summaryrefslogtreecommitdiff
path: root/MdePkg/Include/Protocol/Tcp6.h
diff options
context:
space:
mode:
authorvanjeff <vanjeff@6f19259b-4bc3-4df7-8a09-765794883524>2009-08-17 09:22:26 +0000
committervanjeff <vanjeff@6f19259b-4bc3-4df7-8a09-765794883524>2009-08-17 09:22:26 +0000
commitbdb140d76b384c8492b609ba766d148ccb3572c1 (patch)
tree59c0ddc8931b3e475b6358a174275fa9f9cfaffc /MdePkg/Include/Protocol/Tcp6.h
parent16e864a270e895dc12b1f64d8d61733170b61de8 (diff)
downloadedk2-platforms-bdb140d76b384c8492b609ba766d148ccb3572c1.tar.xz
1. import Ip6.h, Ip6Config.h and Tcp6.h.
2. refine comments in Ip4.h and Tcp4.h. git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@9081 6f19259b-4bc3-4df7-8a09-765794883524
Diffstat (limited to 'MdePkg/Include/Protocol/Tcp6.h')
-rw-r--r--MdePkg/Include/Protocol/Tcp6.h853
1 files changed, 853 insertions, 0 deletions
diff --git a/MdePkg/Include/Protocol/Tcp6.h b/MdePkg/Include/Protocol/Tcp6.h
new file mode 100644
index 0000000000..d3f538200c
--- /dev/null
+++ b/MdePkg/Include/Protocol/Tcp6.h
@@ -0,0 +1,853 @@
+/** @file
+ EFI TCPv6(Transmission Control Protocol version 6) Protocol Definition
+ The EFI TCPv6 Service Binding Protocol is used to locate EFI TCPv6 Protocol drivers to create
+ and destroy child of the driver to communicate with other host using TCP protocol.
+ The EFI TCPv6 Protocol provides services to send and receive data stream.
+
+ Copyright (c) 2008 - 2009, Intel Corporation
+ All rights reserved. This program and the accompanying materials
+ are licensed and made available under the terms and conditions of the BSD License
+ which accompanies this distribution. The full text of the license may be found at
+ http://opensource.org/licenses/bsd-license.php
+
+ THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
+ WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
+
+**/
+
+#ifndef __EFI_TCP6_PROTOCOL_H__
+#define __EFI_TCP6_PROTOCOL_H__
+
+#include <Protocol/Snp.h>
+#include <Protocol/ManagedNetwork.h>
+#include <Protocol/Ip6.h>
+
+#define EFI_TCP6_SERVICE_BINDING_PROTOCOL_GUID \
+ { \
+ 0xec20eb79, 0x6c1a, 0x4664, {0x9a, 0x0d, 0xd2, 0xe4, 0xcc, 0x16, 0xd6, 0x64 } \
+ }
+
+#define EFI_TCP6_PROTOCOL_GUID \
+ { \
+ 0x46e44855, 0xbd60, 0x4ab7, {0xab, 0x0d, 0xa6, 0x79, 0xb9, 0x44, 0x7d, 0x77 } \
+ }
+
+
+typedef struct _EFI_TCP6_PROTOCOL EFI_TCP6_PROTOCOL;
+
+
+///
+/// EFI_TCP6_SERVICE_POINT
+///
+typedef struct {
+ ///
+ /// The EFI TCPv6 Protocol instance handle that is using this
+ /// address/port pair.
+ ///
+ EFI_HANDLE InstanceHandle;
+ ///
+ /// The local IPv6 address to which this TCP instance is bound. Set
+ /// to 0::/128, if this TCP instance is configured to listen on all
+ /// available source addresses.
+ ///
+ EFI_IPv6_ADDRESS LocalAddress;
+ ///
+ /// The local port number in host byte order.
+ ///
+ UINT16 LocalPort;
+ ///
+ /// The remote IPv6 address. It may be 0::/128 if this TCP instance is
+ /// not connected to any remote host.
+ ///
+ EFI_IPv6_ADDRESS RemoteAddress;
+ ///
+ /// The remote port number in host byte order. It may be zero if this
+ /// TCP instance is not connected to any remote host.
+ ///
+ UINT16 RemotePort;
+} EFI_TCP6_SERVICE_POINT;
+
+///
+/// EFI_TCP6_VARIABLE_DATA
+///
+typedef struct {
+ EFI_HANDLE DriverHandle; ///< The handle of the driver that creates this entry.
+ UINT32 ServiceCount; ///< The number of address/port pairs following this data structure.
+ EFI_TCP6_SERVICE_POINT Services[1]; ///< List of address/port pairs that are currently in use.
+} EFI_TCP6_VARIABLE_DATA;
+
+///
+/// EFI_TCP6_ACCESS_POINT
+///
+typedef struct {
+ ///
+ /// The local IP address assigned to this TCP instance. The EFI
+ /// TCPv6 driver will only deliver incoming packets whose
+ /// destination addresses exactly match the IP address. Set to zero to
+ /// let the underlying IPv6 driver choose a source address. If not zero
+ /// it must be one of the configured IP addresses in the underlying
+ /// IPv6 driver.
+ ///
+ EFI_IPv6_ADDRESS StationAddress;
+ ///
+ /// The local port number to which this EFI TCPv6 Protocol instance
+ /// is bound. If the instance doesn't care the local port number, set
+ /// StationPort to zero to use an ephemeral port.
+ ///
+ UINT16 StationPort;
+ ///
+ /// The remote IP address to which this EFI TCPv6 Protocol instance
+ /// is connected. If ActiveFlag is FALSE (i.e. a passive TCPv6
+ /// instance), the instance only accepts connections from the
+ /// RemoteAddress. If ActiveFlag is TRUE the instance will
+ /// connect to the RemoteAddress, i.e., outgoing segments will be
+ /// sent to this address and only segments from this address will be
+ /// delivered to the application. When ActiveFlag is FALSE, it
+ /// can be set to zero and means that incoming connection requests
+ /// from any address will be accepted.
+ ///
+ EFI_IPv6_ADDRESS RemoteAddress;
+ ///
+ /// The remote port to which this EFI TCPv6 Protocol instance
+ /// connects or from which connection request will be accepted by
+ /// this EFI TCPv6 Protocol instance. If ActiveFlag is FALSE it
+ /// can be zero and means that incoming connection request from
+ /// any port will be accepted. Its value can not be zero when
+ /// ActiveFlag is TRUE.
+ ///
+ UINT16 RemotePort;
+ ///
+ /// Set it to TRUE to initiate an active open. Set it to FALSE to
+ /// initiate a passive open to act as a server.
+ ///
+ BOOLEAN ActiveFlag;
+} EFI_TCP6_ACCESS_POINT;
+
+///
+/// EFI_TCP6_OPTION
+///
+typedef struct {
+ ///
+ /// The size of the TCP receive buffer.
+ ///
+ UINT32 ReceiveBufferSize;
+ ///
+ /// The size of the TCP send buffer.
+ ///
+ UINT32 SendBufferSize;
+ ///
+ /// The length of incoming connect request queue for a passive
+ /// instance. When set to zero, the value is implementation specific.
+ ///
+ UINT32 MaxSynBackLog;
+ ///
+ /// The maximum seconds a TCP instance will wait for before a TCP
+ /// connection established. When set to zero, the value is
+ /// implementation specific.
+ ///
+ UINT32 ConnectionTimeout;
+ ///
+ ///The number of times TCP will attempt to retransmit a packet on
+ ///an established connection. When set to zero, the value is
+ ///implementation specific.
+ ///
+ UINT32 DataRetries;
+ ///
+ /// How many seconds to wait in the FIN_WAIT_2 states for a final
+ /// FIN flag before the TCP instance is closed. This timeout is in
+ /// effective only if the application has called Close() to
+ /// disconnect the connection completely. It is also called
+ /// FIN_WAIT_2 timer in other implementations. When set to zero,
+ /// it should be disabled because the FIN_WAIT_2 timer itself is
+ /// against the standard. The default value is 60.
+ ///
+ UINT32 FinTimeout;
+ ///
+ /// How many seconds to wait in TIME_WAIT state before the TCP
+ /// instance is closed. The timer is disabled completely to provide a
+ /// method to close the TCP connection quickly if it is set to zero. It
+ /// is against the related RFC documents.
+ ///
+ UINT32 TimeWaitTimeout;
+ ///
+ /// The maximum number of TCP keep-alive probes to send before
+ /// giving up and resetting the connection if no response from the
+ /// other end. Set to zero to disable keep-alive probe.
+ ///
+ UINT32 KeepAliveProbes;
+ ///
+ /// The number of seconds a connection needs to be idle before TCP
+ /// sends out periodical keep-alive probes. When set to zero, the
+ /// value is implementation specific. It should be ignored if keep-
+ /// alive probe is disabled.
+ ///
+ UINT32 KeepAliveTime;
+ ///
+ /// The number of seconds between TCP keep-alive probes after the
+ /// periodical keep-alive probe if no response. When set to zero, the
+ /// value is implementation specific. It should be ignored if keep-
+ /// alive probe is disabled.
+ ///
+ UINT32 KeepAliveInterval;
+ ///
+ /// Set it to TRUE to enable the Nagle algorithm as defined in
+ /// RFC896. Set it to FALSE to disable it.
+ ///
+ BOOLEAN EnableNagle;
+ ///
+ /// Set it to TRUE to enable TCP timestamps option as defined in
+ /// RFC1323. Set to FALSE to disable it.
+ ///
+ BOOLEAN EnableTimeStamp;
+ ///
+ /// Set it to TRUE to enable TCP window scale option as defined in
+ /// RFC1323. Set it to FALSE to disable it.
+ ///
+ BOOLEAN EnableWindowScaling;
+ ///
+ /// Set it to TRUE to enable selective acknowledge mechanism
+ /// described in RFC 2018. Set it to FALSE to disable it.
+ /// Implementation that supports SACK can optionally support
+ /// DSAK as defined in RFC 2883.
+ ///
+ BOOLEAN EnableSelectiveAck;
+ ///
+ /// Set it to TRUE to enable path MTU discovery as defined in
+ /// RFC 1191. Set to FALSE to disable it.
+ ///
+ BOOLEAN EnablePathMtuDiscovery;
+} EFI_TCP6_OPTION;
+
+///
+/// EFI_TCP6_CONFIG_DATA
+///
+typedef struct {
+ ///
+ /// TrafficClass field in transmitted IPv6 packets.
+ ///
+ UINT8 TrafficClass;
+ ///
+ /// HopLimit field in transmitted IPv6 packets.
+ ///
+ UINT8 HopLimit;
+ ///
+ /// Used to specify TCP communication end settings for a TCP instance.
+ ///
+ EFI_TCP6_ACCESS_POINT AccessPoint;
+ ///
+ /// Used to configure the advance TCP option for a connection. If set
+ /// to NULL, implementation specific options for TCP connection will be used.
+ ///
+ EFI_TCP6_OPTION *ControlOption;
+} EFI_TCP6_CONFIG_DATA;
+
+///
+/// EFI_TCP6_CONNECTION_STATE
+///
+typedef enum {
+ Tcp6StateClosed = 0,
+ Tcp6StateListen = 1,
+ Tcp6StateSynSent = 2,
+ Tcp6StateSynReceived = 3,
+ Tcp6StateEstablished = 4,
+ Tcp6StateFinWait1 = 5,
+ Tcp6StateFinWait2 = 6,
+ Tcp6StateClosing = 7,
+ Tcp6StateTimeWait = 8,
+ Tcp6StateCloseWait = 9,
+ Tcp6StateLastAck = 10
+} EFI_TCP6_CONNECTION_STATE;
+
+///
+/// EFI_TCP6_COMPLETION_TOKEN
+/// is used as a common header for various asynchronous tokens.
+///
+typedef struct {
+ ///
+ /// The Event to signal after request is finished and Status field is
+ /// updated by the EFI TCPv6 Protocol driver.
+ ///
+ EFI_EVENT Event;
+ ///
+ /// The result of the completed operation.
+ ///
+ EFI_STATUS Status;
+} EFI_TCP6_COMPLETION_TOKEN;
+
+///
+/// EFI_TCP6_CONNECTION_TOKEN
+/// will be set if the active open succeeds or an unexpected
+/// error happens.
+///
+typedef struct {
+ ///
+ /// The Status in the CompletionToken will be set to one of
+ /// the following values if the active open succeeds or an unexpected
+ /// error happens:
+ /// EFI_SUCCESS: The active open succeeds and the instance's
+ /// state is Tcp6StateEstablished.
+ /// EFI_CONNECTION_RESET: The connect fails because the connection is reset
+ /// either by instance itself or the communication peer.
+ /// EFI_ABORTED: The active open is aborted.
+ /// EFI_TIMEOUT: The connection establishment timer expires and
+ /// no more specific information is available.
+ /// EFI_NETWORK_UNREACHABLE: The active open fails because
+ /// an ICMP network unreachable error is received.
+ /// EFI_HOST_UNREACHABLE: The active open fails because an
+ /// ICMP host unreachable error is received.
+ /// EFI_PROTOCOL_UNREACHABLE: The active open fails
+ /// because an ICMP protocol unreachable error is received.
+ /// EFI_PORT_UNREACHABLE: The connection establishment
+ /// timer times out and an ICMP port unreachable error is received.
+ /// EFI_ICMP_ERROR: The connection establishment timer times
+ /// out and some other ICMP error is received.
+ /// EFI_DEVICE_ERROR: An unexpected system or network error occurred.
+ /// EFI_SECURITY_VIOLATION: The active open was failed because of IPSec policy check.
+ ///
+ EFI_TCP6_COMPLETION_TOKEN CompletionToken;
+} EFI_TCP6_CONNECTION_TOKEN;
+
+///
+/// EFI_TCP6_LISTEN_TOKEN
+/// returns when list operation finishes.
+///
+typedef struct {
+ ///
+ /// The Status in CompletionToken will be set to the
+ /// following value if accept finishes:
+ /// EFI_SUCCESS: A remote peer has successfully established a
+ /// connection to this instance. A new TCP instance has also been
+ /// created for the connection.
+ /// EFI_CONNECTION_RESET: The accept fails because the connection is reset either
+ /// by instance itself or communication peer.
+ /// EFI_ABORTED: The accept request has been aborted.
+ /// EFI_SECURITY_VIOLATION: The accept operation was failed because of IPSec policy check.
+ ///
+ EFI_TCP6_COMPLETION_TOKEN CompletionToken;
+ EFI_HANDLE NewChildHandle;
+} EFI_TCP6_LISTEN_TOKEN;
+
+///
+/// EFI_TCP6_FRAGMENT_DATA
+/// allows multiple receive or transmit buffers to be specified. The
+/// purpose of this structure is to provide scattered read and write.
+///
+typedef struct {
+ UINT32 FragmentLength; ///< Length of data buffer in the fragment.
+ VOID *FragmentBuffer; ///< Pointer to the data buffer in the fragment.
+} EFI_TCP6_FRAGMENT_DATA;
+
+///
+/// EFI_TCP6_RECEIVE_DATA
+/// When TCPv6 driver wants to deliver received data to the application,
+/// it will pick up the first queued receiving token, update its
+/// Token->Packet.RxData then signal the Token->CompletionToken.Event.
+///
+typedef struct {
+ ///
+ /// Whether the data is urgent. When this flag is set, the instance is in
+ /// urgent mode.
+ ///
+ BOOLEAN UrgentFlag;
+ ///
+ /// When calling Receive() function, it is the byte counts of all
+ /// Fragmentbuffer in FragmentTable allocated by user.
+ /// When the token is signaled by TCPv6 driver it is the length of
+ /// received data in the fragments.
+ ///
+ UINT32 DataLength;
+ ///
+ /// Number of fragments.
+ ///
+ UINT32 FragmentCount;
+ ///
+ /// An array of fragment descriptors.
+ ///
+ EFI_TCP6_FRAGMENT_DATA FragmentTable[1];
+} EFI_TCP6_RECEIVE_DATA;
+
+///
+/// EFI_TCP6_TRANSMIT_DATA
+/// The EFI TCPv6 Protocol user must fill this data structure before sending a packet.
+/// The packet may contain multiple buffers in non-continuous memory locations.
+///
+typedef struct {
+ ///
+ /// Push If TRUE, data must be transmitted promptly, and the PUSH bit in
+ /// the last TCP segment created will be set. If FALSE, data
+ /// transmission may be delayed to combine with data from
+ /// subsequent Transmit()s for efficiency.
+ ///
+ BOOLEAN Push;
+ ///
+ /// The data in the fragment table are urgent and urgent point is in
+ /// effect if TRUE. Otherwise those data are NOT considered urgent.
+ ///
+ BOOLEAN Urgent;
+ ///
+ /// Length of the data in the fragments.
+ ///
+ UINT32 DataLength;
+ ///
+ /// Number of fragments.
+ ///
+ UINT32 FragmentCount;
+ ///
+ /// An array of fragment descriptors.
+ ///
+ EFI_TCP6_FRAGMENT_DATA FragmentTable[1];
+} EFI_TCP6_TRANSMIT_DATA;
+
+///
+/// EFI_TCP6_IO_TOKEN
+/// returns When transmission finishes or meets any unexpected error.
+///
+typedef struct {
+ ///
+ /// When transmission finishes or meets any unexpected error it will
+ /// be set to one of the following values:
+ /// EFI_SUCCESS: The receiving or transmission operation
+ /// completes successfully.
+ /// EFI_CONNECTION_RESET: The receiving or transmission operation fails
+ /// because this connection is reset either by instance
+ /// itself or the communication peer.
+ /// EFI_ABORTED: The receiving or transmission is aborted.
+ /// EFI_TIMEOUT: The transmission timer expires and no more
+ /// specific information is available.
+ /// EFI_NETWORK_UNREACHABLE: The transmission fails
+ /// because an ICMP network unreachable error is received.
+ /// EFI_HOST_UNREACHABLE: The transmission fails because an
+ /// ICMP host unreachable error is received.
+ /// EFI_PROTOCOL_UNREACHABLE: The transmission fails
+ /// because an ICMP protocol unreachable error is received.
+ /// EFI_PORT_UNREACHABLE: The transmission fails and an
+ /// ICMP port unreachable error is received.
+ /// EFI_ICMP_ERROR: The transmission fails and some other
+ /// ICMP error is received.
+ /// EFI_DEVICE_ERROR: An unexpected system or network error occurs.
+ /// EFI_SECURITY_VIOLATION: The receiving or transmission
+ /// operation was failed because of IPSec policy check
+ ///
+ EFI_TCP6_COMPLETION_TOKEN CompletionToken;
+ union {
+ ///
+ /// When this token is used for receiving, RxData is a pointer to
+ /// EFI_TCP6_RECEIVE_DATA.
+ ///
+ EFI_TCP6_RECEIVE_DATA *RxData;
+ ///
+ /// When this token is used for transmitting, TxData is a pointer to
+ /// EFI_TCP6_TRANSMIT_DATA.
+ ///
+ EFI_TCP6_TRANSMIT_DATA *TxData;
+ } Packet;
+} EFI_TCP6_IO_TOKEN;
+
+///
+/// EFI_TCP6_CLOSE_TOKEN
+/// returns when close operation finishes.
+///
+typedef struct {
+ ///
+ /// When close finishes or meets any unexpected error it will be set
+ /// to one of the following values:
+ /// EFI_SUCCESS: The close operation completes successfully.
+ /// EFI_ABORTED: User called configure with NULL without close stopping.
+ /// EFI_SECURITY_VIOLATION: The close operation was failed because of IPSec policy check.
+ ///
+ EFI_TCP6_COMPLETION_TOKEN CompletionToken;
+ ///
+ /// Abort the TCP connection on close instead of the standard TCP
+ /// close process when it is set to TRUE. This option can be used to
+ /// satisfy a fast disconnect.
+ ///
+ BOOLEAN AbortOnClose;
+} EFI_TCP6_CLOSE_TOKEN;
+
+/**
+ Get the current operational status.
+
+ The GetModeData() function copies the current operational settings of this EFI TCPv6
+ Protocol instance into user-supplied buffers. This function can also be used to retrieve
+ the operational setting of underlying drivers such as IPv6, MNP, or SNP.
+
+ @param[in] This Pointer to the EFI_TCP6_PROTOCOL instance.
+ @param[out] Tcp6State The buffer in which the current TCP state is returned.
+ @param[out] Tcp6ConfigData The buffer in which the current TCP configuration is returned.
+ @param[out] Ip6ModeData The buffer in which the current IPv6 configuration data used by
+ the TCP instance is returned.
+ @param[out] MnpConfigData The buffer in which the current MNP configuration data used
+ indirectly by the TCP instance is returned.
+ @param[out] SnpModeData The buffer in which the current SNP mode data used indirectly by
+ the TCP instance is returned.
+
+ @retval EFI_SUCCESS The mode data was read.
+ @retval EFI_NOT_STARTED No configuration data is available because this instance hasn't
+ been started.
+ @retval EFI_INVALID_PARAMETER This is NULL.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_TCP6_GET_MODE_DATA) (
+ IN EFI_TCP6_PROTOCOL *This,
+ OUT EFI_TCP6_CONNECTION_STATE *Tcp6State OPTIONAL,
+ OUT EFI_TCP6_CONFIG_DATA *Tcp6ConfigData OPTIONAL,
+ OUT EFI_IP6_MODE_DATA *Ip6ModeData OPTIONAL,
+ OUT EFI_MANAGED_NETWORK_CONFIG_DATA *MnpConfigData OPTIONAL,
+ OUT EFI_SIMPLE_NETWORK_MODE *SnpModeData OPTIONAL
+ );
+
+/**
+ Initialize or brutally reset the operational parameters for this EFI TCPv6 instance.
+
+ The Configure() function does the following:
+ - Initialize this TCP instance, i.e., initialize the communication end settings and
+ specify active open or passive open for an instance.
+ - Reset this TCP instance brutally, i.e., cancel all pending asynchronous tokens, flush
+ transmission and receiving buffer directly without informing the communication peer.
+
+ No other TCPv6 Protocol operation except Poll() can be executed by this instance until
+ it is configured properly. For an active TCP instance, after a proper configuration it
+ may call Connect() to initiates the three-way handshake. For a passive TCP instance,
+ its state will transit to Tcp6StateListen after configuration, and Accept() may be
+ called to listen the incoming TCP connection requests. If Tcp6ConfigData is set to NULL,
+ the instance is reset. Resetting process will be done brutally, the state machine will
+ be set to Tcp6StateClosed directly, the receive queue and transmit queue will be flushed,
+ and no traffic is allowed through this instance.
+
+ @param[in] This Pointer to the EFI_TCP6_PROTOCOL instance.
+ @param[in] Tcp6ConfigData Pointer to the configure data to configure the instance.
+ If Tcp6ConfigData is set to NULL, the instance is reset.
+
+ @retval EFI_SUCCESS The operational settings are set, changed, or reset
+ successfully.
+ @retval EFI_NO_MAPPING The underlying IPv6 driver was responsible for choosing a source
+ address for this instance, but no source address was available for
+ use.
+ @retval EFI_INVALID_PARAMETER One or more of the following conditions are TRUE:
+ - This is NULL.
+ - Tcp6ConfigData->AccessPoint.StationAddress is neither zero nor
+ one of the configured IP addresses in the underlying IPv6 driver.
+ - Tcp6ConfigData->AccessPoint.RemoteAddress isn't a valid unicast
+ IPv6 address.
+ - Tcp6ConfigData->AccessPoint.RemoteAddress is zero or
+ Tcp6ConfigData->AccessPoint.RemotePort is zero when
+ Tcp6ConfigData->AccessPoint.ActiveFlag is TRUE.
+ - A same access point has been configured in other TCP
+ instance properly.
+ @retval EFI_ACCESS_DENIED Configuring TCP instance when it is configured without
+ calling Configure() with NULL to reset it.
+ @retval EFI_UNSUPPORTED One or more of the control options are not supported in
+ the implementation.
+ @retval EFI_OUT_OF_RESOURCES Could not allocate enough system resources when
+ executing Configure().
+ @retval EFI_DEVICE_ERROR An unexpected network or system error occurred.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_TCP6_CONFIGURE) (
+ IN EFI_TCP6_PROTOCOL *This,
+ IN EFI_TCP6_CONFIG_DATA *Tcp6ConfigData OPTIONAL
+ );
+
+/**
+ Initiate a nonblocking TCP connection request for an active TCP instance.
+
+ The Connect() function will initiate an active open to the remote peer configured
+ in current TCP instance if it is configured active. If the connection succeeds or
+ fails due to any error, the ConnectionToken->CompletionToken.Event will be signaled
+ and ConnectionToken->CompletionToken.Status will be updated accordingly. This
+ function can only be called for the TCP instance in Tcp6StateClosed state. The
+ instance will transfer into Tcp6StateSynSent if the function returns EFI_SUCCESS.
+ If TCP three-way handshake succeeds, its state will become Tcp6StateEstablished,
+ otherwise, the state will return to Tcp6StateClosed.
+
+ @param[in] This Pointer to the EFI_TCP6_PROTOCOL instance.
+ @param[in] ConnectionToken Pointer to the connection token to return when the TCP three
+ way handshake finishes.
+
+ @retval EFI_SUCCESS The connection request is successfully initiated and the state of
+ this TCP instance has been changed to Tcp6StateSynSent.
+ @retval EFI_NOT_STARTED This EFI TCPv6 Protocol instance has not been configured.
+ @retval EFI_ACCESS_DENIED One or more of the following conditions are TRUE:
+ - This instance is not configured as an active one.
+ - This instance is not in Tcp6StateClosed state.
+ @retval EFI_INVALID_PARAMETER One or more of the following are TRUE:
+ - This is NULL.
+ - ConnectionToken is NULL.
+ - ConnectionToken->CompletionToken.Event is NULL.
+ @retval EFI_OUT_OF_RESOURCES The driver can't allocate enough resource to initiate the active open.
+ @retval EFI_DEVICE_ERROR An unexpected system or network error occurred.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_TCP6_CONNECT) (
+ IN EFI_TCP6_PROTOCOL *This,
+ IN EFI_TCP6_CONNECTION_TOKEN *ConnectionToken
+ );
+
+/**
+ Listen on the passive instance to accept an incoming connection request. This is a
+ nonblocking operation.
+
+ The Accept() function initiates an asynchronous accept request to wait for an incoming
+ connection on the passive TCP instance. If a remote peer successfully establishes a
+ connection with this instance, a new TCP instance will be created and its handle will
+ be returned in ListenToken->NewChildHandle. The newly created instance is configured
+ by inheriting the passive instance's configuration and is ready for use upon return.
+ The new instance is in the Tcp6StateEstablished state.
+
+ The ListenToken->CompletionToken.Event will be signaled when a new connection is
+ accepted, user aborts the listen or connection is reset.
+
+ This function only can be called when current TCP instance is in Tcp6StateListen state.
+
+ @param[in] This Pointer to the EFI_TCP6_PROTOCOL instance.
+ @param[in] ListenToken Pointer to the listen token to return when operation finishes.
+
+
+ @retval EFI_SUCCESS The listen token has been queued successfully.
+ @retval EFI_NOT_STARTED This EFI TCPv6 Protocol instance has not been configured.
+ @retval EFI_ACCESS_DENIED One or more of the following are TRUE:
+ - This instance is not a passive instance.
+ - This instance is not in Tcp6StateListen state.
+ - The same listen token has already existed in the listen
+ token queue of this TCP instance.
+ @retval EFI_INVALID_PARAMETER One or more of the following are TRUE:
+ - This is NULL.
+ - ListenToken is NULL.
+ - ListentToken->CompletionToken.Event is NULL.
+ @retval EFI_OUT_OF_RESOURCES Could not allocate enough resource to finish the operation.
+ @retval EFI_DEVICE_ERROR Any unexpected and not belonged to above category error.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_TCP6_ACCEPT) (
+ IN EFI_TCP6_PROTOCOL *This,
+ IN EFI_TCP6_LISTEN_TOKEN *ListenToken
+ );
+
+/**
+ Queues outgoing data into the transmit queue.
+
+ The Transmit() function queues a sending request to this TCP instance along with the
+ user data. The status of the token is updated and the event in the token will be
+ signaled once the data is sent out or some error occurs.
+
+ @param[in] This Pointer to the EFI_TCP6_PROTOCOL instance.
+ @param[in] Token Pointer to the completion token to queue to the transmit queue.
+
+ @retval EFI_SUCCESS The data has been queued for transmission.
+ @retval EFI_NOT_STARTED This EFI TCPv6 Protocol instance has not been configured.
+ @retval EFI_NO_MAPPING The underlying IPv6 driver was responsible for choosing a
+ source address for this instance, but no source address was
+ available for use.
+ @retval EFI_INVALID_PARAMETER One or more of the following are TRUE:
+ - This is NULL.
+ - Token is NULL.
+ - Token->CompletionToken.Event is NULL.
+ - Token->Packet.TxData is NULL.
+ - Token->Packet.FragmentCount is zero.
+ - Token->Packet.DataLength is not equal to the sum of fragment lengths.
+ @retval EFI_ACCESS_DENIED One or more of the following conditions are TRUE:
+ - A transmit completion token with the same Token->
+ CompletionToken.Event was already in the
+ transmission queue.
+ - The current instance is in Tcp6StateClosed state.
+ - The current instance is a passive one and it is in
+ Tcp6StateListen state.
+ - User has called Close() to disconnect this connection.
+ @retval EFI_NOT_READY The completion token could not be queued because the
+ transmit queue is full.
+ @retval EFI_OUT_OF_RESOURCES Could not queue the transmit data because of resource
+ shortage.
+ @retval EFI_NETWORK_UNREACHABLE There is no route to the destination network or address.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_TCP6_TRANSMIT) (
+ IN EFI_TCP6_PROTOCOL *This,
+ IN EFI_TCP6_IO_TOKEN *Token
+ );
+
+/**
+ Places an asynchronous receive request into the receiving queue.
+
+ The Receive() function places a completion token into the receive packet queue. This
+ function is always asynchronous. The caller must allocate the Token->CompletionToken.Event
+ and the FragmentBuffer used to receive data. The caller also must fill the DataLength which
+ represents the whole length of all FragmentBuffer. When the receive operation completes, the
+ EFI TCPv6 Protocol driver updates the Token->CompletionToken.Status and Token->Packet.RxData
+ fields and the Token->CompletionToken.Event is signaled. If got data the data and its length
+ will be copied into the FragmentTable, at the same time the full length of received data will
+ be recorded in the DataLength fields. Providing a proper notification function and context
+ for the event will enable the user to receive the notification and receiving status. That
+ notification function is guaranteed to not be re-entered.
+
+ @param[in] This Pointer to the EFI_TCP6_PROTOCOL instance.
+ @param[in] Token Pointer to a token that is associated with the receive data
+ descriptor.
+
+ @retval EFI_SUCCESS The receive completion token was cached.
+ @retval EFI_NOT_STARTED This EFI TCPv6 Protocol instance has not been configured.
+ @retval EFI_NO_MAPPING The underlying IPv6 driver was responsible for choosing a source
+ address for this instance, but no source address was available for use.
+ @retval EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:
+ - This is NULL.
+ - Token is NULL.
+ - Token->CompletionToken.Event is NULL.
+ - Token->Packet.RxData is NULL.
+ - Token->Packet.RxData->DataLength is 0.
+ - The Token->Packet.RxData->DataLength is not the
+ sum of all FragmentBuffer length in FragmentTable.
+ @retval EFI_OUT_OF_RESOURCES The receive completion token could not be queued due to a lack of
+ system resources (usually memory).
+ @retval EFI_DEVICE_ERROR An unexpected system or network error occurred.
+ The EFI TCPv6 Protocol instance has been reset to startup defaults.
+ @retval EFI_ACCESS_DENIED One or more of the following conditions is TRUE:
+ - A receive completion token with the same Token->CompletionToken.Event
+ was already in the receive queue.
+ - The current instance is in Tcp6StateClosed state.
+ - The current instance is a passive one and it is in
+ Tcp6StateListen state.
+ - User has called Close() to disconnect this connection.
+ @retval EFI_CONNECTION_FIN The communication peer has closed the connection and there is no
+ any buffered data in the receive buffer of this instance
+ @retval EFI_NOT_READY The receive request could not be queued because the receive queue is full.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_TCP6_RECEIVE) (
+ IN EFI_TCP6_PROTOCOL *This,
+ IN EFI_TCP6_IO_TOKEN *Token
+ );
+
+/**
+ Disconnecting a TCP connection gracefully or reset a TCP connection. This function is a
+ nonblocking operation.
+
+ Initiate an asynchronous close token to TCP driver. After Close() is called, any buffered
+ transmission data will be sent by TCP driver and the current instance will have a graceful close
+ working flow described as RFC 793 if AbortOnClose is set to FALSE, otherwise, a rest packet
+ will be sent by TCP driver to fast disconnect this connection. When the close operation completes
+ successfully the TCP instance is in Tcp6StateClosed state, all pending asynchronous
+ operations are signaled and any buffers used for TCP network traffic are flushed.
+
+ @param[in] This Pointer to the EFI_TCP6_PROTOCOL instance.
+ @param[in] CloseToken Pointer to the close token to return when operation finishes.
+
+ @retval EFI_SUCCESS The Close() is called successfully.
+ @retval EFI_NOT_STARTED This EFI TCPv6 Protocol instance has not been configured.
+ @retval EFI_ACCESS_DENIED One or more of the following are TRUE:
+ - CloseToken or CloseToken->CompletionToken.Event is already in use.
+ - Previous Close() call on this instance has not finished.
+ @retval EFI_INVALID_PARAMETER One or more of the following are TRUE:
+ - This is NULL.
+ - CloseToken is NULL.
+ - CloseToken->CompletionToken.Event is NULL.
+ @retval EFI_OUT_OF_RESOURCES Could not allocate enough resource to finish the operation.
+ @retval EFI_DEVICE_ERROR Any unexpected and not belonged to above category error.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_TCP6_CLOSE) (
+ IN EFI_TCP6_PROTOCOL *This,
+ IN EFI_TCP6_CLOSE_TOKEN *CloseToken
+ );
+
+/**
+ Abort an asynchronous connection, listen, transmission or receive request.
+
+ The Cancel() function aborts a pending connection, listen, transmit or
+ receive request.
+
+ If Token is not NULL and the token is in the connection, listen, transmission
+ or receive queue when it is being cancelled, its Token->Status will be set
+ to EFI_ABORTED and then Token->Event will be signaled.
+
+ If the token is not in one of the queues, which usually means that the
+ asynchronous operation has completed, EFI_NOT_FOUND is returned.
+
+ If Token is NULL all asynchronous token issued by Connect(), Accept(),
+ Transmit() and Receive() will be aborted.
+
+ @param[in] This Pointer to the EFI_TCP6_PROTOCOL instance.
+ @param[in] Token Pointer to a token that has been issued by
+ EFI_TCP6_PROTOCOL.Connect(),
+ EFI_TCP6_PROTOCOL.Accept(),
+ EFI_TCP6_PROTOCOL.Transmit() or
+ EFI_TCP6_PROTOCOL.Receive(). If NULL, all pending
+ tokens issued by above four functions will be aborted. Type
+ EFI_TCP6_COMPLETION_TOKEN is defined in
+ EFI_TCP_PROTOCOL.Connect().
+
+ @retval EFI_SUCCESS The asynchronous I/O request is aborted and Token->Event
+ is signaled.
+ @retval EFI_INVALID_PARAMETER This is NULL.
+ @retval EFI_NOT_STARTED This instance hasn't been configured.
+ @retval EFI_NOT_FOUND The asynchronous I/O request isn't found in the transmission or
+ receive queue. It has either completed or wasn't issued by
+ Transmit() and Receive().
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_TCP6_CANCEL) (
+ IN EFI_TCP6_PROTOCOL *This,
+ IN EFI_TCP6_COMPLETION_TOKEN *Token OPTIONAL
+ );
+
+/**
+ Poll to receive incoming data and transmit outgoing segments.
+
+ The Poll() function increases the rate that data is moved between the network
+ and application and can be called when the TCP instance is created successfully.
+ Its use is optional.
+
+ @param[in] This Pointer to the EFI_TCP6_PROTOCOL instance.
+
+ @retval EFI_SUCCESS Incoming or outgoing data was processed.
+ @retval EFI_INVALID_PARAMETER This is NULL.
+ @retval EFI_DEVICE_ERROR An unexpected system or network error occurred.
+ @retval EFI_NOT_READY No incoming or outgoing data is processed.
+ @retval EFI_TIMEOUT Data was dropped out of the transmission or receive queue.
+ Consider increasing the polling rate.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_TCP6_POLL) (
+ IN EFI_TCP6_PROTOCOL *This
+ );
+
+///
+/// EFI_TCP6_PROTOCOL
+/// defines the EFI TCPv6 Protocol child to be used by any network drivers or
+/// applications to send or receive data stream. It can either listen on a
+/// specified port as a service or actively connect to remote peer as a client.
+/// Each instance has its own independent settings.
+///
+typedef struct _EFI_TCP6_PROTOCOL {
+ EFI_TCP6_GET_MODE_DATA GetModeData;
+ EFI_TCP6_CONFIGURE Configure;
+ EFI_TCP6_CONNECT Connect;
+ EFI_TCP6_ACCEPT Accept;
+ EFI_TCP6_TRANSMIT Transmit;
+ EFI_TCP6_RECEIVE Receive;
+ EFI_TCP6_CLOSE Close;
+ EFI_TCP6_CANCEL Cancel;
+ EFI_TCP6_POLL Poll;
+} EFI_TCP6_PROTOCOL;
+
+extern EFI_GUID gEfiTcp6ServiceBindingProtocolGuid;
+extern EFI_GUID gEfiTcp6ProtocolGuid;
+
+#endif
+