0x070000,
	SSFC_RESERVED =		0xf80000
};

enum {
	HSFS_FDONE =		0x0001,
	HSFS_FCERR =		0x0002,
	HSFS_AEL =		0x0004,
	HSFS_BERASE_MASK =	0x0018,
	HSFS_BERASE_SHIFT =	3,
	HSFS_SCIP =		0x0020,
	HSFS_FDOPSS =		0x2000,
	HSFS_FDV =		0x4000,
	HSFS_FLOCKDN =		0x8000
};

enum {
	HSFC_FGO =		0x0001,
	HSFC_FCYCLE_MASK =	0x0006,
	HSFC_FCYCLE_SHIFT =	1,
	HSFC_FDBC_MASK =	0x3f00,
	HSFC_FDBC_SHIFT =	8,
	HSFC_FSMIE =		0x8000
};

enum {
	SPI_OPCODE_TYPE_READ_NO_ADDRESS =	0,
	SPI_OPCODE_TYPE_WRITE_NO_ADDRESS =	1,
	SPI_OPCODE_TYPE_READ_WITH_ADDRESS =	2,
	SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS =	3
};

#if CONFIG(DEBUG_SPI_FLASH)

static u8 readb_(const void *addr)
{
	u8 v = read8(addr);

	printk(BIOS_DEBUG, "read %2.2x from %4.4x\n",
	       v, ((unsigned int) addr & 0xffff) - 0xf020);
	return v;
}

static u16 readw_(const void *addr)
{
	u16 v = read16(addr);

	printk(BIOS_DEBUG, "read %4.4x from %4.4x\n",
	       v, ((unsigned int) addr & 0xffff) - 0xf020);
	return v;
}

static u32 readl_(const void *addr)
{
	u32 v = read32(addr);

	printk(BIOS_DEBUG, "read %8.8x from %4.4x\n",
	       v, ((unsigned int) addr & 0xffff) - 0xf020);
	return v;
}

static void writeb_(u8 b, void *addr)
{
	write8(addr, b);
	printk(BIOS_DEBUG, "wrote %2.2x to %4.4x\n",
	       b, ((unsigned int) addr & 0xffff) - 0xf020);
}

static void writew_(u16 b, void *addr)
{
	write16(addr, b);
	printk(BIOS_DEBUG, "wrote %4.4x to %4.4x\n",
	       b, ((unsigned int) addr & 0xffff) - 0xf020);
}

static void writel_(u32 b, void *addr)
{
	write32(addr, b);
	printk(BIOS_DEBUG, "wrote %8.8x to %4.4x\n",
	       b, ((unsigned int) addr & 0xffff) - 0xf020);
}

#else /* CONFIG_DEBUG_SPI_FLASH ^^^ enabled  vvv NOT enabled */

#define readb_(a) read8(a)
#define readw_(a) read16(a)
#define readl_(a) read32(a)
#define writeb_(val, addr) write8(addr, val)
#define writew_(val, addr) write16(addr, val)
#define writel_(val, addr) write32(addr, val)

#endif  /* CONFIG_DEBUG_SPI_FLASH ^^^ NOT enabled */

static void write_reg(const void *value, void *dest, uint32_t size)
{
	const uint8_t *bvalue = value;
	uint8_t *bdest = dest;

	while (size >= 4) {
		writel_(*(const uint32_t *)bvalue, bdest);
		bdest += 4; bvalue += 4; size -= 4;
	}
	while (size) {
		writeb_(*bvalue, bdest);
		bdest++; bvalue++; size--;
	}
}

static void read_reg(const void *src, void *value, uint32_t size)
{
	const uint8_t *bsrc = src;
	uint8_t *bvalue = value;

	while (size >= 4) {
		*(uint32_t *)bvalue = readl_(bsrc);
		bsrc += 4; bvalue += 4; size -= 4;
	}
	while (size) {
		*bvalue = readb_(bsrc);
		bsrc++; bvalue++; size--;
	}
}

static void ich_set_bbar(uint32_t minaddr)
{
	const uint32_t bbar_mask = 0x00ffff00;
	uint32_t ichspi_bbar;

	minaddr &= bbar_mask;
	ichspi_bbar = readl_(cntlr.bbar) & ~bbar_mask;
	ichspi_bbar |= minaddr;
	writel_(ichspi_bbar, cntlr.bbar);
}

#if CONFIG(SOUTHBRIDGE_INTEL_I82801GX)
#define MENU_BYTES member_size(struct ich7_spi_regs, opmenu)
#else
#define MENU_BYTES member_size(struct ich9_spi_regs, opmenu)
#endif

#define RCBA 0xf0
#define SBASE 0x54

static void *get_spi_bar(pci_devfn_t dev)
{
	uintptr_t rcba; /* Root Complex Register Block */
	uintptr_t sbase;

	if (CONFIG(SOUTHBRIDGE_INTEL_I82801GX)) {
		rcba = pci_read_config32(dev, RCBA);
		return (void *)((rcba & 0xffffc000) + 0x3020);
	}
	if (CONFIG(SOUTHBRIDGE_INTEL_COMMON_SPI_SILVERMONT)) {
		sbase = pci_read_config32(dev, SBASE);
		sbase &= ~0x1ff;
		return (void *)sbase;
	}
	if (CONFIG(SOUTHBRIDGE_INTEL_COMMON_SPI_ICH9)) {
		rcba = pci_read_config32(dev, RCBA);
		return (void *)((rcba & 0xffffc000) + 0x3800);
	}
}

void spi_init(void)
{
	uint8_t bios_cntl;
	struct ich9_spi_regs *ich9_spi;
	struct ich7_spi_regs *ich7_spi;
	uint16_t hsfs;

	pci_devfn_t dev = PCI_DEV(0, 31, 0);

	if (CONFIG(SOUTHBRIDGE_INTEL_I82801GX)) {
		ich7_spi = get_spi_bar(dev);
		cntlr.ich7_spi = ich7_spi;
		cntlr.opmenu = ich7_spi->opmenu;
		cntlr.menubytes = sizeof(ich7_spi->opmenu);
		cntlr.optype = &ich7_spi->optype;
		cntlr.addr = &ich7_spi->spia;
		cntlr.data = (uint8_t *)ich7_spi->spid;
		cntlr.databytes = sizeof(ich7_spi->spid);
		cntlr.status = (uint8_t *)&ich7_spi->spis;
		cntlr.control = &ich7_spi->spic;
		cntlr.bbar = &ich7_spi->bbar;
		cntlr.preop = &ich7_spi->preop;
		cntlr.fpr = &ich7_spi->pbr[0];
		cntlr.fpr_max = 3;
	} else {
		ich9_spi = get_spi_bar(dev);
		cntlr.ich9_spi = ich9_spi;
		hsfs = readw_(&ich9_spi->hsfs);
		cntlr.hsfs = hsfs;
		cntlr.opmenu = ich9_spi->opmenu;
		cntlr.menubytes = sizeof(ich9_spi->opmenu);
		cntlr.optype = &ich9_spi->optype;
		cntlr.addr = &ich9_spi->faddr;
		cntlr.data = (uint8_t *)ich9_spi->fdata;
		cntlr.databytes = sizeof(ich9_spi->fdata);
		cntlr.status = &ich9_spi->ssfs;
		cntlr.control = (uint16_t *)ich9_spi->ssfc;
		cntlr.bbar = &ich9_spi->bbar;
		cntlr.preop = &ich9_spi->preop;
		cntlr.fpr = &ich9_spi->pr[0];
		cntlr.fpr_max = 5;

		if (cntlr.hsfs & HSFS_FDV) {
			writel_(4, &ich9_spi->fdoc);
			cntlr.flmap0 = readl_(&ich9_spi->fdod);
			writel_(0x1000, &ich9_spi->fdoc);
			cntlr.flcomp = readl_(&ich9_spi->fdod);
		}
	}

	ich_set_bbar(0);

	if (CONFIG(SOUTHBRIDGE_INTEL_I82801GX) || CONFIG(SOUTHBRIDGE_INTEL_COMMON_SPI_ICH9)) {
		/* Disable the BIOS write protect so write commands are allowed. */
		bios_cntl = pci_read_config8(dev, 0xdc);
		/* Deassert SMM BIOS Write Protect Disable. */
		bios_cntl &= ~(1 << 5);
		pci_write_config8(dev, 0xdc, bios_cntl | 0x1);
	}
}

static int spi_locked(void)
{
	if (CONFIG(SOUTHBRIDGE_INTEL_I82801GX)) {
		return !!(readw_(&cntlr.ich7_spi->spis) & HSFS_FLOCKDN);
	} else {
		return !!(readw_(&cntlr.ich9_spi->hsfs) & HSFS_FLOCKDN);
	}
}

static void spi_init_cb(void *unused)
{
	spi_init();
}

BOOT_STATE_INIT_ENTRY(BS_DEV_INIT, BS_ON_ENTRY, spi_init_cb, NULL);

typedef struct spi_transaction {
	const uint8_t *out;
	uint32_t bytesout;
	uint8_t *in;
	uint32_t bytesin;
	uint8_t type;
	uint8_t opcode;
	uint32_t offset;
} spi_transaction;

static inline void spi_use_out(spi_transaction *trans, unsigned int bytes)
{
	trans->out += bytes;
	trans->bytesout -= bytes;
}

static inline void spi_use_in(spi_transaction *trans, unsigned int bytes)
{
	trans->in += bytes;
	trans->bytesin -= bytes;
}

static void spi_setup_type(spi_transaction *trans)
{
	trans->type = 0xFF;

	/* Try to guess spi type from read/write sizes. */
	if (trans->bytesin == 0) {
		if (trans->bytesout > 4)
			/*
			 * If bytesin = 0 and bytesout > 4, we presume this is
			 * a write data operation, which is accompanied by an
			 * address.
			 */
			trans->type = SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS;
		else
			trans->type = SPI_OPCODE_TYPE_WRITE_NO_ADDRESS;
		return;
	}

	if (trans->bytesout == 1) { /* and bytesin is > 0 */
		trans->type = SPI_OPCODE_TYPE_READ_NO_ADDRESS;
		return;
	}

	if (trans->bytesout == 4) { /* and bytesin is > 0 */
		trans->type = SPI_OPCODE_TYPE_READ_WITH_ADDRESS;
	}

	/* Fast read command is called with 5 bytes instead of 4 */
	if (trans->out[0] == SPI_OPCODE_FAST_READ && trans->bytesout == 5) {
		trans->type = SPI_OPCODE_TYPE_READ_WITH_ADDRESS;
		--trans->bytesout;
	}
}

static int spi_setup_opcode(spi_transaction *trans)
{
	uint16_t optypes;
	uint8_t opmenu[MENU_BYTES];

	trans->opcode = trans->out[0];
	spi_use_out(trans, 1);
	if (!spi_locked()) {
		/* The lock is off, so just use index 0. */
		writeb_(trans->opcode, cntlr.opmenu);
		optypes = readw_(cntlr.optype);
		optypes = (optypes & 0xfffc) | (trans->type & 0x3);
		writew_(optypes, cntlr.optype);
		return 0;
	}

	/* The lock is on. See if what we need is on the menu. */
	uint8_t optype;
	uint16_t opcode_index;

	/* Write Enable is handled as atomic prefix */
	if (trans->opcode == SPI_OPCODE_WREN)
		return 0;

	read_reg(cntlr.opmenu, opmenu, sizeof(opmenu));
	for (opcode_index = 0; opcode_index < ARRAY_SIZE(opmenu); opcode_index++) {
		if (opmenu[opcode_index] == trans->opcode)
			break;
	}

	if (opcode_index == ARRAY_SIZE(opmenu)) {
		printk(BIOS_DEBUG, "ICH SPI: Opcode %x not found\n",
			trans->opcode);
		return -1;
	}

	optypes = readw_(cntlr.optype);
	optype = (optypes >> (opcode_index * 2)) & 0x3;
	if (trans->type == SPI_OPCODE_TYPE_WRITE_NO_ADDRESS &&
		optype == SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS &&
		trans->bytesout >= 3) {
		/* We guessed wrong earlier. Fix it up. */
		trans->type = optype;
	}
	if (optype != trans->type) {
		printk(BIOS_DEBUG, "ICH SPI: Transaction doesn't fit type %d\n",
			optype);
		return -1;
	}
	return opcode_index;
}

static int spi_setup_offset(spi_transaction *trans)
{
	/* Separate the SPI address and data. */
	switch (trans->type) {
	case SPI_OPCODE_TYPE_READ_NO_ADDRESS:
	case SPI_OPCODE_TYPE_WRITE_NO_ADDRESS:
		return 0;
	case SPI_OPCODE_TYPE_READ_WITH_ADDRESS:
	case SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS:
		trans->offset = ((uint32_t)trans->out[0] << 16) |
				((uint32_t)trans->out[1] << 8) |
				((uint32_t)trans->out[2] << 0);
		spi_use_out(trans, 3);
		return 1;
	default:
		printk(BIOS_DEBUG, "Unrecognized SPI transaction type %#x\n", trans->type);
		return -1;
	}
}

/*
 * Wait for up to 6s til status register bit(s) turn 1 (in case wait_til_set
 * below is True) or 0. In case the wait was for the bit(s) to set - write
 * those bits back, which would cause resetting them.
 *
 * Return the last read status value on success or -1 on failure.
 */
static int ich_status_poll(u16 bitmask, int wait_til_set)
{
	int timeout = 600000; /* This will result in 6 seconds */
	u16 status = 0;

	while (timeout--) {
		status = readw_(cntlr.status);
		if (wait_til_set ^ ((status & bitmask) == 0)) {
			if (wait_til_set)
				writew_((status & bitmask), cntlr.status);
			return status;
		}
		udelay(10);
	}

	printk(BIOS_DEBUG, "ICH SPI: SCIP timeout, read %x, bitmask %x\n",
		status, bitmask);
	return -1;
}

static int spi_is_multichip(void)
{
	if (!(cntlr.hsfs & HSFS_FDV))
		return 0;
	return !!((cntlr.flmap0 >> 8) & 3);
}

static int spi_ctrlr_xfer(const struct spi_slave *slave, const void *dout,
		size_t bytesout, void *din, size_t bytesin)
{
	uint16_t control;
	int16_t opcode_index;
	int with_address;
	int status;

	spi_transaction trans = {
		dout, bytesout,
		din, bytesin,
		0xff, 0xff, 0
	};

	/* There has to always at least be an opcode. */
	if (!bytesout || !dout) {
		printk(BIOS_DEBUG, "ICH SPI: No opcode for transfer\n");
		return -1;
	}
	/* Make sure if we read something we have a place to put it. */
	if (bytesin != 0 && !din) {
		printk(BIOS_DEBUG, "ICH SPI: Read but no target buffer\n");
		return -1;
	}

	if (ich_status_poll(SPIS_SCIP, 0) == -1)
		return -1;

	writew_(SPIS_CDS | SPIS_FCERR, cntlr.status);

	spi_setup_type(&trans);
	if ((opcode_index = spi_setup_opcode(&trans)) < 0)
		return -1;
	if ((with_address = spi_setup_offset(&trans)) < 0)
		return -1;

	if (trans.opcode == SPI_OPCODE_WREN) {
		/*
		 * Treat Write Enable as Atomic Pre-Op if possible
		 * in order to prevent the Management Engine from
		 * issuing a transaction between WREN and DATA.
		 */
		if (!spi_locked())
			writew_(trans.opcode, cntlr.preop);
		return 0;
	}

	/* Preset control fields */
	control = SPIC_SCGO | ((opcode_index & 0x07) << 4);

	/* Issue atomic preop cycle if needed */
	if (readw_(cntlr.preop))
		control |= SPIC_ACS;

	if (!trans.bytesout && !trans.bytesin) {
		/* SPI addresses are 24 bit only */
		if (with_address)
			writel_(trans.offset & 0x00FFFFFF, cntlr.addr);

		/*
		 * This is a 'no data' command (like Write Enable), its
		 * bitesout size was 1, decremented to zero while executing
		 * spi_setup_opcode() above. Tell the chip to send the
		 * command.
		 */
		writew_(control, cntlr.control);

		/* wait for the result */
		status = ich_status_poll(SPIS_CDS | SPIS_FCERR, 1);
		if (status == -1)
			return -1;

		if (status & SPIS_FCERR) {
			printk(BIOS_DEBUG, "ICH SPI: Command transaction error\n");
			return -1;
		}

		goto spi_xfer_exit;
	}

	/*
	 * Check if this is a write command attempting to transfer more bytes
	 * than the controller can handle. Iterations for writes are not
	 * supported here because each SPI write command needs to be preceded
	 * and followed by other SPI commands, and this sequence is controlled
	 * by the SPI chip driver.
	 */
	if (trans.bytesout > cntlr.databytes) {
		printk(BIOS_DEBUG, "ICH SPI: Too much to write. Does your SPI chip driver use"
		     " spi_crop_chunk()?\n");
		return -1;
	}

	/*
	 * Read or write up to databytes bytes at a time until everything has
	 * been sent.
	 */
	while (trans.bytesout || trans.bytesin) {
		uint32_t data_length;

		/* SPI addresses are 24 bit only */
		writel_(trans.offset & 0x00FFFFFF, cntlr.addr);

		if (trans.bytesout)
			data_length = MIN(trans.bytesout, cntlr.databytes);
		else
			data_length = MIN(trans.bytesin, cntlr.databytes);

		/* Program data into FDATA0 to N */
		if (trans.bytesout) {
			write_reg(trans.out, cntlr.data, data_length);
			spi_use_out(&trans, data_length);
			if (with_address)
				trans.offset += data_length;
		}

		/* Add proper control fields' values */
		control &= ~((cntlr.databytes - 1) << 8);
		control |= SPIC_DS;
		control |= (data_length - 1) << 8;

		/* write it */
		writew_(control, cntlr.control);

		/* Wait for Cycle Done Status or Flash Cycle Error. */
		status = ich_status_poll(SPIS_CDS | SPIS_FCERR, 1);
		if (status == -1)
			return -1;

		if (status & SPIS_FCERR) {
			printk(BIOS_DEBUG, "ICH SPI: Data transaction error\n");
			return -1;
		}

		if (trans.bytesin) {
			read_reg(cntlr.data, trans.in, data_length);
			spi_use_in(&trans, data_length);
			if (with_address)
				trans.offset += data_length;
		}
	}

spi_xfer_exit:
	/* Clear atomic preop now that xfer is done */
	writew_(0, cntlr.preop);

	return 0;
}

/* Sets FLA in FADDR to (addr & 0x01FFFFFF) without touching other bits. */
static void ich_hwseq_set_addr(uint32_t addr)
{
	uint32_t addr_old = readl_(&cntlr.ich9_spi->faddr) & ~0x01FFFFFF;

	writel_((addr & 0x01FFFFFF) | addr_old, &cntlr.ich9_spi->faddr);
}

/* Polls for Cycle Done Status, Flash Cycle Error or timeout in 8 us intervals.
   Resets all error flags in HSFS.
   Returns 0 if the cycle completes successfully without errors within
   timeout us, 1 on errors. */
static int ich_hwseq_wait_for_cycle_complete(unsigned int timeout,
					     unsigned int len)
{
	uint16_t hsfs;
	uint32_t addr;

	timeout /= 8; /* scale timeout duration to counter */
	while ((((hsfs = readw_(&cntlr.ich9_spi->hsfs)) &
		 (HSFS_FDONE | HSFS_FCERR)) == 0) &&
	       --timeout) {
		udelay(8);
	}
	writew_(readw_(&cntlr.ich9_spi->hsfs), &cntlr.ich9_spi->hsfs);

	if (!timeout) {
		uint16_t hsfc;
		addr = readl_(&cntlr.ich9_spi->faddr) & 0x01FFFFFF;
		hsfc = readw_(&cntlr.ich9_spi->hsfc);
		printk(BIOS_ERR, "Transaction timeout between offset 0x%08x and "
		       "0x%08x (= 0x%08x + %d) HSFC=%x HSFS=%x!\n",
		       addr, addr + len - 1, addr, len - 1,
		       hsfc, hsfs);
		return 1;
	}

	if (hsfs & HSFS_FCERR) {
		uint16_t hsfc;
		addr = readl_(&cntlr.ich9_spi->faddr) & 0x01FFFFFF;
		hsfc = readw_(&cntlr.ich9_spi->hsfc);
		printk(BIOS_ERR, "Transaction error between offset 0x%08x and "
		       "0x%08x (= 0x%08x + %d) HSFC=%x HSFS=%x!\n",
		       addr, addr + len - 1, addr, len - 1,
		       hsfc, hsfs);
		return 1;
	}
	return 0;
}


static int ich_hwseq_erase(const struct spi_flash *flash, u32 offset,
			size_t len)
{
	u32 start, end, erase_size;
	int ret;
	uint16_t hsfc;
	unsigned int timeout = 1000 * USECS_PER_MSEC; /* 1 second timeout */

	erase_size = flash->sector_size;
	if (offset % erase_size || len % erase_size) {
		printk(BIOS_ERR, "SF: Erase offset/length not multiple of erase size\n");
		return -1;
	}

	ret = spi_claim_bus(&flash->spi);
	if (ret) {
		printk(BIOS_ERR, "SF: Unable to claim SPI bus\n");
		return ret;
	}

	start = offset;
	end = start + len;

	while (offset < end) {
		/* make sure FDONE, FCERR, AEL are cleared by writing 1 to them */
		writew_(readw_(&cntlr.ich9_spi->hsfs), &cntlr.ich9_spi->hsfs);

		ich_hwseq_set_addr(offset);

		offset += erase_size;

		hsfc = readw_(&cntlr.ich9_spi->hsfc);
		hsfc &= ~HSFC_FCYCLE; /* clear operation */
		hsfc |= (0x3 << HSFC_FCYCLE_OFF); /* set erase operation */
		hsfc |= HSFC_FGO; /* start */
		writew_(hsfc, &cntlr.ich9_spi->hsfc);
		if (ich_hwseq_wait_for_cycle_complete(timeout, len)) {
			printk(BIOS_ERR, "SF: Erase failed at %x\n", offset - erase_size);
			ret = -1;
			goto out;
		}
	}

	printk(BIOS_DEBUG, "SF: Successfully erased %zu bytes @ %#x\n", len, start);

out:
	spi_release_bus(&flash->spi);
	return ret;
}

static void ich_read_data(uint8_t *data, int len)
{
	int i;
	uint32_t temp32 = 0;

	for (i = 0; i < len; i++) {
		if ((i % 4) == 0)
			temp32 = readl_(cntlr.data + i);

		data[i] = (temp32 >> ((i % 4) * 8)) & 0xff;
	}
}

static int ich_hwseq_read(const struct spi_flash *flash, u32 addr, size_t len,
			void *buf)
{
	uint16_t hsfc;
	uint16_t timeout = 100 * 60;
	uint8_t block_len;

	if (addr + len > flash->size) {
		printk(BIOS_ERR,
			"Attempt to read %x-%x which is out of chip\n",
			(unsigned int) addr,
			(unsigned int) addr+(unsigned int) len);
		return -1;
	}

	/* clear FDONE, FCERR, AEL by writing 1 to them (if they are set) */
	writew_(readw_(&cntlr.ich9_spi->hsfs), &cntlr.ich9_spi->hsfs);

	while (len > 0) {
		block_len = MIN(len, cntlr.databytes);
		if (block_len > (~addr & 0xff))
			block_len = (~addr & 0xff) + 1;
		ich_hwseq_set_addr(addr);
		hsfc = readw_(&cntlr.ich9_spi->hsfc);
		hsfc &= ~HSFC_FCYCLE; /* set read operation */
		hsfc &= ~HSFC_FDBC; /* clear byte count */
		/* set byte count */
		hsfc |= (((block_len - 1) << HSFC_FDBC_OFF) & HSFC_FDBC);
		hsfc |= HSFC_FGO; /* start */
		writew_(hsfc, &cntlr.ich9_spi->hsfc);

		if (ich_hwseq_wait_for_cycle_complete(timeout, block_len))
			return 1;
		ich_read_data(buf, block_len);
		addr += block_len;
		buf += block_len;
		len -= block_len;
	}
	return 0;
}

/* Fill len bytes from the data array into the fdata/spid registers.
 *
 * Note that using len > flash->pgm->spi.max_data_write will trash the registers
 * following the data registers.
 */
static void ich_fill_data(const uint8_t *data, int len)
{
	uint32_t temp32 = 0;
	int i;

	if (len <= 0)
		return;

	for (i = 0; i < len; i++) {
		if ((i % 4) == 0)
			temp32 = 0;

		temp32 |= ((uint32_t) data[i]) << ((i % 4) * 8);

		if ((i % 4) == 3) /* 32 bits are full, write them to regs. */
			writel_(temp32, cntlr.data + (i - (i % 4)));
	}
	i--;
	if ((i % 4) != 3) /* Write remaining data to regs. */
		writel_(temp32, cntlr.data + (i - (i % 4)));
}

static int ich_hwseq_write(const struct spi_flash *flash, u32 addr, size_t len,
			const void *buf)
{
	uint16_t hsfc;
	uint16_t timeout = 100 * 60;
	uint8_t block_len;
	uint32_t start = addr;

	if (addr + len > flash->size) {
		printk(BIOS_ERR,
			"Attempt to write 0x%x-0x%x which is out of chip\n",
			(unsigned int)addr, (unsigned int) (addr+len));
		return -1;
	}

	/* clear FDONE, FCERR, AEL by writing 1 to them (if they are set) */
	writew_(readw_(&cntlr.ich9_spi->hsfs), &cntlr.ich9_spi->hsfs);

	while (len > 0) {
		block_len = MIN(len, cntlr.databytes);
		if (block_len > (~addr & 0xff))
			block_len = (~addr & 0xff) + 1;

		ich_hwseq_set_addr(addr);

		ich_fill_data(buf, block_len);
		hsfc = readw_(&cntlr.ich9_spi->hsfc);
		hsfc &= ~HSFC_FCYCLE; /* clear operation */
		hsfc |= (0x2 << HSFC_FCYCLE_OFF); /* set write operation */
		hsfc &= ~HSFC_FDBC; /* clear byte count */
		/* set byte count */
		hsfc |= (((block_len - 1) << HSFC_FDBC_OFF) & HSFC_FDBC);
		hsfc |= HSFC_FGO; /* start */
		writew_(hsfc, &cntlr.ich9_spi->hsfc);

		if (ich_hwseq_wait_for_cycle_complete(timeout, block_len)) {
			printk(BIOS_ERR, "SF: write failure at %x\n",
				addr);
			return -1;
		}
		addr += block_len;
		buf += block_len;
		len -= block_len;
	}
	printk(BIOS_DEBUG, "SF: Successfully written %u bytes @ %#x\n",
	       (unsigned int) (addr - start), start);
	return 0;
}

static const struct spi_flash_ops spi_flash_ops = {
	.read = ich_hwseq_read,
	.write = ich_hwseq_write,
	.erase = ich_hwseq_erase,
};

static int spi_flash_programmer_probe(const struct spi_slave *spi,
					struct spi_flash *flash)
{

	if (CONFIG(SOUTHBRIDGE_INTEL_I82801GX))
		return spi_flash_generic_probe(spi, flash);

	/* Try generic probing first if spi_is_multichip returns 0. */
	if (!spi_is_multichip() && !spi_flash_generic_probe(spi, flash))
		return 0;

	memcpy(&flash->spi, spi, sizeof(*spi));

	ich_hwseq_set_addr(0);
	switch ((cntlr.hsfs >> 3) & 3) {
	case 0:
		flash->sector_size = 256;
		break;
	case 1:
		flash->sector_size = 4096;
		break;
	case 2:
		flash->sector_size = 8192;
		break;
	case 3:
		flash->sector_size = 65536;
		break;
	}

	flash->size = 1 << (19 + (cntlr.flcomp & 7));

	flash->ops = &spi_flash_ops;

	if ((cntlr.hsfs & HSFS_FDV) && ((cntlr.flmap0 >> 8) & 3))
		flash->size += 1 << (19 + ((cntlr.flcomp >> 3) & 7));
	printk(BIOS_DEBUG, "flash size 0x%x bytes\n", flash->size);

	return 0;
}

static int xfer_vectors(const struct spi_slave *slave,
			struct spi_op vectors[], size_t count)
{
	return spi_flash_vector_helper(slave, vectors, count, spi_ctrlr_xfer);
}

#define SPI_FPR_SHIFT			12
#define ICH7_SPI_FPR_MASK		0xfff
#define ICH9_SPI_FPR_MASK		0x1fff
#define SPI_FPR_BASE_SHIFT		0
#define ICH7_SPI_FPR_LIMIT_SHIFT	12
#define ICH9_SPI_FPR_LIMIT_SHIFT	16
#define ICH9_SPI_FPR_RPE		(1 << 15) /* Read Protect */
#define SPI_FPR_WPE			(1 << 31) /* Write Protect */

static u32 spi_fpr(u32 base, u32 limit)
{
	u32 ret;
	u32 mask, limit_shift;

	if (CONFIG(SOUTHBRIDGE_INTEL_I82801GX)) {
		mask = ICH7_SPI_FPR_MASK;
		limit_shift = ICH7_SPI_FPR_LIMIT_SHIFT;
	} else {
		mask = ICH9_SPI_FPR_MASK;
		limit_shift = ICH9_SPI_FPR_LIMIT_SHIFT;
	}
	ret = ((limit >> SPI_FPR_SHIFT) & mask) << limit_shift;
	ret |= ((base >> SPI_FPR_SHIFT) & mask) << SPI_FPR_BASE_SHIFT;
	return ret;
}

/*
 * Protect range of SPI flash defined by [start, start+size-1] using Flash
 * Protected Range (FPR) register if available.
 * Returns 0 on success, -1 on failure of programming fpr registers.
 */
static int spi_flash_protect(const struct spi_flash *flash,
			const struct region *region,
			const enum ctrlr_prot_type type)
{
	u32 start = region_offset(region);
	u32 end = start + region_sz(region) - 1;
	u32 reg;
	u32 protect_mask = 0;
	int fpr;
	uint32_t *fpr_base;

	fpr_base = cntlr.fpr;

	/* Find first empty FPR */
	for (fpr = 0; fpr < cntlr.fpr_max; fpr++) {
		reg = read32(&fpr_base[fpr]);
		if (reg == 0)
			break;
	}

	if (fpr == cntlr.fpr_max) {
		printk(BIOS_ERR, "ERROR: No SPI FPR free!\n");
		return -1;
	}

	switch (type) {
	case WRITE_PROTECT:
		protect_mask |= SPI_FPR_WPE;
		break;
	case READ_PROTECT:
		if (CONFIG(SOUTHBRIDGE_INTEL_I82801GX))
			return -1;
		protect_mask |= ICH9_SPI_FPR_RPE;
		break;
	case READ_WRITE_PROTECT:
		if (CONFIG(SOUTHBRIDGE_INTEL_I82801GX))
			return -1;
		protect_mask |= (ICH9_SPI_FPR_RPE | SPI_FPR_WPE);
		break;
	default:
		printk(BIOS_ERR, "ERROR: Seeking invalid protection!\n");
		return -1;
	}

	/* Set protected range base and limit */
	reg = spi_fpr(start, end) | protect_mask;

	/* Set the FPR register and verify it is protected */
	write32(&fpr_base[fpr], reg);
	if (reg != read32(&fpr_base[fpr])) {
		printk(BIOS_ERR, "ERROR: Unable to set SPI FPR %d\n", fpr);
		return -1;
	}

	printk(BIOS_INFO, "%s: FPR %d is enabled for range 0x%08x-0x%08x\n",
	       __func__, fpr, start, end);
	return 0;
}

void spi_finalize_ops(void)
{
	u16 spi_opprefix;
	u16 optype = 0;
	struct intel_swseq_spi_config spi_config_default = {
		{0x06, 0x50},  /* OPPREFIXES: EWSR and WREN */
		{ /* OPCODE and OPTYPE */
			{0x01, WRITE_NO_ADDR},		/* WRSR: Write Status Register */
			{0x02, WRITE_WITH_ADDR},	/* BYPR: Byte Program */
			{0x03, READ_WITH_ADDR},		/* READ: Read Data */
			{0x05, READ_NO_ADDR},		/* RDSR: Read Status Register */
			{0x20, WRITE_WITH_ADDR},	/* SE20: Sector Erase 0x20 */
			{0x9f, READ_NO_ADDR},		/* RDID: Read ID */
			{0xd8, WRITE_WITH_ADDR},	/* BED8: Block Erase 0xd8 */
			{0x0b, READ_WITH_ADDR},		/* FAST: Fast Read */
		}
	};
	struct intel_swseq_spi_config spi_config_aai_write = {
		{0x06, 0x50}, /* OPPREFIXES: EWSR and WREN */
		{ /* OPCODE and OPTYPE */
			{0x01, WRITE_NO_ADDR},		/* WRSR: Write Status Register */
			{0x02, WRITE_WITH_ADDR},	/* BYPR: Byte Program */
			{0x03, READ_WITH_ADDR},		/* READ: Read Data */
			{0x05, READ_NO_ADDR},		/* RDSR: Read Status Register */
			{0x20, WRITE_WITH_ADDR},	/* SE20: Sector Erase 0x20 */
			{0x9f, READ_NO_ADDR},		/* RDID: Read ID */
			{0xad, WRITE_NO_ADDR},		/* Auto Address Increment Word Program */
			{0x04, WRITE_NO_ADDR}		/* Write Disable */
		}
	};
	const struct spi_flash *flash = boot_device_spi_flash();
	struct intel_swseq_spi_config *spi_config = &spi_config_default;
	int i;

	/*
	 * Some older SST SPI flashes support AAI write but use 0xaf opcde for
	 * that. Flashrom uses the byte program opcode to write those flashes,
	 * so this configuration is fine too. SST25VF064C (id = 0x4b) is an
	 * exception.
	 */
	if (flash && flash->vendor == VENDOR_ID_SST && (flash->model & 0x00ff) != 0x4b)
		spi_config = &spi_config_aai_write;

	if (spi_locked())
		return;

	intel_southbridge_override_spi(spi_config);

	spi_opprefix = spi_config->opprefixes[0]
		| (spi_config->opprefixes[1] << 8);
	writew_(spi_opprefix, cntlr.preop);
	for (i = 0; i < ARRAY_SIZE(spi_config->ops); i++) {
		optype |= (spi_config->ops[i].type & 3) << (i * 2);
		writeb_(spi_config->ops[i].op, &cntlr.opmenu[i]);
	}
	writew_(optype, cntlr.optype);
}

__weak void intel_southbridge_override_spi(struct intel_swseq_spi_config *spi_config)
{
}

static const struct spi_ctrlr spi_ctrlr = {
	.xfer_vector = xfer_vectors,
	.max_xfer_size = member_size(struct ich9_spi_regs, fdata),
	.flash_probe = spi_flash_programmer_probe,
	.flash_protect = spi_flash_protect,
};

const struct spi_ctrlr_buses spi_ctrlr_bus_map[] = {
	{
		.ctrlr = &spi_ctrlr,
		.bus_start = 0,
		.bus_end = 0,
	},
};

const size_t spi_ctrlr_bus_map_count = ARRAY_SIZE(spi_ctrlr_bus_map);