summaryrefslogtreecommitdiff
path: root/src/vendorcode/amd/agesa/f16kb/Proc/Mem/NB/mndct.c
blob: 9499278b84410aaa72cf79f1656a3f0ed49a2bf0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
/* $NoKeywords:$ */
/**
 * @file
 *
 * mndct.c
 *
 * Common Northbridge DCT support
 *
 * @xrefitem bom "File Content Label" "Release Content"
 * @e project: AGESA
 * @e sub-project: (Mem/NB)
 * @e \$Revision: 85818 $ @e \$Date: 2013-01-11 17:04:21 -0600 (Fri, 11 Jan 2013) $
 *
 **/
/*****************************************************************************
*
 * Copyright (c) 2008 - 2013, Advanced Micro Devices, Inc.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *     * Redistributions of source code must retain the above copyright
 *       notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above copyright
 *       notice, this list of conditions and the following disclaimer in the
 *       documentation and/or other materials provided with the distribution.
 *     * Neither the name of Advanced Micro Devices, Inc. nor the names of
 *       its contributors may be used to endorse or promote products derived
 *       from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL ADVANCED MICRO DEVICES, INC. BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
* ***************************************************************************
*
*/


/*
 *----------------------------------------------------------------------------
 *                                MODULES USED
 *
 *----------------------------------------------------------------------------
 */



#include "AGESA.h"
#include "amdlib.h"
#include "Ids.h"
#include "mport.h"
#include "mm.h"
#include "mn.h"
#include "mt.h"
#include "mu.h"
#include "mftds.h"
#include "merrhdl.h"
#include "cpuFamilyTranslation.h"
#include "OptionMemory.h"
#include "PlatformMemoryConfiguration.h"
#include "Filecode.h"
CODE_GROUP (G1_PEICC)
RDATA_GROUP (G1_PEICC)

#define FILECODE PROC_MEM_NB_MNDCT_FILECODE
/*----------------------------------------------------------------------------
 *                          DEFINITIONS AND MACROS
 *
 *----------------------------------------------------------------------------
 */
#define UNUSED_CLK 4

/*----------------------------------------------------------------------------
 *                           TYPEDEFS AND STRUCTURES
 *
 *----------------------------------------------------------------------------
 */

/*----------------------------------------------------------------------------
 *                        PROTOTYPES OF LOCAL FUNCTIONS
 *
 *----------------------------------------------------------------------------
 */

VOID
STATIC
MemNAfterStitchMemNb (
  IN OUT   MEM_NB_BLOCK *NBPtr
  );

/*----------------------------------------------------------------------------
 *                            EXPORTED FUNCTIONS
 *
 *----------------------------------------------------------------------------
 */

extern BUILD_OPT_CFG UserOptions;

/* -----------------------------------------------------------------------------*/
/**
 *
 *
 *      This function combines all the memory into a contiguous map.
 *      Requires that Mask values for each bank be programmed first and that
 *      the chip-select population indicator is correctly set.
 *
 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 *
 *     @return          TRUE - An Error value lower than AGESA_FATAL may have occurred
 *     @return          FALSE - An Error value greater than or equal to AGESA_FATAL may have occurred
 */

BOOLEAN
MemNStitchMemoryNb (
  IN OUT   MEM_NB_BLOCK *NBPtr
  )
{
  BOOLEAN DSpareEn;
  UINT32 NxtCSBase;
  UINT32 CurCSBase;
  UINT32 CsSize;
  UINT32 BiggestBank;
  UINT8 p;
  UINT8 q;
  UINT8 BiggestDimm;
  MEM_PARAMETER_STRUCT *RefPtr;
  DIE_STRUCT *MCTPtr;
  DCT_STRUCT *DCTPtr;
  RefPtr = NBPtr->RefPtr;
  MCTPtr = NBPtr->MCTPtr;
  DCTPtr = NBPtr->DCTPtr;
  DSpareEn = FALSE;
  if (NBPtr->IsSupported[SetSpareEn]) {
    DSpareEn = FALSE;
    if (RefPtr->GStatus[GsbEnDIMMSpareNW]) {
      DSpareEn = TRUE;
    }
  }

  DCTPtr->Timings.CsEnabled = 0;
  NxtCSBase = 0;
  for (p = 0; p < MAX_CS_PER_CHANNEL; p++) {
    BiggestBank = 0;
    BiggestDimm = 0;
    for (q = 0; q < MAX_CS_PER_CHANNEL; q++) {
      if (((DCTPtr->Timings.CsPresent & ~DCTPtr->Timings.CsTestFail) & ((UINT16)1 << q)) != 0) {
        if ((MemNGetBitFieldNb (NBPtr, BFCSBaseAddr0Reg + q) & 7) == 0) {
          // (CSEnable|Spare==1)bank is not enabled yet
          CsSize = MemNGetBitFieldNb (NBPtr, BFCSMask0Reg + (q >> 1));
          if (CsSize != 0) {
            CsSize += ((UINT32)1 << 19);
            CsSize &= 0xFFF80000;
          }
          if (CsSize > BiggestBank) {
            BiggestBank = CsSize;
            BiggestDimm = q;
          }
        }
      }
    }

    if (BiggestBank != 0) {
      CurCSBase = NxtCSBase;
      if (NBPtr->IsSupported[CheckSpareEn]) {
        if (DSpareEn) {
          CurCSBase = ((UINT32)1 << BFSpare);
          DSpareEn = FALSE;
        } else {
          CurCSBase |= ((UINT32)1 << BFCSEnable);
          NxtCSBase += BiggestBank;
        }
      } else {
        CurCSBase |= ((UINT32)1 << BFCSEnable);
        NxtCSBase += BiggestBank;
      }
      if ((BiggestDimm & 1) != 0) {
        if (!(MCTPtr->Status[SbLrdimms])) {
          // For LRDIMMS, On Dimm Mirroring is enabled after SDI
          if ((DCTPtr->Timings.DimmMirrorPresent & (1 << (BiggestDimm >> 1))) != 0) {
            CurCSBase |= ((UINT32)1 << BFOnDimmMirror);
          }
        }
      }
      MemNSetBitFieldNb (NBPtr, BFCSBaseAddr0Reg + BiggestDimm, CurCSBase);
      DCTPtr->Timings.CsEnabled |= (1 << BiggestDimm);
    }
    if ((DCTPtr->Timings.CsTestFail & ((UINT16)1 << p)) != 0) {
      IDS_HDT_CONSOLE (MEM_FLOW, "Node %d Dct %d exclude CS %d\n", NBPtr->Node, NBPtr->Dct, p);
      MemNSetBitFieldNb (NBPtr, (BFCSBaseAddr0Reg + p), (UINT32)1 << BFTestFail);
    }
  }

  if (NxtCSBase != 0) {
    DCTPtr->Timings.DctMemSize = NxtCSBase >> 8;    // Scale base address from [39:8] to [47:16]
    MemNAfterStitchMemNb (NBPtr);
  }

  return (BOOLEAN) (MCTPtr->ErrCode < AGESA_FATAL);
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *
 *   This function gets platform specific config/timing values from the interface layer and
 *   programs them into DCT.
 *
 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 *
 *     @return          TRUE - An Error value lower than AGESA_FATAL may have occurred
 *     @return          FALSE - An Error value greater than or equal to AGESA_FATAL may have occurred
 */

BOOLEAN
MemNPlatformSpecUnb (
  IN OUT   MEM_NB_BLOCK *NBPtr
  )
{
  UINT8 MemClkDis;
  UINT8 i;
  UINT8 MemoryAllClocks;
  UINT8 *MemClkDisMap;
  UINT16 CsPresent;

  if (!MemNGetPlatformCfgNb (NBPtr)) {
    IDS_ERROR_TRAP;
  }

  if (!NBPtr->PsPtr->MemPDoPs (NBPtr)) {
    IDS_HDT_CONSOLE (MEM_FLOW, "\tDisable DCT%d due to unsupported DIMM configuration\n", NBPtr->Dct);
    if (!NBPtr->MemPtr->ErrorHandling (NBPtr->MCTPtr, NBPtr->Dct, EXCLUDE_ALL_CHIPSEL, &NBPtr->MemPtr->StdHeader)) {
      ASSERT (FALSE);
    }
    NBPtr->DisableDCT (NBPtr);
  } else {

    MemNProgramPlatformSpecNb (NBPtr);
    MemProcessConditionalOverrides (NBPtr->RefPtr->PlatformMemoryConfiguration, NBPtr, PSO_ACTION_ODT, ALL_DIMMS);

    //======================================================================
    // Disable unused MemClk to save power
    //======================================================================
    //
    MemClkDis = 0;
    MemoryAllClocks = UserOptions.CfgMemoryAllClocksOn;
    IDS_OPTION_HOOK (IDS_ALL_MEMORY_CLOCK, &MemoryAllClocks, &(NBPtr->MemPtr->StdHeader));
    if (!MemoryAllClocks) {
      // Special Jedec SPD diagnostic bit - "enable all clocks"
      if (!NBPtr->MCTPtr->Status[SbDiagClks]) {
        MemClkDisMap = FindPSOverrideEntry (NBPtr->RefPtr->PlatformMemoryConfiguration, PSO_MEMCLK_DIS, NBPtr->MCTPtr->SocketId, NBPtr->Dct, 0,
                                            &(NBPtr->MCTPtr->LogicalCpuid), &(NBPtr->MemPtr->StdHeader));
        if (MemClkDisMap == NULL) {
          MemClkDisMap = NBPtr->ChannelPtr->MemClkDisMap;
        }

        // Turn off unused clocks
        CsPresent = NBPtr->DCTPtr->Timings.CsPresent;

        for (i = 0; i < 8; i++) {
          if ((CsPresent & MemClkDisMap[i]) == 0) {
            MemClkDis |= (UINT8) (1 << i);
          }
        }

        // Turn off unused chiplets
        for (i = 0; i < 3; i++) {
          if (((MemClkDis >> (i * 2)) & 0x3) == 0x3) {
            MemNSetBitFieldNb (NBPtr, BFPhyClkConfig0 + i, 0x0010);
          }
        }
      }
    }
    MemNSetBitFieldNb (NBPtr, BFMemClkDis, MemClkDis);
    MemFInitTableDrive (NBPtr, MTAfterPlatformSpec);
  }

  return (BOOLEAN) (NBPtr->MCTPtr->ErrCode < AGESA_FATAL);
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *
 *   This function disables the DCT and mem clock for UNB
 *
 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 *
 */

VOID
MemNDisableDCTUnb (
  IN OUT   MEM_NB_BLOCK *NBPtr
  )
{
  MemNSetBitFieldNb (NBPtr, BFExtendedParityEn, 0);
  MemNSetBitFieldNb (NBPtr, BFParEn, 0);
  MemNSetBitFieldNb (NBPtr, BFCKETri, 0x0F);

  //Wait for 24 MEMCLKs
  MemNWaitXMemClksNb (NBPtr, 24);

  // To maximize power savings when DisDramInterface=1b,
  // all of the MemClkDis bits should also be set.
  //
  MemNSetBitFieldNb (NBPtr, BFMemClkDis, 0xFF);

  MemNSetBitFieldNb (NBPtr, BFDisDramInterface, 1);

  if (NBPtr->Dct == 0) {
    MemNSetBitFieldNb (NBPtr, BFPhyPSMasterChannel, 0x100);
  }

  // If channel is disabled after dram init, set DisDllShutdownSR
  if (MemNGetBitFieldNb (NBPtr, BFDramEnabled) == 1) {
    MemNSetBitFieldNb (NBPtr, BFDisDllShutdownSR, 1);
  }
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *
 *  This function initializes the DRAM devices on all DCTs at the same time
 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 *
 */

VOID
MemNStartupDCTUnb (
  IN OUT   MEM_NB_BLOCK *NBPtr
  )
{
  UINT8 Dct;
  UINT16 FinalPllLockTime;

  if (NBPtr->MCTPtr->NodeMemSize != 0) {
    // Update NB frequency for startup DDR speed
    NBPtr->ChangeNbFrequency (NBPtr);

    if (!NBPtr->IsSupported[ForcePhyToM0]) {
      // Program D18F2x[1,0]9C_x0000_000B = 80000000h. #109999.
      MemNBrdcstSetNb (NBPtr, BFDramPhyStatusReg, 0x80000000);

      // Program D18F2x[1,0]9C_x0D0F_E013[PllRegWaitTime] = 0118h. #194060.
      MemNBrdcstSetNb (NBPtr, BFPllRegWaitTime, 0x118);
    }

    // Phy Voltage Level Programming
    MemNPhyVoltageLevelNb (NBPtr);

    // Run frequency change sequence
    MemNBrdcstSetNb (NBPtr, BFPllLockTime, NBPtr->FreqChangeParam->PllLockTimeDefault);
    MemNBrdcstSetNb (NBPtr, BFMemClkFreq, NBPtr->GetMemClkFreqId (NBPtr, NBPtr->DCTPtr->Timings.Speed));
    NBPtr->FamilySpecificHook[SetSkewMemClk] (NBPtr, NULL);
    NBPtr->ProgramNbPsDependentRegs (NBPtr);
    for (Dct = 0; Dct < NBPtr->DctCount; Dct++) {
      MemNSwitchDCTNb (NBPtr, Dct);
      if ((NBPtr->DCTPtr->Timings.DctMemSize != 0)) {
        NBPtr->FamilySpecificHook[IntermediateMemclkFreqVal] (NBPtr, NULL);
        MemNSetBitFieldNb (NBPtr, BFMemClkFreqVal, 1);
        MemNPollBitFieldNb (NBPtr, BFFreqChgInProg, 0, PCI_ACCESS_TIMEOUT, FALSE);
      }
    }
    FinalPllLockTime = 0xF;
    NBPtr->FamilySpecificHook[AfterMemClkFreqVal] (NBPtr, &FinalPllLockTime);
    if (!NBPtr->IsSupported[CsrPhyPllPdEn]) {
      // IF (D18F2x[1,0]9C_x0D0F_E00A[CsrPhySrPllPdMode]==0) THEN program
      // D18F2x[1,0]9C_x0D0F_E006[PllLockTime] = 0Fh
      MemNBrdcstSetNb (NBPtr, BFPllLockTime, FinalPllLockTime);
    }

    NBPtr->FamilySpecificHook[BeforePhyFenceTraining] (NBPtr, NBPtr);

    for (Dct = 0; Dct < NBPtr->DctCount; Dct++) {
      MemNSwitchDCTNb (NBPtr, Dct);
      if (NBPtr->DCTPtr->Timings.DctMemSize != 0) {
        IDS_HDT_CONSOLE (MEM_STATUS, "\tDct %d\n", Dct);

        // Phy fence programming
        AGESA_TESTPOINT (TpProcMemPhyFenceTraining, &(NBPtr->MemPtr->StdHeader));
        NBPtr->PhyFenceTraining (NBPtr);

        // Phy compensation initialization
        AGESA_TESTPOINT (TPProcMemPhyCompensation, &(NBPtr->MemPtr->StdHeader));
        NBPtr->MemNInitPhyComp (NBPtr);
        MemProcessConditionalOverrides (NBPtr->RefPtr->PlatformMemoryConfiguration, NBPtr, PSO_ACTION_SLEWRATE, ALL_DIMMS);
      }
    }

    AGESA_TESTPOINT (TpProcMemBeforeDramInit, &(NBPtr->MemPtr->StdHeader));
    NBPtr->MemNBeforeDramInitNb (NBPtr);

    AGESA_TESTPOINT (TpProcMemDramInit, &(NBPtr->MemPtr->StdHeader));
    IDS_HDT_CONSOLE (MEM_FLOW, "\nMemClkFreq: %d MHz\n", NBPtr->DCTPtr->Timings.Speed);
    NBPtr->FeatPtr->DramInit (NBPtr->TechPtr);
  }
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *      This function ramp up frequency to target frequency
 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 *
 *     @return          TRUE -  No fatal error occurs.
 *     @return          FALSE - Fatal error occurs.
 */

BOOLEAN
MemNRampUpFrequencyUnb (
  IN OUT   MEM_NB_BLOCK *NBPtr
  )
{
  UINT8 Dct;
  DIE_STRUCT *MCTPtr;

  MCTPtr = NBPtr->MCTPtr;

  // Do not change frequency when it is already at TargetSpeed
  if (NBPtr->DCTPtr->Timings.Speed == NBPtr->DCTPtr->Timings.TargetSpeed) {
    return TRUE;
  }

  // BIOS must program both DCTs to the same frequency.
  IDS_HDT_CONSOLE (MEM_FLOW, "\nMemClkFreq changed: %d MHz", NBPtr->DCTPtr->Timings.Speed);
  for (Dct = 0; Dct < MCTPtr->DctCount; Dct++) {
    NBPtr->SwitchDCT (NBPtr, Dct);
    NBPtr->DCTPtr->Timings.Speed = NBPtr->DCTPtr->Timings.TargetSpeed;
  }
  IDS_HDT_CONSOLE (MEM_FLOW, " -> %d MHz", NBPtr->DCTPtr->Timings.TargetSpeed);

  NBPtr->ChangeFrequency (NBPtr);

  return (BOOLEAN) (MCTPtr->ErrCode < AGESA_FATAL);
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *
 *      This function uses calculated values from DCT.Timings structure to
 *      program its registers for UNB
 *
 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 *
 */

VOID
MemNProgramCycTimingsUnb (
  IN OUT   MEM_NB_BLOCK *NBPtr
  )
{
  CONST CTENTRY TmgAdjTab[] = {
    // BitField, Min, Max, Bias, Ratio_x2
    {BFTcl, 5, 14, 0, 2},
    {BFTrcd, 2, 19, 0, 2},
    {BFTrp, 2, 19, 0, 2},
    {BFTrtp, 4, 10, 0, 2},
    {BFTras, 8, 40, 0, 2},
    {BFTrc, 10, 56, 0, 2},
    {BFTwrDDR3, 5, 16, 0, 2},
    {BFTrrd, 4, 9, 0, 2},
    {BFTwtr, 4, 9, 0, 2},
    {BFFourActWindow, 6, 42, 0, 2}
  };

  DCT_STRUCT *DCTPtr;
  UINT8  *MiniMaxTmg;
  UINT8  *MiniMaxTrfc;
  UINT8  Value8;
  UINT8  j;
  UINT8  Tcwl;
  UINT8 RdOdtTrnOnDly;
  BIT_FIELD_NAME BitField;
  MEM_PARAMETER_STRUCT *RefPtr;

  DCTPtr = NBPtr->DCTPtr;
  RefPtr = NBPtr->RefPtr;
  //======================================================================
  // Program DRAM Timing values
  //======================================================================
  //
  MiniMaxTmg = &DCTPtr->Timings.CasL;
  for (j = 0; j < GET_SIZE_OF (TmgAdjTab); j++) {
    BitField = TmgAdjTab[j].BitField;

    if (BitField == BFTrp) {
      if (NBPtr->IsSupported[AdjustTrp]) {
        MiniMaxTmg[j] ++;
        if (MiniMaxTmg[j] < 5) {
          MiniMaxTmg[j] = 5;
        }
      }
    }

    if (MiniMaxTmg[j] < TmgAdjTab[j].Min) {
      MiniMaxTmg[j] = TmgAdjTab[j].Min;
    } else if (MiniMaxTmg[j] > TmgAdjTab[j].Max) {
      MiniMaxTmg[j] = TmgAdjTab[j].Max;
    }

    Value8 = (UINT8) MiniMaxTmg[j];

    if (BitField == BFTwrDDR3) {
      if ((Value8 > 8) && ((Value8 & 1) != 0)) {
        Value8++;
      }
    }

    MemNSetBitFieldNb (NBPtr, BitField, Value8);
  }

  MiniMaxTrfc = &DCTPtr->Timings.Trfc0;
  for (j = 0; j < 4; j++) {
    if ((NBPtr->DCTPtr->Timings.DctDimmValid & (1 << j)) != 0) {
      ASSERT (MiniMaxTrfc[j] <= 4);
      MemNSetBitFieldNb (NBPtr, BFTrfc0 + j, MiniMaxTrfc[j]);
    }
  }

  Tcwl = (UINT8) (DCTPtr->Timings.Speed / 133) + 2;
  Tcwl = (Tcwl > 5) ? Tcwl : 5;
  MemNSetBitFieldNb (NBPtr, BFTcwl, Tcwl);

  if (RefPtr->DramDoubleRefreshRate) {
    MemNSetBitFieldNb (NBPtr, BFTref, 3);      // 3.9 us
  } else {
    MemNSetBitFieldNb (NBPtr, BFTref, 2);      // 7.8 us
  }

  RdOdtTrnOnDly = (DCTPtr->Timings.CasL > Tcwl) ? (DCTPtr->Timings.CasL - Tcwl) : 0;
  MemNSetBitFieldNb (NBPtr, BFRdOdtTrnOnDly, RdOdtTrnOnDly);
  NBPtr->FamilySpecificHook[ProgOdtControl] (NBPtr, NULL);

  //
  // Program Tmod
  //
  MemNSetBitFieldNb (NBPtr, BFTmod, (DCTPtr->Timings.Speed < DDR1866_FREQUENCY) ? 0x0C :
                                    (DCTPtr->Timings.Speed > DDR1866_FREQUENCY) ? 0x10 : 0x0E);
  //
  // Program Tzqcs and Tzqoper
  //
  // Tzqcs max(64nCK, 80ns)
  MemNSetBitFieldNb (NBPtr, BFTzqcs, MIN (6, (MAX (64, MemUnsToMemClk (NBPtr->DCTPtr->Timings.Speed, 80)) + 15) / 16));
  // Tzqoper max(256nCK, 320ns)
  MemNSetBitFieldNb (NBPtr, BFTzqoper, MIN (0xC, (MAX (256, MemUnsToMemClk (NBPtr->DCTPtr->Timings.Speed, 320)) + 31) / 32));

  // Program power management timing
  MemNDramPowerMngTimingNb (NBPtr);
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *
 *   This function gets platform specific settings for the current channel
 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 *
 *     @return          TRUE - All platform types defined have initialized successfully
 *     @return          FALSE - At least one of the platform types gave not been initialized successfully
 */

BOOLEAN
MemNGetPlatformCfgNb (
  IN OUT   MEM_NB_BLOCK *NBPtr
  )
{
  UINT8 p;

  for (p = 0; p < MAX_PLATFORM_TYPES; p++) {
    ASSERT (NBPtr->MemPtr->GetPlatformCfg[p] != NULL);
    if (NBPtr->MemPtr->GetPlatformCfg[p] (NBPtr->MemPtr, NBPtr->MCTPtr->SocketId, NBPtr->ChannelPtr) == AGESA_SUCCESS) {
      break;
    }
  }
  return (p < MAX_PLATFORM_TYPES);
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *
 *   This function sends the ZQCL command
 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 *
 */

VOID
MemNSendZQCmdNb (
  IN OUT   MEM_NB_BLOCK *NBPtr
  )
{
  // 1.Program MrsAddress[10]=1
  MemNSetBitFieldNb (NBPtr, BFMrsAddress, (UINT32)1 << 10);

  // 2.Set SendZQCmd=1
  MemNSetBitFieldNb (NBPtr, BFSendZQCmd, 1);

  // 3.Wait for SendZQCmd=0
  MemNPollBitFieldNb (NBPtr, BFSendZQCmd, 0, PCI_ACCESS_TIMEOUT, FALSE);

  // 4.Wait 512 MEMCLKs
  MemNWaitXMemClksNb (NBPtr, 512);
}


/*----------------------------------------------------------------------------
 *                              LOCAL FUNCTIONS
 *
 *----------------------------------------------------------------------------
 */

/* -----------------------------------------------------------------------------*/
/**
 *
 *
 *   This function is used to create the DRAM map
 *
 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 */

VOID
STATIC
MemNAfterStitchMemNb (
  IN OUT   MEM_NB_BLOCK *NBPtr
  )
{
  if (NBPtr->MCTPtr->GangedMode) {
    NBPtr->MCTPtr->NodeMemSize = NBPtr->DCTPtr->Timings.DctMemSize;
    NBPtr->MCTPtr->NodeSysLimit = NBPtr->MCTPtr->NodeMemSize - 1;
    NBPtr->MCTPtr->DctData[1].Timings.CsPresent = NBPtr->DCTPtr->Timings.CsPresent;
    NBPtr->MCTPtr->DctData[1].Timings.CsEnabled = NBPtr->DCTPtr->Timings.CsEnabled;
    NBPtr->MCTPtr->DctData[1].Timings.DctMemSize = NBPtr->DCTPtr->Timings.DctMemSize;
  } else {
    // In unganged mode, add DCT0 and DCT1 to NodeMemSize
    NBPtr->MCTPtr->NodeMemSize += NBPtr->DCTPtr->Timings.DctMemSize;
    NBPtr->MCTPtr->NodeSysLimit = NBPtr->MCTPtr->NodeMemSize - 1;
  }
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *
 *   This function swaps bits for OnDimmMirror support for Unb
 *
 *     Dimm Mirroring Requires that, during MRS command cycles, the following
 *     bits are swapped by software
 *
 *             A3 -> A4         A7 -> A8
 *             A4 -> A3         BA0 -> BA1
 *             A5 -> A6         BA1 -> BA0
 *             A6 -> A5
 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 *
 */

VOID
MemNSwapBitsUnb (
  IN OUT   MEM_NB_BLOCK *NBPtr
  )
{
  UINT8 ChipSel;
  UINT32 MRSBank;
  UINT32 MRSAddr;

  ChipSel = (UINT8) MemNGetBitFieldNb (NBPtr, BFMrsChipSel);
  if ((ChipSel & 1) != 0) {
    if ((NBPtr->DCTPtr->Timings.DimmMirrorPresent & (1 << (ChipSel >> 1))) != 0) {
      MRSBank = MemNGetBitFieldNb (NBPtr, BFMrsBank);
      MRSAddr = MemNGetBitFieldNb (NBPtr, BFMrsAddress);

      IDS_HDT_CONSOLE (MEM_FLOW, "\t\t\tCS%d MR%d %05x swapped to ->",
                                                                    (ChipSel & 0x7),
                                                                    (MRSBank & 0x7),
                                                                    (MRSAddr & 0x3FFFF));
      //
      // Swap Mrs Bank bits 0 with 1
      MRSBank = (MRSBank & 0x0100) | ((MRSBank & 0x01) << 1) | ((MRSBank & 0x02) >> 1);
      //
      // Swap Mrs Address bits 3 with 4, 5 with 6, and 7 with 8
      MRSAddr = (MRSAddr & 0x03FE07) | ((MRSAddr&0x000A8) << 1) | ((MRSAddr&0x00150) >> 1);
      MemNSetBitFieldNb (NBPtr, BFMrsBank, MRSBank);
      MemNSetBitFieldNb (NBPtr, BFMrsAddress, MRSAddr);
    }
  }
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *   Programs Address/command timings, driver strengths, and tri-state fields.
 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 *
 */
VOID
MemNProgramPlatformSpecNb (
  IN OUT   MEM_NB_BLOCK *NBPtr
  )
{
  CONST UINT8           PinType[3]  = {PSO_CKE_TRI, PSO_ODT_TRI,   PSO_CS_TRI};
  CONST UINT8           TabSize[3]  = {          4,           4,            8};
  CONST BIT_FIELD_NAME  BitField[3] = {   BFCKETri,    BFODTTri, BFChipSelTri};
  UINT8  *TabPtr;
  UINT8  i;
  UINT8  k;
  UINT8  Value;
  //===================================================================
  // Tristate unused CKE, ODT and chip select to save power
  //===================================================================
  //
  TabPtr = NULL;
  for (k = 0; k < sizeof (PinType); k++) {
    if (NBPtr->IsSupported[CheckFindPSOverideWithSocket]) {
      TabPtr = FindPSOverrideEntry (NBPtr->RefPtr->PlatformMemoryConfiguration, PinType[k], NBPtr->MCTPtr->SocketId, MemNGetSocketRelativeChannelNb (NBPtr, NBPtr->Dct, 0), 0,
                                    &(NBPtr->MCTPtr->LogicalCpuid), &(NBPtr->MemPtr->StdHeader));
    }
    if (NBPtr->IsSupported[CheckFindPSDct]) {
      TabPtr = FindPSOverrideEntry (NBPtr->RefPtr->PlatformMemoryConfiguration, PinType[k], NBPtr->MCTPtr->SocketId, NBPtr->Dct, 0,
                                    &(NBPtr->MCTPtr->LogicalCpuid), &(NBPtr->MemPtr->StdHeader));
    }
    if (TabPtr == NULL) {
      switch (k) {
      case 0:
        TabPtr = NBPtr->ChannelPtr->CKETriMap;
        break;
      case 1:
        TabPtr = NBPtr->ChannelPtr->ODTTriMap;
        break;
      case 2:
        TabPtr = NBPtr->ChannelPtr->ChipSelTriMap;
        break;
      default:
        IDS_ERROR_TRAP;
      }
    }
    ASSERT (TabPtr != NULL);

    Value = 0;
    for (i = 0; i < TabSize[k]; i++) {
      if ((NBPtr->DCTPtr->Timings.CsPresent & TabPtr[i]) == 0) {
        Value |= (UINT8) (1 << i);
      }
    }

    if (k == PSO_CS_TRI) {
      NBPtr->FamilySpecificHook[BeforeSetCsTri] (NBPtr, &Value);
    }

    ASSERT (k < GET_SIZE_OF (BitField));
    MemNSetBitFieldNb (NBPtr, BitField[k], Value);
  }
  NBPtr->MemNBeforePlatformSpecNb (NBPtr);

  //===================================================================
  // Program Address/Command timings and driver strength
  //===================================================================
  //
  MemProcessConditionalOverrides (NBPtr->RefPtr->PlatformMemoryConfiguration, NBPtr, PSO_ACTION_ADDRTMG, ALL_DIMMS);
  MemProcessConditionalOverrides (NBPtr->RefPtr->PlatformMemoryConfiguration, NBPtr, PSO_ACTION_ODCCONTROL, ALL_DIMMS);

  MemNSetBitFieldNb (NBPtr, BFSlowAccessMode, (NBPtr->ChannelPtr->SlowMode) ? 1 : 0);
  NBPtr->FamilySpecificHook[ProgramPOdtOff] (NBPtr, &NBPtr->PsPtr->ProcessorOnDieTerminationOff);
  MemNSetBitFieldNb (NBPtr, BFODCControl, NBPtr->ChannelPtr->DctOdcCtl);
  MemNSetBitFieldNb (NBPtr, BFAddrTmgControl, NBPtr->ChannelPtr->DctAddrTmg);
  NBPtr->FamilySpecificHook[SetDqsODT] (NBPtr, NBPtr);

  if (NBPtr->IsSupported[CheckODTControls]) {
    MemNSetBitFieldNb (NBPtr, BFPhyRODTCSLow, NBPtr->ChannelPtr->PhyRODTCSLow);
    MemNSetBitFieldNb (NBPtr, BFPhyRODTCSHigh, NBPtr->ChannelPtr->PhyRODTCSHigh);
    MemNSetBitFieldNb (NBPtr, BFPhyWODTCSLow, NBPtr->ChannelPtr->PhyWODTCSLow);
    MemNSetBitFieldNb (NBPtr, BFPhyWODTCSHigh, NBPtr->ChannelPtr->PhyWODTCSHigh);
  }
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *
 *   This function enables swapping interleaved region feature.
 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 *     @param[in]   Base   - Swap interleaved region base [47:27]
 *     @param[in]   Limit   - Swap interleaved region limit [47:27]
 *
 */
VOID
MemNEnableSwapIntlvRgnNb (
  IN OUT   MEM_NB_BLOCK *NBPtr,
  IN       UINT32 Base,
  IN       UINT32 Limit
  )
{
  UINT32 Size;
  UINT32 SizeOfAlign;

  // Swapped interleaving region must be below 16G
  if (Limit < (1 << (34 - 27))) {
    // Adjust Base and Size to meet :
    // 1. The size of the swapped region must be less than or equal to the alignment of F2x10C[IntLvRegionBase].
    // 2. Entire UMA region is swapped with interleaving region.
    Size = Limit - Base;
    SizeOfAlign = (UINT32) 1 << LibAmdBitScanForward (Base);
    while (SizeOfAlign <= Size) {
      // In case of SizeOfAlign <= Size, UmaBase -= 128MB, SizeOfIntlvrgn += 128MB.
      Base -= 1;
      Size += 1;
      SizeOfAlign = (UINT32) 1 << LibAmdBitScanForward (Base);
    }
    MemNSetBitFieldNb (NBPtr, BFIntLvRgnBaseAddr, Base);
    MemNSetBitFieldNb (NBPtr, BFIntLvRgnLmtAddr, (Limit - 1));
    MemNSetBitFieldNb (NBPtr, BFIntLvRgnSize, Size);
    MemNSetBitFieldNb (NBPtr, BFIntLvRgnSwapEn, 1);
  }
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *
 *   This function converts MemClk frequency in MHz to MemClkFreq value
 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 *     @param[in]       Speed   - MemClk frequency in MHz
 *
 *     @return      MemClkFreq value
 */
UINT8
MemNGetMemClkFreqIdUnb (
  IN OUT   MEM_NB_BLOCK *NBPtr,
  IN       UINT16 Speed
  )
{
  return (UINT8) ((Speed > DDR400_FREQUENCY) ? ((Speed / 33) - 6) : ((Speed == DDR400_FREQUENCY) ? 2 : (Speed / 55)));
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *
 *   This function converts MemClkFreq Id value to MemClk frequency in MHz
 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 *     @param[in]       FreqId   - FreqId from Register
 *
 *     @return          MemClk frequency in MHz
 */
UINT16
MemNGetMemClkFreqUnb (
  IN OUT   MEM_NB_BLOCK *NBPtr,
  IN       UINT8 FreqId
  )
{
  UINT16 MemClkFreq;
  if (FreqId > 2) {
    MemClkFreq = (FreqId == 14) ? 667 : (300 + ((FreqId - 3) * 33) + (FreqId - 3) / 3);
  } else if (FreqId == 2) {
    MemClkFreq = 200;
  } else {
    MemClkFreq = 50 + (50 * FreqId);
  }
  return MemClkFreq;
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *  This function change MemClk frequency to the value that is specified by DCTPtr->Timings.Speed
 *  for UNB.
 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 *
 */

VOID
MemNChangeFrequencyUnb (
  IN OUT   MEM_NB_BLOCK *NBPtr
  )
{
  MEM_TECH_BLOCK *TechPtr;
  UINT8 Dct;
  UINT8 ChipSel;
  UINT16 FinalPllLockTime;
  BOOLEAN FrequencyChangeSuccess;
  UINT64  OrgMMIOCfgBase;
  UINT64  NewMMIOCfgBase;

  TechPtr = NBPtr->TechPtr;

  // Disable MMIO to prevent speculative DRAM reads during self refresh
  LibAmdMsrRead (MSR_MMIO_Cfg_Base, &OrgMMIOCfgBase, &(NBPtr->MemPtr->StdHeader));
  NewMMIOCfgBase = OrgMMIOCfgBase & (~(BIT0));
  LibAmdMsrWrite (MSR_MMIO_Cfg_Base, &NewMMIOCfgBase, &(NBPtr->MemPtr->StdHeader));

  MemNBrdcstSetNb (NBPtr, BFDisDllShutdownSR, 1);

  //Program F2x[1,0]90[EnterSelfRefresh]=1.
  //Wait until the hardware resets F2x[1,0]90[EnterSelfRefresh]=0.
  MemNBrdcstSetNb (NBPtr, BFEnterSelfRef, 1);
  MemNPollBitFieldNb (NBPtr, BFEnterSelfRef, 0, PCI_ACCESS_TIMEOUT, TRUE);

  if (NBPtr->ChangeNbFrequency (NBPtr)) {
    // Reprogram Twr, Tcwl, and Tcl based on the new MEMCLK frequency.
    for (Dct = 0; Dct < NBPtr->DctCount; Dct++) {
      MemNSwitchDCTNb (NBPtr, Dct);
      if (NBPtr->DCTPtr->Timings.DctMemSize != 0) {
        TechPtr->AutoCycTiming (TechPtr);
        if (!MemNPlatformSpecUnb (NBPtr)) {
          IDS_ERROR_TRAP;
        }
      }
    }

    // 1. Program PllLockTime to Family-specific value
    MemNBrdcstSetNb (NBPtr, BFPllLockTime, NBPtr->FreqChangeParam->PllLockTimeDefault);

    // 2. Program D18F2x[1,0]94[MemClkFreqVal] = 0.
    MemNBrdcstSetNb (NBPtr, BFMemClkFreqVal, 0);

    // 3. Program D18F2x[1,0]94[MemClkFreq] to the desired DRAM frequency.
    MemNBrdcstSetNb (NBPtr, BFMemClkFreq, NBPtr->GetMemClkFreqId (NBPtr, NBPtr->DCTPtr->Timings.Speed));

    // 4. Program D18F2x[1,0]F4_x30[DbeGskFifoNumerator] and D18F2x[1,0]F4_x31[DbeGskFifoDenominator].
    // 5. Program D18F2x[1,0]F4_x32[DataTxFifoSchedDlyNegSlot1, DataTxFifoSchedDlySlot1,
    // DataTxFifoSchedDlyNegSlot0, DataTxFifoSchedDlySlot0]. See 2.10.3.2.2.1 [DCT Transmit Fifo Schedule
    // Delay Programming].
    // 6. D18F2x[1,0]78[RdPtrInit] = IF (D18F2x[1,0]94[MemClkFreq] >= 667 MHz) THEN 7 ELSE 8 ENDIF (Llano)
    //                                                                         THEN 2 ELSE 3 ENDIF (Ontario)
    NBPtr->ProgramNbPsDependentRegs (NBPtr);

    IDS_OPTION_HOOK (IDS_BEFORE_MEM_FREQ_CHG, NBPtr, &(NBPtr->MemPtr->StdHeader));
    // 7. Program D18F2x[1,0]94[MemClkFreqVal] = 1.
    for (Dct = 0; Dct < NBPtr->DctCount; Dct++) {
      MemNSwitchDCTNb (NBPtr, Dct);
      if ((NBPtr->DCTPtr->Timings.DctMemSize != 0)) {
        MemNSetBitFieldNb (NBPtr, BFMemClkFreqVal, 1);
        MemNPollBitFieldNb (NBPtr, BFFreqChgInProg, 0, PCI_ACCESS_TIMEOUT, FALSE);
      }
    }
    FinalPllLockTime = 0xF;
    NBPtr->FamilySpecificHook[AfterMemClkFreqVal] (NBPtr, &FinalPllLockTime);

    // 8. IF (D18F2x[1,0]9C_x0D0F_E00A[CsrPhySrPllPdMode]==0) THEN program
    // D18F2x[1,0]9C_x0D0F_E006[PllLockTime] = 0Fh.
    if (!NBPtr->IsSupported[CsrPhyPllPdEn]) {
      MemNBrdcstSetNb (NBPtr, BFPllLockTime, FinalPllLockTime);
    }

    FrequencyChangeSuccess = TRUE;
  } else {
    // If NB frequency cannot be updated, use the current speed as the target speed
    for (Dct = 0; Dct < NBPtr->DctCount; Dct++) {
      MemNSwitchDCTNb (NBPtr, Dct);
      NBPtr->DCTPtr->Timings.Speed = NBPtr->TechPtr->PrevSpeed;
      NBPtr->DCTPtr->Timings.TargetSpeed = NBPtr->TechPtr->PrevSpeed;
    }
    FrequencyChangeSuccess = FALSE;
  }

  if (FrequencyChangeSuccess) {
    // Perform Phy Fence training and Phy comp init after frequency change
    for (Dct = 0; Dct < NBPtr->DctCount; Dct++) {
      MemNSwitchDCTNb (NBPtr, Dct);
      if (NBPtr->DCTPtr->Timings.DctMemSize != 0) {
        IDS_HDT_CONSOLE (MEM_STATUS, "\tDct %d\n", Dct);

        // Phy fence programming
        AGESA_TESTPOINT (TpProcMemPhyFenceTraining, &(NBPtr->MemPtr->StdHeader));
        NBPtr->PhyFenceTraining (NBPtr);

        // Phy compensation initialization
        AGESA_TESTPOINT (TPProcMemPhyCompensation, &(NBPtr->MemPtr->StdHeader));
        NBPtr->MemNInitPhyComp (NBPtr);
        MemProcessConditionalOverrides (NBPtr->RefPtr->PlatformMemoryConfiguration, NBPtr, PSO_ACTION_SLEWRATE, ALL_DIMMS);
        // Hardware programs POdtOff for the current M-state (D18F2x9C_x0D0F_E006_dct[0][PhyPS]) with the value in D18F2x94_dct[0]
        // [ProcOdtDis] (via D18F2x9C_x0000_000B_dct[0][ProcOdtDis]) when the memory frequency is updated. BIOS must reprogram this
        // BIOS must reprogram this field after each frequency change if the target value differs from D18F2x94_dct[0][ProcOdtDis].
        NBPtr->FamilySpecificHook[ProgramPOdtOff] (NBPtr, &NBPtr->PsPtr->ProcessorOnDieTerminationOff);
      }
    }
  }

  //Program F2x[1,0]90[ExitSelfRef]=1 for both DCTs.
  //Wait until the hardware resets F2x[1, 0]90[ExitSelfRef]=0.
  MemNBrdcstSetNb (NBPtr, BFExitSelfRef, 1);
  MemNPollBitFieldNb (NBPtr, BFExitSelfRef, 0, PCI_ACCESS_TIMEOUT, TRUE);
  if (NBPtr->IsSupported[SetDllShutDown]) {
    MemNBrdcstSetNb (NBPtr, BFDisDllShutdownSR, 0);
  }

  if (FrequencyChangeSuccess) {
    NBPtr->FamilySpecificHook[AfterMemClkFreqChg] (NBPtr, NULL);

    //======================================================================
    // Calculate and program DRAM Timings at new frequency
    //======================================================================
    //
    for (Dct = 0; Dct < NBPtr->DctCount; Dct++) {
      IDS_HDT_CONSOLE (MEM_STATUS, "\tDct %d\n", Dct);
      MemNSwitchDCTNb (NBPtr, Dct);
      if (NBPtr->DCTPtr->Timings.DctMemSize != 0) {
        for (ChipSel = 0; ChipSel < MAX_CS_PER_CHANNEL; ChipSel++) {
          if ((NBPtr->DCTPtr->Timings.CsPresent & ((UINT16)1 << ChipSel)) != 0) {
            // if chip select present
            if (!(TechPtr->TechnologySpecificHook[LrdimmSendAllMRCmds] (TechPtr, &ChipSel))) {
              TechPtr->SendAllMRCmds (TechPtr, ChipSel);
            }
          }
        }
        // Wait 512 clocks for DLL-relock
        MemNWaitXMemClksNb (NBPtr, 512);
      }
    }
  }

  // Restore MMIO setting
  LibAmdMsrWrite (MSR_MMIO_Cfg_Base, &OrgMMIOCfgBase, &(NBPtr->MemPtr->StdHeader));

  MemFInitTableDrive (NBPtr, MTAfterFreqChg);
}

/**
 *
 *
 *   This function overrides the ASR and SRT value in MRS command
 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 *
 */
VOID
MemNSetASRSRTNb (
  IN OUT   MEM_NB_BLOCK *NBPtr
  )
{
  UINT32 MrsAddress;
  UINT8 Dimm;
  UINT8 *SpdBufferPtr;
  BOOLEAN ASREn;
  BOOLEAN SRTEn;

  // Look for MR2
  if (NBPtr->GetBitField (NBPtr, BFMrsBank) == 2) {
    MrsAddress = NBPtr->GetBitField (NBPtr, BFMrsAddress);
    // Clear A6(ASR) and A7(SRT)
    MrsAddress &= (UINT32) ~0xC0;
    if ((NBPtr->ChannelPtr->RegDimmPresent) || (NBPtr->ChannelPtr->LrDimmPresent)) {
      // For registered dimm and LR dimm, MRS command is sent to all chipselects.
      // So different ASR/SRT setting can be sent to each chip select.
      Dimm = (UINT8) (NBPtr->GetBitField (NBPtr, BFMrsChipSel) >> 1);
      // Make sure we access SPD of the second logical dimm of QR dimm correctly
      if ((Dimm >= 2) && ((NBPtr->ChannelPtr->DimmQrPresent & (UINT8) (1 << Dimm)) != 0)) {
        Dimm -= 2;
      }
      if (NBPtr->TechPtr->GetDimmSpdBuffer (NBPtr->TechPtr, &SpdBufferPtr, Dimm)) {
        // Bit 2 is ASR
        if (SpdBufferPtr[THERMAL_OPT] & 0x4) {
          // when ASR is 1, set SRT to 0
          MrsAddress |= 0x40;
        } else {
          // Set SRT based on bit on of thermal byte
          MrsAddress |= ((SpdBufferPtr[THERMAL_OPT] & 1) << 7);
        }
      }
    } else {
      // Udimm and unbuffered dimm, MSR command will be broadcasted during Dram Init.
      // ASR/SRT value needs to be leveled across the DCT. Only if all dimms on the DCT
      // support ASR or SRT can ASR or SRT be enabled.
      ASREn = TRUE;
      SRTEn = TRUE;
      for (Dimm = 0; Dimm < MAX_DIMMS_PER_CHANNEL; Dimm ++) {
        if (NBPtr->TechPtr->GetDimmSpdBuffer (NBPtr->TechPtr, &SpdBufferPtr, Dimm)) {
          // Bit 2 is ASR
          if ((SpdBufferPtr[THERMAL_OPT] & 0x4) == 0) {
            // when any dimm in the DCT does not support ASR, disable ASR for the DCT
            ASREn = FALSE;
            // When any dimm does not have SRT with a value of 1, set SRT to 0 for the DCT
            if ((SpdBufferPtr[THERMAL_OPT] & 1) == 0) {
              SRTEn = FALSE;
            }
          }
        }
      }
      if (ASREn) {
        MrsAddress |= 0x40;
      } else {
        MrsAddress |= (UINT8) SRTEn << 7;
      }
    }

    NBPtr->SetBitField (NBPtr, BFMrsAddress, MrsAddress);
  }
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *   This function changes NB frequency foras below:
 *     NBP0-DDR800 -> NBP0-DDR1066 -> ... -> NBP0-DDRTarget -> NBP1-DDRTarget -> NBP2-DDRTarget -> NBP3-DDRTarget -> NBP0-DDRTarget
 *
 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 *
 */

BOOLEAN
MemNChangeNbFrequencyUnb (
  IN OUT   MEM_NB_BLOCK *NBPtr
  )
{
  BOOLEAN Status;

  Status = FALSE;

  // State machine to change NB frequency and NB Pstate
  switch (NBPtr->NbFreqChgState) {
  case 0:
    // Do not change NB Pstate, just to save initial NB Pstate value
    Status = NBPtr->ChangeNbFrequencyWrap (NBPtr, 0);
    if (NBPtr->DCTPtr->Timings.Speed == NBPtr->DCTPtr->Timings.TargetSpeed) {
      // When MemClk has been ramped up to its max, transition to next state, which changes NBPstate to P1
      NBPtr->NbFreqChgState = 1;
      IDS_OPTION_HOOK (IDS_NB_PSTATE_DIDVID, NBPtr, &(NBPtr->MemPtr->StdHeader));
    }
    break;

  case 1:
  case 2:
  case 3:
    // Change NB P-State to NBP1 for MaxRdLat training
    if (NBPtr->ChangeNbFrequencyWrap (NBPtr, NBPtr->NbFreqChgState)) {
      // Next state is to try all NBPstates
      NBPtr->NbFreqChgState++;

      // Return TRUE to repeat MaxRdLat training
      Status = TRUE;
    } else {
      // If transition to any NBPs fails, transition to exit state machine
      NBPtr->NbFreqChgState = 4;
    }
    break;

  case 4:
    // Change NB P-State back to NBP0
    Status = NBPtr->ChangeNbFrequencyWrap (NBPtr, 0);
    ASSERT (Status);

    // Return FALSE to get out of MaxRdLat training loop
    Status = FALSE;

    // Exit state machine
    NBPtr->NbFreqChgState = 5;
    break;

  default:
    break;
  }

  return Status;
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *
 *   This function gets "Dram Term" value from data structure for Unb
 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 *     @param[in]       ChipSel  - Targeted chipsel
 *
 *     @return       Dram Term value
 */
UINT8
MemNGetDramTermTblDrvNb (
  IN OUT   MEM_NB_BLOCK *NBPtr,
  IN       UINT8 ChipSel
  )
{
  UINT8 RttNom;
  RttNom = NBPtr->PsPtr->RttNom[ChipSel];
  IDS_OPTION_HOOK (IDS_MEM_DRAM_TERM, &RttNom, &NBPtr->MemPtr->StdHeader);
  return RttNom;
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *
 *   This function gets "Dynamic Dram Term" value from data structure
 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 *     @param[in]       ChipSel  - Targeted chipsel
 *
 *     @return       Dynamic Dram Term value
 */
UINT8
MemNGetDynDramTermTblDrvNb (
  IN OUT   MEM_NB_BLOCK *NBPtr,
  IN       UINT8 ChipSel
  )
{
  UINT8 RttWr;
  RttWr = NBPtr->PsPtr->RttWr[ChipSel];
  IDS_OPTION_HOOK (IDS_MEM_DYN_DRAM_TERM, &RttWr, &NBPtr->MemPtr->StdHeader);
  return RttWr;
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *
 *   This function returns MR0[WR] value
 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 *
 *     @return       MR0[WR] value
 */
UINT32
MemNGetMR0WRTblDrvNb (
  IN OUT   MEM_NB_BLOCK *NBPtr
  )
{
  return (UINT32) (((NBPtr->PsPtr->MR0WR & 0x7) << 9) | ((NBPtr->PsPtr->MR0WR & 0x8) << (13 - 3)));
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *   This function returns MR2[CWL] value for UNB
 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 *
 *     @return       MR0[CWL] value
 */
UINT32
MemNGetMR2CWLUnb (
  IN OUT   MEM_NB_BLOCK *NBPtr
  )
{
  UINT32 Value32;

  Value32 = (MemNGetBitFieldNb (NBPtr, BFTcwl) - 5) << 3;

  return Value32;
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *   This function sets Txp and Txpdll
 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 *
 *     @return       none
 */
VOID
MemNSetTxpNb (
  IN OUT   MEM_NB_BLOCK *NBPtr
  )
{
  CONST UINT8 Txp[] = {0xFF, 0xFF, 3, 3, 4, 4, 5, 6, 7};
  CONST UINT8 Txpdll[] = {0xFF, 0xFF, 0xA, 0xA, 0xD, 0x10, 0x14, 0x17, 0x1A};
  UINT8 i;
  UINT8 TxpVal;
  UINT8 TxpdllVal;
  UINT16 Speed;

  Speed = NBPtr->DCTPtr->Timings.Speed;
  i = (UINT8) ((Speed < DDR800_FREQUENCY) ? ((Speed / 66) - 3) : (Speed / 133));
  ASSERT (i < sizeof (Txp));
  ASSERT (i < sizeof (Txpdll));

  TxpdllVal = Txpdll[i];

  if ((NBPtr->MCTPtr->Status[SbLrdimms] || NBPtr->MCTPtr->Status[SbRegistered]) &&
      ((NBPtr->DCTPtr->Timings.Speed == DDR667_FREQUENCY) || (NBPtr->DCTPtr->Timings.Speed == DDR800_FREQUENCY)) &&
      (NBPtr->RefPtr->DDR3Voltage == VOLT1_25)) {
    TxpVal = 4;
  } else {
    TxpVal = Txp[i];
  }

  if (TxpVal != 0xFF) {
    MemNSetBitFieldNb (NBPtr, BFTxp, TxpVal);
  }
  if (TxpdllVal != 0xFF) {
    NBPtr->FamilySpecificHook[AdjustTxpdll] (NBPtr, &TxpdllVal);
    MemNSetBitFieldNb (NBPtr, BFTxpdll, TxpdllVal);
  }
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *   This function is a wrapper to handle or switch NB Pstate for UNB
 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 *     @param[in]  *NBPstate - NB Pstate
 *
 *     @return          TRUE - Succeed
 *     @return          FALSE - Fail
 */

BOOLEAN
MemNChangeNbFrequencyWrapUnb (
  IN OUT   MEM_NB_BLOCK *NBPtr,
  IN       UINT32 NBPstate
  )
{
  BOOLEAN SkipTransToLo;
  UINT8   TargetNbPs;
  UINT32  FreqNumeratorInMHz;
  UINT32  FreqDivisor;
  UINT32  VoltageInuV;
  UINT8   NbPstateMaxVal;
  UINT64  MsrValue;
  UINT64  PerfCtrlSave;
  UINT64  PerfStsSave;
  CPU_SPECIFIC_SERVICES *FamilySpecificServices;

  SkipTransToLo = FALSE;
  if (NBPtr->NbFreqChgState == 0) {
    // While in state 0, keep NB Pstate at the highest supported
    TargetNbPs = 0;
    if (NBPtr->NbPsCtlReg == 0) {
      // Save NbPsCtl register on the first run
      NBPtr->NbPsCtlReg = MemNGetBitFieldNb (NBPtr, BFNbPstateCtlReg);
    } else {
      // Do not need to switch NB Pstate again if it is already at highest
      return TRUE;
    }

    // Find out if Current NBPstate is NBPstateLo or not
    // If yes, skip the steps that transition the Pstate to Lo
    LibAmdMsrRead (MSR_NB_PERF_CTL3, &PerfCtrlSave, &(NBPtr->MemPtr->StdHeader));
    MsrValue = 0x00000006004004E9;
    LibAmdMsrRead (MSR_NB_PERF_CTR3, &PerfStsSave, &(NBPtr->MemPtr->StdHeader));
    LibAmdMsrWrite (MSR_NB_PERF_CTL3, &MsrValue, &(NBPtr->MemPtr->StdHeader));
    MsrValue = 0;
    LibAmdMsrWrite (MSR_NB_PERF_CTR3, &MsrValue, &(NBPtr->MemPtr->StdHeader));
    LibAmdMsrRead (MSR_NB_PERF_CTR3, &MsrValue, &(NBPtr->MemPtr->StdHeader));
    if (MsrValue != 0) {
      SkipTransToLo = TRUE;
    }
    LibAmdMsrWrite (MSR_NB_PERF_CTL3, &PerfCtrlSave, &(NBPtr->MemPtr->StdHeader));
    LibAmdMsrWrite (MSR_NB_PERF_CTR3, &PerfStsSave, &(NBPtr->MemPtr->StdHeader));
  } else if (NBPtr->NbFreqChgState < 4) {
    // While in other states, go to the next lower NB Pstate
    TargetNbPs = (UINT8) MemNGetBitFieldNb (NBPtr, BFCurNbPstate) + 1;
    if (TargetNbPs == 1) {
      // Set up intermediate NBPstate
      NbPstateMaxVal = (UINT8) MemNGetBitFieldNb (NBPtr, BFNbPstateMaxVal);
      MemNSetBitFieldNb (NBPtr, BFNbPsSel, NbPstateMaxVal);
      GetCpuServicesOfCurrentCore ((CONST CPU_SPECIFIC_SERVICES **)&FamilySpecificServices, &NBPtr->MemPtr->StdHeader);
      if (FamilySpecificServices->GetNbPstateInfo (FamilySpecificServices,
                                                  NBPtr->MemPtr->PlatFormConfig,
                                                  &NBPtr->PciAddr,
                                                  (UINT32) NbPstateMaxVal,
                                                  &FreqNumeratorInMHz,
                                                  &FreqDivisor,
                                                  &VoltageInuV,
                                                  &(NBPtr->MemPtr->StdHeader))) {
        // Get NCLK speed for intermediate NBPstate
        NBPtr->NBClkFreq = FreqNumeratorInMHz / FreqDivisor;
        NBPtr->ProgramNbPsDependentRegs (NBPtr);
      } else {
        ASSERT (FALSE);
      }
    }
  } else {
    // When done with training, release NB Pstate force by restoring NbPsCtl register
    NBPtr->FamilySpecificHook[ReleaseNbPstate] (NBPtr, NBPtr);
    IDS_HDT_CONSOLE (MEM_FLOW, "\tRelease NB Pstate force\n");
    return TRUE;
  }

  // Make sure target NB Pstate is enabled, else find next enabled NB Pstate
  GetCpuServicesOfCurrentCore ((CONST CPU_SPECIFIC_SERVICES **)&FamilySpecificServices, &NBPtr->MemPtr->StdHeader);
  for (; TargetNbPs < 4; TargetNbPs++) {
    if (FamilySpecificServices->GetNbPstateInfo (FamilySpecificServices,
                                                  NBPtr->MemPtr->PlatFormConfig,
                                                  &NBPtr->PciAddr,
                                                  (UINT32) TargetNbPs,
                                                  &FreqNumeratorInMHz,
                                                  &FreqDivisor,
                                                  &VoltageInuV,
                                                  &(NBPtr->MemPtr->StdHeader))) {
      // Record NCLK speed
      NBPtr->NBClkFreq = FreqNumeratorInMHz / FreqDivisor;
      break;
    }
  }

  if (TargetNbPs < 4) {
    IDS_HDT_CONSOLE (MEM_FLOW, "\tNB P%d: %dMHz\n", TargetNbPs, NBPtr->NBClkFreq);

    // 1.Program the configuration registers which contain multiple internal copies for each NB P-state. See
    //   D18F1x10C[NbPsSel].
    MemNSetBitFieldNb (NBPtr, BFNbPsSel, TargetNbPs);

    /// Check to see if NB P-states have been disabled.  @todo This should only be needed for
    /// bring up, but must be included in any releases that occur before NB P-state operation
    /// has been debugged/fixed.
    if ((NBPtr->NbPsCtlReg & 0x00000003) != 0) {
      NbPstateMaxVal = (UINT8) MemNGetBitFieldNb (NBPtr, BFNbPstateMaxVal);
      // Set up RdPtrInit before transit to target NBPstate
      if ((TargetNbPs > 0) && (TargetNbPs != NbPstateMaxVal))  {
        NBPtr->ProgramNbPsDependentRegs (NBPtr);
      } else {
        NBPtr->GetMemClkFreqInCurrentContext (NBPtr);
      }

      // If current NBPstate is already in NBPstateLo, do not do transition to NBPstateLo.
      if ((TargetNbPs != 0) || !SkipTransToLo) {
        // 2.Program D18F5x170 to transition the NB P-state:
        //   NbPstateLo = NbPstateMaxVal. (HW requires an intermediate transition to low)
        //   SwNbPstateLoDis = NbPstateDisOnP0 = NbPstateThreshold = 0.
        MemNSetBitFieldNb (NBPtr, BFNbPstateLo, NbPstateMaxVal);
        MemNSetBitFieldNb (NBPtr, BFNbPstateCtlReg, MemNGetBitFieldNb (NBPtr, BFNbPstateCtlReg) & 0xFFFF91FF);

        // 3.Wait for D18F5x174[CurNbPstate] to equal NbPstateLo.
        MemNPollBitFieldNb (NBPtr, BFCurNbPstate, NbPstateMaxVal, PCI_ACCESS_TIMEOUT, FALSE);
      }
      // 4.Program D18F5x170 to force the NB P-state:
      //   NbPstateHi = target NB P-state.
      //   SwNbPstateLoDis = 1 (triggers the transition)
      MemNSetBitFieldNb (NBPtr, BFNbPstateHi, TargetNbPs);
      MemNSetBitFieldNb (NBPtr, BFSwNbPstateLoDis, 1);

      // 5.Wait for D18F5x174[CurNbPstate] to equal the target NB P-state.
      MemNPollBitFieldNb (NBPtr, BFCurNbPstate, TargetNbPs, PCI_ACCESS_TIMEOUT, FALSE);
    }

    // When NB frequency change succeeds, TSC rate may have changed.
    // We need to update TSC rate
    FamilySpecificServices->GetTscRate (FamilySpecificServices, &NBPtr->MemPtr->TscRate, &NBPtr->MemPtr->StdHeader);
    // Switch MemPstate context if the current MemPstate does not sync with MemPstate context
    if (MemNGetBitFieldNb (NBPtr, BFCurMemPstate) != MemNGetBitFieldNb (NBPtr, BFMemPsSel)) {
      MemNChangeMemPStateContextNb (NBPtr, MemNGetBitFieldNb (NBPtr, BFCurMemPstate));
    }
  } else {
    // Cannot find a supported NB Pstate to switch to
    // Release NB Pstate force by restoring NbPsCtl register
    NBPtr->FamilySpecificHook[ReleaseNbPstate] (NBPtr, NBPtr);
    IDS_HDT_CONSOLE (MEM_FLOW, "\tRelease NB Pstate force\n");
    return FALSE;
  }
  return TRUE;
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *
 *   This function sends an MRS command for Unb
 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 *
 */

VOID
MemNSendMrsCmdUnb (
  IN OUT   MEM_NB_BLOCK *NBPtr
  )
{
  UINT8 MrsBank;
  UINT16 MrsBuffer;
  UINT8 MrsChipSel;

  MemNSetASRSRTNb (NBPtr);
  MemNSwapBitsUnb (NBPtr);

  IDS_HDT_CONSOLE (MEM_FLOW, "\t\t\tCS%d MR%d %05x\n",
              (MemNGetBitFieldNb (NBPtr, BFMrsChipSel) & 0x7),
              (MemNGetBitFieldNb (NBPtr, BFMrsBank) & 0x7),
              (MemNGetBitFieldNb (NBPtr, BFMrsAddress) & 0x3FFFF));

  // 1.Set SendMrsCmd=1
  MemNSetBitFieldNb (NBPtr, BFSendMrsCmd, 1);

  // 2.Wait for SendMrsCmd=0
  MemNPollBitFieldNb (NBPtr, BFSendMrsCmd, 0, PCI_ACCESS_TIMEOUT, FALSE);

  // Send MRS buffer if memory pstate is supported and enabled
  if (NBPtr->MemPstateStage != 0) {
    MrsChipSel = (UINT8) (MemNGetBitFieldNb (NBPtr, BFMrsChipSel) & 0x7);
    // Only user even rank MRS to set MRS buffer
    if ((MrsChipSel & 1) == 0) {
      MrsBank = (UINT8) (MemNGetBitFieldNb (NBPtr, BFMrsBank) & 0x7);
      MrsBuffer = (UINT16) (MemNGetBitFieldNb (NBPtr, BFMrsAddress) & 0xFFFF);
      if (MrsBank == 0) {
        MrsBuffer &= 0xFEFF;
        MemNSetBitFieldNb (NBPtr, BFMxMr0, MrsBuffer);
      } else if (MrsBank == 1) {
        MemNSetBitFieldNb (NBPtr, BFMxMr1, MrsBuffer);
      } else if (MrsBank == 2) {
        MemNSetBitFieldNb (NBPtr, BFMxMr2, MrsBuffer);
      }
    }
  }
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *
 *   This function returns MR0[CL] value with table driven support
 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 *
 *     @return       MR0[CL] value
 */
UINT32
MemNGetMR0CLTblDrvNb (
  IN OUT   MEM_NB_BLOCK *NBPtr
  )
{
  return (UINT32) ((NBPtr->PsPtr->MR0CL31 << 4) | (NBPtr->PsPtr->MR0CL0 << 2));
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *
 *     This function programs dram power management timing related registers
 *
 *     @param[in,out]  *NBPtr     - Pointer to the MEM_NB_BLOCK
 *
 *     @return    none
 * ----------------------------------------------------------------------------
 */
VOID
MemNDramPowerMngTimingNb (
  IN OUT   MEM_NB_BLOCK *NBPtr
  )
{
  STATIC CONST UINT8 Tckesr[] = {4, 4, 4, 5, 5, 6, 7, 2, 2};
  UINT8 Tck;

  // These timings are based on DDR3 spec
  // Tcksrx = max(5 nCK, 10 ns)
  Tck = (UINT8) MAX (5, (MemUnsToMemClk (NBPtr->DCTPtr->Timings.Speed, 10)));
  MemNSetBitFieldNb (NBPtr, BFTcksrx, MIN (0xE, MAX (Tck, 2)));

  // Tcksre = max(5 nCK, 10 ns)
  MemNSetBitFieldNb (NBPtr, BFTcksre, MIN (0x27, MAX (Tck, 5)));

  // Tckesr = tCKE(min) + 1 nCK
  //                               tCKE(min)
  // DDR-667   7.5ns = 3nCk     max(3nCK, 7.5ns)   + 1 = 3nCK + 1nCK = 4nCK
  // DDR-800   7.5ns = 3nCk     max(3nCK, 7.5ns)   + 1 = 3nCK + 1nCK = 4nCK
  // DDR-1066  5.625ns = 3nCK   max(3nCK, 5.625ns) + 1 = 3nCL + 1nCK = 4nCK
  // DDR-1333  5.625ns = 4nCK   max(3nCK, 4nCK)    + 1 = 4nCK + 1nCK = 5nCK
  // DDR-1600  5ns = 4nCK       max(3nCK, 4nCK)    + 1 = 4nCK + 1nCK = 5nCK
  // DDR-1866  5ns = 5nCK       max(3nCK, 5nCK)    + 1 = 5nCK + 1nCK = 6nCK
  // DDR-2133  5ns = 6nCK       max(3nCK, 6nCK)    + 1 = 6nCK + 1nCK = 7nCK
  ASSERT (((NBPtr->DCTPtr->Timings.Speed / 133) >= 2) && ((NBPtr->DCTPtr->Timings.Speed / 133) <= 10));
  MemNSetBitFieldNb (NBPtr, BFTckesr, Tckesr[(NBPtr->DCTPtr->Timings.Speed / 133) - 2]);

  // Tpd = tCKE(min)
  MemNSetBitFieldNb (NBPtr, BFTpd, Tckesr[(NBPtr->DCTPtr->Timings.Speed / 133) - 2] - 1);
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *       The function resets Rcv Fifo
 *
 *     @param[in,out]   *TechPtr   - Pointer to the MEM_TECH_BLOCK
 *     @param[in]       Dummy - Dummy parameter
 *
 */

VOID
MemTResetRcvFifoUnb (
  IN OUT   struct _MEM_TECH_BLOCK *TechPtr,
  IN       UINT8 Dummy
  )
{
  // Program D18F2x9C_x0000_0050_dct[1:0]=00000000h
  MemNSetBitFieldNb (TechPtr->NBPtr, BFRstRcvFifo, 0);
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *
 *   This function gets the memory width
 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 *
 *     @return      Memory width
 */

UINT32
MemNGetMemoryWidthUnb (
  IN OUT   MEM_NB_BLOCK *NBPtr
  )
{
  DIE_STRUCT      *MCTPtr;
  MEM_SHARED_DATA *SharedPtr;

  MCTPtr    = NBPtr->MCTPtr;
  SharedPtr = NBPtr->SharedPtr;

  return 64 + ((SharedPtr->AllECC && MCTPtr->Status[SbEccDimms]) ? 8 : 0);
}

/*-----------------------------------------------------------------------------
 *
 *
 *     This function displays AMP voltage values if applicable
 *
 *     @param[in,out]  *NBPtr     - Pointer to the MEM_NB_BLOCK
 *     @param[in,out]  OptParam   - Optional parameter
 *
 *     @return    FALSE
 * ----------------------------------------------------------------------------
 */
BOOLEAN
MemNAmpVoltageDispUnb (
  IN OUT   MEM_NB_BLOCK *NBPtr,
  IN OUT   VOID *OptParam
  )
{
  IDS_HDT_CONSOLE (MEM_FLOW, "\nAMP VDDIO = 1.%dV\n", (NBPtr->RefPtr->AmpVoltage >= AMP_VOLT1_45) ? 50 - 5 * (NBPtr->RefPtr->AmpVoltage >> 4) :
                                                      45 + 5 * NBPtr->RefPtr->AmpVoltage);

  // FALSE return to skip normal voltage display if wanted
  return FALSE;
}