1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
|
#include "linux_syscall.h"
#include "linux_console.h"
inline int log2(int value)
{
/* __builtin_bsr is a exactly equivalent to the x86 machine
* instruction with the exception that it returns -1
* when the value presented to it is zero.
* Otherwise __builtin_bsr returns the zero based index of
* the highest bit set.
*/
return __builtin_bsr(value);
}
static int smbus_read_byte(unsigned device, unsigned address)
{
static const unsigned char dimm[] = {
0x80, 0x08, 0x07, 0x0d, 0x0a, 0x02, 0x48, 0x00, 0x04, 0x60, 0x70, 0x02, 0x82, 0x08, 0x08, 0x01,
0x0e, 0x04, 0x0c, 0x01, 0x02, 0x20, 0x00, 0x75, 0x70, 0x00, 0x00, 0x48, 0x30, 0x48, 0x2a, 0x40,
0x80, 0x80, 0x45, 0x45, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x33,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0x80, 0x08, 0x07, 0x0d, 0x0a, 0x02, 0x48, 0x00, 0x04, 0x60, 0x70, 0x02, 0x82, 0x08, 0x08, 0x01,
0x0e, 0x04, 0x0c, 0x01, 0x02, 0x20, 0x00, 0x75, 0x70, 0x00, 0x00, 0x48, 0x30, 0x48, 0x2a, 0x40,
0x80, 0x80, 0x45, 0x45, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x33,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
};
return dimm[(device << 8) + address];
}
#define SMBUS_MEM_DEVICE_START 0x00
#define SMBUS_MEM_DEVICE_END 0x01
#define SMBUS_MEM_DEVICE_INC 1
/* Function 2 */
#define DRAM_CONFIG_HIGH 0x94
#define DCH_MEMCLK_SHIFT 20
#define DCH_MEMCLK_MASK 7
#define DCH_MEMCLK_100MHZ 0
#define DCH_MEMCLK_133MHZ 2
#define DCH_MEMCLK_166MHZ 5
#define DCH_MEMCLK_200MHZ 7
/* Function 3 */
#define NORTHBRIDGE_CAP 0xE8
#define NBCAP_128Bit 0x0001
#define NBCAP_MP 0x0002
#define NBCAP_BIG_MP 0x0004
#define NBCAP_ECC 0x0004
#define NBCAP_CHIPKILL_ECC 0x0010
#define NBCAP_MEMCLK_SHIFT 5
#define NBCAP_MEMCLK_MASK 3
#define NBCAP_MEMCLK_100MHZ 3
#define NBCAP_MEMCLK_133MHZ 2
#define NBCAP_MEMCLK_166MHZ 1
#define NBCAP_MEMCLK_200MHZ 0
#define NBCAP_MEMCTRL 0x0100
typedef unsigned char uint8_t;
typedef unsigned int uint32_t;
static unsigned spd_to_dimm(unsigned device)
{
return (device - SMBUS_MEM_DEVICE_START);
}
static void disable_dimm(unsigned index)
{
print_debug("disabling dimm");
print_debug_hex8(index);
print_debug("\r\n");
#if 0
pci_write_config32(PCI_DEV(0, 0x18, 2), DRAM_CSBASE + (((index << 1)+0)<<2), 0);
pci_write_config32(PCI_DEV(0, 0x18, 2), DRAM_CSBASE + (((index << 1)+1)<<2), 0);
#endif
}
struct mem_param {
uint8_t cycle_time;
uint32_t dch_memclk;
};
static const struct mem_param *get_mem_param(unsigned min_cycle_time)
{
static const struct mem_param speed[] = {
{
.cycle_time = 0xa0,
.dch_memclk = DCH_MEMCLK_100MHZ << DCH_MEMCLK_SHIFT,
},
{
.cycle_time = 0x75,
.dch_memclk = DCH_MEMCLK_133MHZ << DCH_MEMCLK_SHIFT,
},
{
.cycle_time = 0x60,
.dch_memclk = DCH_MEMCLK_166MHZ << DCH_MEMCLK_SHIFT,
},
{
.cycle_time = 0x50,
.dch_memclk = DCH_MEMCLK_200MHZ << DCH_MEMCLK_SHIFT,
},
{
.cycle_time = 0x00,
},
};
const struct mem_param *param;
for(param = &speed[0]; param->cycle_time ; param++) {
if (min_cycle_time > (param+1)->cycle_time) {
break;
}
}
if (!param->cycle_time) {
die("min_cycle_time to low");
}
return param;
}
#if 1
static void debug(int c)
{
print_debug_char(c);
print_debug_char('\r');
print_debug_char('\n');
}
#endif
static const struct mem_param *spd_set_memclk(void)
{
/* Compute the minimum cycle time for these dimms */
const struct mem_param *param;
unsigned min_cycle_time, min_latency;
unsigned device;
uint32_t value;
static const int latency_indicies[] = { 26, 23, 9 };
static const unsigned char min_cycle_times[] = {
[NBCAP_MEMCLK_200MHZ] = 0x50, /* 5ns */
[NBCAP_MEMCLK_166MHZ] = 0x60, /* 6ns */
[NBCAP_MEMCLK_133MHZ] = 0x75, /* 7.5ns */
[NBCAP_MEMCLK_100MHZ] = 0xa0, /* 10ns */
};
#if 0
value = pci_read_config32(PCI_DEV(0, 0x18, 3), NORTHBRIDGE_CAP);
#else
value = 0x50;
#endif
min_cycle_time = min_cycle_times[(value >> NBCAP_MEMCLK_SHIFT) & NBCAP_MEMCLK_MASK];
min_latency = 2;
#if 1
print_debug("min_cycle_time: ");
print_debug_hex8(min_cycle_time);
print_debug(" min_latency: ");
print_debug_hex8(min_latency);
print_debug("\r\n");
#endif
/* Compute the least latency with the fastest clock supported
* by both the memory controller and the dimms.
*/
for(device = SMBUS_MEM_DEVICE_START;
device <= SMBUS_MEM_DEVICE_END;
device += SMBUS_MEM_DEVICE_INC)
{
int new_cycle_time, new_latency;
int index;
int latencies;
int latency;
debug('A');
/* First find the supported CAS latencies
* Byte 18 for DDR SDRAM is interpreted:
* bit 0 == CAS Latency = 1.0
* bit 1 == CAS Latency = 1.5
* bit 2 == CAS Latency = 2.0
* bit 3 == CAS Latency = 2.5
* bit 4 == CAS Latency = 3.0
* bit 5 == CAS Latency = 3.5
* bit 6 == TBD
* bit 7 == TBD
*/
new_cycle_time = 0xa0;
new_latency = 5;
latencies = smbus_read_byte(device, 18);
if (latencies <= 0) continue;
debug('B');
/* Compute the lowest cas latency supported */
latency = log2(latencies) -2;
/* Loop through and find a fast clock with a low latency */
for(index = 0; index < 3; index++, latency++) {
int value;
debug('C');
if ((latency < 2) || (latency > 4) ||
(!(latencies & (1 << latency)))) {
continue;
}
debug('D');
value = smbus_read_byte(device, latency_indicies[index]);
if (value < 0) continue;
debug('E');
/* Only increase the latency if we decreas the clock */
if ((value >= min_cycle_time) && (value < new_cycle_time)) {
new_cycle_time = value;
new_latency = latency;
#if 1
print_debug("device: ");
print_debug_hex8(device);
print_debug(" new_cycle_time: ");
print_debug_hex8(new_cycle_time);
print_debug(" new_latency: ");
print_debug_hex8(new_latency);
print_debug("\r\n");
#endif
}
debug('G');
}
debug('H');
#if 1
print_debug("device: ");
print_debug_hex8(device);
print_debug(" new_cycle_time: ");
print_debug_hex8(new_cycle_time);
print_debug(" new_latency: ");
print_debug_hex8(new_latency);
print_debug("\r\n");
#endif
if (new_latency > 4){
continue;
}
debug('I');
/* Does min_latency need to be increased? */
if (new_cycle_time > min_cycle_time) {
min_cycle_time = new_cycle_time;
}
/* Does min_cycle_time need to be increased? */
if (new_latency > min_latency) {
min_latency = new_latency;
}
#if 1
print_debug("device: ");
print_debug_hex8(device);
print_debug(" min_cycle_time: ");
print_debug_hex8(min_cycle_time);
print_debug(" min_latency: ");
print_debug_hex8(min_latency);
print_debug("\r\n");
#endif
}
/* Make a second pass through the dimms and disable
* any that cannot support the selected memclk and cas latency.
*/
for(device = SMBUS_MEM_DEVICE_START;
device <= SMBUS_MEM_DEVICE_END;
device += SMBUS_MEM_DEVICE_INC)
{
int latencies;
int latency;
int index;
int value;
int dimm;
latencies = smbus_read_byte(device, 18);
if (latencies <= 0) {
goto dimm_err;
}
/* Compute the lowest cas latency supported */
latency = log2(latencies) -2;
/* Walk through searching for the selected latency */
for(index = 0; index < 3; index++, latency++) {
if (!(latencies & (1 << latency))) {
continue;
}
if (latency == min_latency)
break;
}
/* If I can't find the latency or my index is bad error */
if ((latency != min_latency) || (index >= 3)) {
goto dimm_err;
}
/* Read the min_cycle_time for this latency */
value = smbus_read_byte(device, latency_indicies[index]);
/* All is good if the selected clock speed
* is what I need or slower.
*/
if (value <= min_cycle_time) {
continue;
}
/* Otherwise I have an error, disable the dimm */
dimm_err:
disable_dimm(spd_to_dimm(device));
}
#if 1
print_debug("min_cycle_time: ");
print_debug_hex8(min_cycle_time);
print_debug(" min_latency: ");
print_debug_hex8(min_latency);
print_debug("\r\n");
#endif
/* Now that I know the minimum cycle time lookup the memory parameters */
param = get_mem_param(min_cycle_time);
#if 0
/* Update DRAM Config High with our selected memory speed */
value = pci_read_config32(PCI_DEV(0, 0x18, 2), DRAM_CONFIG_HIGH);
value &= ~(DCH_MEMCLK_MASK << DCH_MEMCLK_SHIFT);
value |= param->dch_memclk;
pci_write_config32(PCI_DEV(0, 0x18, 2), DRAM_CONFIG_HIGH, value);
static const unsigned latencies[] = { 1, 5, 2 };
/* Update DRAM Timing Low wiht our selected cas latency */
value = pci_read_config32(PCI_DEV(0, 0x18, 2), DRAM_CONFIG_LOW);
value &= ~7;
value |= latencies[min_latency - 2];
pci_write_config32(PCI_DEV(0, 0x18, 2), DRAM_CONFIG_LOW, value);
#endif
return param;
}
static void main(void)
{
const struct mem_param *param;
param = spd_set_memclk();
_exit(0);
}
|