summaryrefslogtreecommitdiff
path: root/MdePkg/Library/UefiRuntimeLib
diff options
context:
space:
mode:
authorGuo Mang <mang.guo@intel.com>2017-08-02 09:54:47 +0800
committerGuo Mang <mang.guo@intel.com>2017-09-05 19:45:08 +0800
commit6c128c65b5ec0e5b8b5a0ccb165f3afd29e485f8 (patch)
tree444372d92a0ae8991fe4d15eb3937df43690dfda /MdePkg/Library/UefiRuntimeLib
parentb207c6434d7a5a4502975d322312e07017e8a8cb (diff)
downloadedk2-platforms-6c128c65b5ec0e5b8b5a0ccb165f3afd29e485f8.tar.xz
Remove core packages since we can get them from edk2 repository
Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Guo Mang <mang.guo@intel.com>
Diffstat (limited to 'MdePkg/Library/UefiRuntimeLib')
-rw-r--r--MdePkg/Library/UefiRuntimeLib/RuntimeLib.c843
-rw-r--r--MdePkg/Library/UefiRuntimeLib/UefiRuntimeLib.inf51
-rw-r--r--MdePkg/Library/UefiRuntimeLib/UefiRuntimeLib.unibin2358 -> 0 bytes
3 files changed, 0 insertions, 894 deletions
diff --git a/MdePkg/Library/UefiRuntimeLib/RuntimeLib.c b/MdePkg/Library/UefiRuntimeLib/RuntimeLib.c
deleted file mode 100644
index 63ae9761b2..0000000000
--- a/MdePkg/Library/UefiRuntimeLib/RuntimeLib.c
+++ /dev/null
@@ -1,843 +0,0 @@
-/** @file
- UEFI Runtime Library implementation for non IPF processor types.
-
- This library hides the global variable for the EFI Runtime Services so the
- caller does not need to deal with the possibility of being called from an
- OS virtual address space. All pointer values are different for a virtual
- mapping than from the normal physical mapping at boot services time.
-
-Copyright (c) 2006 - 2010, Intel Corporation. All rights reserved.<BR>
-This program and the accompanying materials
-are licensed and made available under the terms and conditions of the BSD License
-which accompanies this distribution. The full text of the license may be found at
-http://opensource.org/licenses/bsd-license.php.
-
-THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
-WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
-
-**/
-
-#include <Uefi.h>
-#include <Library/UefiRuntimeLib.h>
-#include <Library/DebugLib.h>
-#include <Library/UefiBootServicesTableLib.h>
-#include <Library/UefiRuntimeServicesTableLib.h>
-#include <Guid/EventGroup.h>
-
-///
-/// Driver Lib Module Globals
-///
-EFI_EVENT mEfiVirtualNotifyEvent;
-EFI_EVENT mEfiExitBootServicesEvent;
-BOOLEAN mEfiGoneVirtual = FALSE;
-BOOLEAN mEfiAtRuntime = FALSE;
-EFI_RUNTIME_SERVICES *mInternalRT;
-
-/**
- Set AtRuntime flag as TRUE after ExitBootServices.
-
- @param[in] Event The Event that is being processed.
- @param[in] Context The Event Context.
-
-**/
-VOID
-EFIAPI
-RuntimeLibExitBootServicesEvent (
- IN EFI_EVENT Event,
- IN VOID *Context
- )
-{
- mEfiAtRuntime = TRUE;
-}
-
-/**
- Fixup internal data so that EFI can be call in virtual mode.
- Call the passed in Child Notify event and convert any pointers in
- lib to virtual mode.
-
- @param[in] Event The Event that is being processed.
- @param[in] Context The Event Context.
-**/
-VOID
-EFIAPI
-RuntimeLibVirtualNotifyEvent (
- IN EFI_EVENT Event,
- IN VOID *Context
- )
-{
- //
- // Update global for Runtime Services Table and IO
- //
- EfiConvertPointer (0, (VOID **) &mInternalRT);
-
- mEfiGoneVirtual = TRUE;
-}
-
-/**
- Initialize runtime Driver Lib if it has not yet been initialized.
- It will ASSERT() if gRT is NULL or gBS is NULL.
- It will ASSERT() if that operation fails.
-
- @param[in] ImageHandle The firmware allocated handle for the EFI image.
- @param[in] SystemTable A pointer to the EFI System Table.
-
- @return EFI_STATUS always returns EFI_SUCCESS except EFI_ALREADY_STARTED if already started.
-**/
-EFI_STATUS
-EFIAPI
-RuntimeDriverLibConstruct (
- IN EFI_HANDLE ImageHandle,
- IN EFI_SYSTEM_TABLE *SystemTable
- )
-{
- EFI_STATUS Status;
-
- ASSERT (gRT != NULL);
- ASSERT (gBS != NULL);
-
- mInternalRT = gRT;
- //
- // Register SetVirtualAddressMap () notify function
- //
- Status = gBS->CreateEventEx (
- EVT_NOTIFY_SIGNAL,
- TPL_NOTIFY,
- RuntimeLibVirtualNotifyEvent,
- NULL,
- &gEfiEventVirtualAddressChangeGuid,
- &mEfiVirtualNotifyEvent
- );
-
- ASSERT_EFI_ERROR (Status);
-
- Status = gBS->CreateEventEx (
- EVT_NOTIFY_SIGNAL,
- TPL_NOTIFY,
- RuntimeLibExitBootServicesEvent,
- NULL,
- &gEfiEventExitBootServicesGuid,
- &mEfiExitBootServicesEvent
- );
-
- ASSERT_EFI_ERROR (Status);
-
- return Status;
-}
-
-/**
- If a runtime driver exits with an error, it must call this routine
- to free the allocated resource before the exiting.
- It will ASSERT() if gBS is NULL.
- It will ASSERT() if that operation fails.
-
- @param[in] ImageHandle The firmware allocated handle for the EFI image.
- @param[in] SystemTable A pointer to the EFI System Table.
-
- @retval EFI_SUCCESS The Runtime Driver Lib shutdown successfully.
- @retval EFI_UNSUPPORTED Runtime Driver lib was not initialized.
-**/
-EFI_STATUS
-EFIAPI
-RuntimeDriverLibDeconstruct (
- IN EFI_HANDLE ImageHandle,
- IN EFI_SYSTEM_TABLE *SystemTable
- )
-{
- EFI_STATUS Status;
-
- //
- // Close SetVirtualAddressMap () notify function
- //
- ASSERT (gBS != NULL);
- Status = gBS->CloseEvent (mEfiVirtualNotifyEvent);
- ASSERT_EFI_ERROR (Status);
-
- Status = gBS->CloseEvent (mEfiExitBootServicesEvent);
- ASSERT_EFI_ERROR (Status);
-
- return Status;
-}
-
-/**
- This function allows the caller to determine if UEFI ExitBootServices() has been called.
-
- This function returns TRUE after all the EVT_SIGNAL_EXIT_BOOT_SERVICES functions have
- executed as a result of the OS calling ExitBootServices(). Prior to this time FALSE
- is returned. This function is used by runtime code to decide it is legal to access
- services that go away after ExitBootServices().
-
- @retval TRUE The system has finished executing the EVT_SIGNAL_EXIT_BOOT_SERVICES event.
- @retval FALSE The system has not finished executing the EVT_SIGNAL_EXIT_BOOT_SERVICES event.
-
-**/
-BOOLEAN
-EFIAPI
-EfiAtRuntime (
- VOID
- )
-{
- return mEfiAtRuntime;
-}
-
-/**
- This function allows the caller to determine if UEFI SetVirtualAddressMap() has been called.
-
- This function returns TRUE after all the EVT_SIGNAL_VIRTUAL_ADDRESS_CHANGE functions have
- executed as a result of the OS calling SetVirtualAddressMap(). Prior to this time FALSE
- is returned. This function is used by runtime code to decide it is legal to access services
- that go away after SetVirtualAddressMap().
-
- @retval TRUE The system has finished executing the EVT_SIGNAL_VIRTUAL_ADDRESS_CHANGE event.
- @retval FALSE The system has not finished executing the EVT_SIGNAL_VIRTUAL_ADDRESS_CHANGE event.
-
-**/
-BOOLEAN
-EFIAPI
-EfiGoneVirtual (
- VOID
- )
-{
- return mEfiGoneVirtual;
-}
-
-
-/**
- This service is a wrapper for the UEFI Runtime Service ResetSystem().
-
- The ResetSystem()function resets the entire platform, including all processors and devices,and reboots the system.
- Calling this interface with ResetType of EfiResetCold causes a system-wide reset. This sets all circuitry within
- the system to its initial state. This type of reset is asynchronous to system operation and operates without regard
- to cycle boundaries. EfiResetCold is tantamount to a system power cycle.
- Calling this interface with ResetType of EfiResetWarm causes a system-wide initialization. The processors are set to
- their initial state, and pending cycles are not corrupted. If the system does not support this reset type, then an
- EfiResetCold must be performed.
- Calling this interface with ResetType of EfiResetShutdown causes the system to enter a power state equivalent to the
- ACPI G2/S5 or G3 states. If the system does not support this reset type, then when the system is rebooted, it should
- exhibit the EfiResetCold attributes.
- The platform may optionally log the parameters from any non-normal reset that occurs.
- The ResetSystem() function does not return.
-
- @param ResetType The type of reset to perform.
- @param ResetStatus The status code for the reset. If the system reset is part of a normal operation, the status code
- would be EFI_SUCCESS. If the system reset is due to some type of failure the most appropriate EFI
- Status code would be used.
- @param DataSizeThe size, in bytes, of ResetData.
- @param ResetData For a ResetType of EfiResetCold, EfiResetWarm, or EfiResetShutdown the data buffer starts with a
- Null-terminated Unicode string, optionally followed by additional binary data. The string is a
- description that the caller may use to further indicate the reason for the system reset. ResetData
- is only valid if ResetStatus is something other then EFI_SUCCESS. This pointer must be a physical
- address. For a ResetType of EfiRestUpdate the data buffer also starts with a Null-terminated string
- that is followed by a physical VOID * to an EFI_CAPSULE_HEADER.
-
-**/
-VOID
-EFIAPI
-EfiResetSystem (
- IN EFI_RESET_TYPE ResetType,
- IN EFI_STATUS ResetStatus,
- IN UINTN DataSize,
- IN VOID *ResetData OPTIONAL
- )
-{
- mInternalRT->ResetSystem (ResetType, ResetStatus, DataSize, ResetData);
-}
-
-
-/**
- This service is a wrapper for the UEFI Runtime Service GetTime().
-
- The GetTime() function returns a time that was valid sometime during the call to the function.
- While the returned EFI_TIME structure contains TimeZone and Daylight savings time information,
- the actual clock does not maintain these values. The current time zone and daylight saving time
- information returned by GetTime() are the values that were last set via SetTime().
- The GetTime() function should take approximately the same amount of time to read the time each
- time it is called. All reported device capabilities are to be rounded up.
- During runtime, if a PC-AT CMOS device is present in the platform the caller must synchronize
- access to the device before calling GetTime().
-
- @param Time A pointer to storage to receive a snapshot of the current time.
- @param Capabilities An optional pointer to a buffer to receive the real time clock device's
- capabilities.
-
- @retval EFI_SUCCESS The operation completed successfully.
- @retval EFI_INVALID_PARAMETER Time is NULL.
- @retval EFI_DEVICE_ERROR The time could not be retrieved due to a hardware error.
-
-**/
-EFI_STATUS
-EFIAPI
-EfiGetTime (
- OUT EFI_TIME *Time,
- OUT EFI_TIME_CAPABILITIES *Capabilities OPTIONAL
- )
-{
- return mInternalRT->GetTime (Time, Capabilities);
-}
-
-
-/**
- This service is a wrapper for the UEFI Runtime Service SetTime().
-
- The SetTime() function sets the real time clock device to the supplied time, and records the
- current time zone and daylight savings time information. The SetTime() function is not allowed
- to loop based on the current time. For example, if the device does not support a hardware reset
- for the sub-resolution time, the code is not to implement the feature by waiting for the time to
- wrap.
- During runtime, if a PC-AT CMOS device is present in the platform the caller must synchronize
- access to the device before calling SetTime().
-
- @param Time A pointer to the current time. Type EFI_TIME is defined in the GetTime()
- function description. Full error checking is performed on the different
- fields of the EFI_TIME structure (refer to the EFI_TIME definition in the
- GetTime() function description for full details), and EFI_INVALID_PARAMETER
- is returned if any field is out of range.
-
- @retval EFI_SUCCESS The operation completed successfully.
- @retval EFI_INVALID_PARAMETER A time field is out of range.
- @retval EFI_DEVICE_ERROR The time could not be set due to a hardware error.
-
-**/
-EFI_STATUS
-EFIAPI
-EfiSetTime (
- IN EFI_TIME *Time
- )
-{
- return mInternalRT->SetTime (Time);
-}
-
-
-/**
- This service is a wrapper for the UEFI Runtime Service GetWakeupTime().
-
- The alarm clock time may be rounded from the set alarm clock time to be within the resolution
- of the alarm clock device. The resolution of the alarm clock device is defined to be one second.
- During runtime, if a PC-AT CMOS device is present in the platform the caller must synchronize
- access to the device before calling GetWakeupTime().
-
- @param Enabled Indicates if the alarm is currently enabled or disabled.
- @param Pending Indicates if the alarm signal is pending and requires acknowledgement.
- @param Time The current alarm setting. Type EFI_TIME is defined in the GetTime()
- function description.
-
- @retval EFI_SUCCESS The alarm settings were returned.
- @retval EFI_INVALID_PARAMETER Enabled is NULL.
- @retval EFI_INVALID_PARAMETER Pending is NULL.
- @retval EFI_INVALID_PARAMETER Time is NULL.
- @retval EFI_DEVICE_ERROR The wakeup time could not be retrieved due to a hardware error.
- @retval EFI_UNSUPPORTED A wakeup timer is not supported on this platform.
-
-**/
-EFI_STATUS
-EFIAPI
-EfiGetWakeupTime (
- OUT BOOLEAN *Enabled,
- OUT BOOLEAN *Pending,
- OUT EFI_TIME *Time
- )
-{
- return mInternalRT->GetWakeupTime (Enabled, Pending, Time);
-}
-
-
-
-/**
- This service is a wrapper for the UEFI Runtime Service SetWakeupTime()
-
- Setting a system wakeup alarm causes the system to wake up or power on at the set time.
- When the alarm fires, the alarm signal is latched until it is acknowledged by calling SetWakeupTime()
- to disable the alarm. If the alarm fires before the system is put into a sleeping or off state,
- since the alarm signal is latched the system will immediately wake up. If the alarm fires while
- the system is off and there is insufficient power to power on the system, the system is powered
- on when power is restored.
-
- @param Enable Enable or disable the wakeup alarm.
- @param Time If Enable is TRUE, the time to set the wakeup alarm for. Type EFI_TIME
- is defined in the GetTime() function description. If Enable is FALSE,
- then this parameter is optional, and may be NULL.
-
- @retval EFI_SUCCESS If Enable is TRUE, then the wakeup alarm was enabled.
- If Enable is FALSE, then the wakeup alarm was disabled.
- @retval EFI_INVALID_PARAMETER A time field is out of range.
- @retval EFI_DEVICE_ERROR The wakeup time could not be set due to a hardware error.
- @retval EFI_UNSUPPORTED A wakeup timer is not supported on this platform.
-
-**/
-EFI_STATUS
-EFIAPI
-EfiSetWakeupTime (
- IN BOOLEAN Enable,
- IN EFI_TIME *Time OPTIONAL
- )
-{
- return mInternalRT->SetWakeupTime (Enable, Time);
-}
-
-
-/**
- This service is a wrapper for the UEFI Runtime Service GetVariable().
-
- Each vendor may create and manage its own variables without the risk of name conflicts by
- using a unique VendorGuid. When a variable is set its Attributes are supplied to indicate
- how the data variable should be stored and maintained by the system. The attributes affect
- when the variable may be accessed and volatility of the data. Any attempts to access a variable
- that does not have the attribute set for runtime access will yield the EFI_NOT_FOUND error.
- If the Data buffer is too small to hold the contents of the variable, the error EFI_BUFFER_TOO_SMALL
- is returned and DataSize is set to the required buffer size to obtain the data.
-
- @param VariableName the name of the vendor's variable, it's a Null-Terminated Unicode String
- @param VendorGuid Unify identifier for vendor.
- @param Attributes Point to memory location to return the attributes of variable. If the point
- is NULL, the parameter would be ignored.
- @param DataSize As input, point to the maximum size of return Data-Buffer.
- As output, point to the actual size of the returned Data-Buffer.
- @param Data Point to return Data-Buffer.
-
- @retval EFI_SUCCESS The function completed successfully.
- @retval EFI_NOT_FOUND The variable was not found.
- @retval EFI_BUFFER_TOO_SMALL The DataSize is too small for the result. DataSize has
- been updated with the size needed to complete the request.
- @retval EFI_INVALID_PARAMETER VariableName is NULL.
- @retval EFI_INVALID_PARAMETER VendorGuid is NULL.
- @retval EFI_INVALID_PARAMETER DataSize is NULL.
- @retval EFI_INVALID_PARAMETER The DataSize is not too small and Data is NULL.
- @retval EFI_DEVICE_ERROR The variable could not be retrieved due to a hardware error.
- @retval EFI_SECURITY_VIOLATION The variable could not be retrieved due to an authentication failure.
-**/
-EFI_STATUS
-EFIAPI
-EfiGetVariable (
- IN CHAR16 *VariableName,
- IN EFI_GUID *VendorGuid,
- OUT UINT32 *Attributes OPTIONAL,
- IN OUT UINTN *DataSize,
- OUT VOID *Data
- )
-{
- return mInternalRT->GetVariable (VariableName, VendorGuid, Attributes, DataSize, Data);
-}
-
-
-/**
- This service is a wrapper for the UEFI Runtime Service GetNextVariableName().
-
- GetNextVariableName() is called multiple times to retrieve the VariableName and VendorGuid of
- all variables currently available in the system. On each call to GetNextVariableName() the
- previous results are passed into the interface, and on output the interface returns the next
- variable name data. When the entire variable list has been returned, the error EFI_NOT_FOUND
- is returned.
-
- @param VariableNameSize As input, point to maximum size of variable name.
- As output, point to actual size of variable name.
- @param VariableName As input, supplies the last VariableName that was returned by
- GetNextVariableName().
- As output, returns the name of variable. The name
- string is Null-Terminated Unicode string.
- @param VendorGuid As input, supplies the last VendorGuid that was returned by
- GetNextVriableName().
- As output, returns the VendorGuid of the current variable.
-
- @retval EFI_SUCCESS The function completed successfully.
- @retval EFI_NOT_FOUND The next variable was not found.
- @retval EFI_BUFFER_TOO_SMALL The VariableNameSize is too small for the result.
- VariableNameSize has been updated with the size needed
- to complete the request.
- @retval EFI_INVALID_PARAMETER VariableNameSize is NULL.
- @retval EFI_INVALID_PARAMETER VariableName is NULL.
- @retval EFI_INVALID_PARAMETER VendorGuid is NULL.
- @retval EFI_DEVICE_ERROR The variable name could not be retrieved due to a hardware error.
-
-**/
-EFI_STATUS
-EFIAPI
-EfiGetNextVariableName (
- IN OUT UINTN *VariableNameSize,
- IN OUT CHAR16 *VariableName,
- IN OUT EFI_GUID *VendorGuid
- )
-{
- return mInternalRT->GetNextVariableName (VariableNameSize, VariableName, VendorGuid);
-}
-
-
-/**
- This service is a wrapper for the UEFI Runtime Service GetNextVariableName()
-
- Variables are stored by the firmware and may maintain their values across power cycles. Each vendor
- may create and manage its own variables without the risk of name conflicts by using a unique VendorGuid.
-
- @param VariableName The name of the vendor's variable; it's a Null-Terminated
- Unicode String
- @param VendorGuid Unify identifier for vendor.
- @param Attributes Points to a memory location to return the attributes of variable. If the point
- is NULL, the parameter would be ignored.
- @param DataSize The size in bytes of Data-Buffer.
- @param Data Points to the content of the variable.
-
- @retval EFI_SUCCESS The firmware has successfully stored the variable and its data as
- defined by the Attributes.
- @retval EFI_INVALID_PARAMETER An invalid combination of attribute bits was supplied, or the
- DataSize exceeds the maximum allowed.
- @retval EFI_INVALID_PARAMETER VariableName is an empty Unicode string.
- @retval EFI_OUT_OF_RESOURCES Not enough storage is available to hold the variable and its data.
- @retval EFI_DEVICE_ERROR The variable could not be saved due to a hardware failure.
- @retval EFI_WRITE_PROTECTED The variable in question is read-only.
- @retval EFI_WRITE_PROTECTED The variable in question cannot be deleted.
- @retval EFI_SECURITY_VIOLATION The variable could not be written due to EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS
- set but the AuthInfo does NOT pass the validation check carried
- out by the firmware.
- @retval EFI_NOT_FOUND The variable trying to be updated or deleted was not found.
-
-**/
-EFI_STATUS
-EFIAPI
-EfiSetVariable (
- IN CHAR16 *VariableName,
- IN EFI_GUID *VendorGuid,
- IN UINT32 Attributes,
- IN UINTN DataSize,
- IN VOID *Data
- )
-{
- return mInternalRT->SetVariable (VariableName, VendorGuid, Attributes, DataSize, Data);
-}
-
-
-/**
- This service is a wrapper for the UEFI Runtime Service GetNextHighMonotonicCount().
-
- The platform's monotonic counter is comprised of two 32-bit quantities: the high 32 bits and
- the low 32 bits. During boot service time the low 32-bit value is volatile: it is reset to zero
- on every system reset and is increased by 1 on every call to GetNextMonotonicCount(). The high
- 32-bit value is nonvolatile and is increased by 1 whenever the system resets or whenever the low
- 32-bit count (returned by GetNextMonoticCount()) overflows.
-
- @param HighCount The pointer to returned value.
-
- @retval EFI_SUCCESS The next high monotonic count was returned.
- @retval EFI_DEVICE_ERROR The device is not functioning properly.
- @retval EFI_INVALID_PARAMETER HighCount is NULL.
-
-**/
-EFI_STATUS
-EFIAPI
-EfiGetNextHighMonotonicCount (
- OUT UINT32 *HighCount
- )
-{
- return mInternalRT->GetNextHighMonotonicCount (HighCount);
-}
-
-
-/**
- This service is a wrapper for the UEFI Runtime Service ConvertPointer().
-
- The ConvertPointer() function is used by an EFI component during the SetVirtualAddressMap() operation.
- ConvertPointer()must be called using physical address pointers during the execution of SetVirtualAddressMap().
-
- @param DebugDisposition Supplies type information for the pointer being converted.
- @param Address The pointer to a pointer that is to be fixed to be the
- value needed for the new virtual address mapping being
- applied.
-
- @retval EFI_SUCCESS The pointer pointed to by Address was modified.
- @retval EFI_NOT_FOUND The pointer pointed to by Address was not found to be part of
- the current memory map. This is normally fatal.
- @retval EFI_INVALID_PARAMETER Address is NULL.
- @retval EFI_INVALID_PARAMETER *Address is NULL and DebugDispositio
-
-**/
-EFI_STATUS
-EFIAPI
-EfiConvertPointer (
- IN UINTN DebugDisposition,
- IN OUT VOID **Address
- )
-{
- return gRT->ConvertPointer (DebugDisposition, Address);
-}
-
-
-/**
- Determines the new virtual address that is to be used on subsequent memory accesses.
-
- For IA32, x64, and EBC, this service is a wrapper for the UEFI Runtime Service
- ConvertPointer(). See the UEFI Specification for details.
- For IPF, this function interprets Address as a pointer to an EFI_PLABEL structure
- and both the EntryPoint and GP fields of an EFI_PLABEL are converted from physical
- to virtiual addressing. Since IPF allows the GP to point to an address outside
- a PE/COFF image, the physical to virtual offset for the EntryPoint field is used
- to adjust the GP field. The UEFI Runtime Service ConvertPointer() is used to convert
- EntryPoint and the status code for this conversion is always returned. If the convertion
- of EntryPoint fails, then neither EntryPoint nor GP are modified. See the UEFI
- Specification for details on the UEFI Runtime Service ConvertPointer().
-
- @param DebugDisposition Supplies type information for the pointer being converted.
- @param Address The pointer to a pointer that is to be fixed to be the
- value needed for the new virtual address mapping being
- applied.
-
- @return EFI_STATUS value from EfiConvertPointer().
-
-**/
-EFI_STATUS
-EFIAPI
-EfiConvertFunctionPointer (
- IN UINTN DebugDisposition,
- IN OUT VOID **Address
- )
-{
- return EfiConvertPointer (DebugDisposition, Address);
-}
-
-
-/**
- Convert the standard Lib double linked list to a virtual mapping.
-
- This service uses EfiConvertPointer() to walk a double linked list and convert all the link
- pointers to their virtual mappings. This function is only guaranteed to work during the
- EVT_SIGNAL_VIRTUAL_ADDRESS_CHANGE event and calling it at other times has undefined results.
-
- @param DebugDisposition Supplies type information for the pointer being converted.
- @param ListHead Head of linked list to convert.
-
- @retval EFI_SUCCESS Success to execute the function.
- @retval !EFI_SUCCESS Failed to e3xecute the function.
-
-**/
-EFI_STATUS
-EFIAPI
-EfiConvertList (
- IN UINTN DebugDisposition,
- IN OUT LIST_ENTRY *ListHead
- )
-{
- LIST_ENTRY *Link;
- LIST_ENTRY *NextLink;
-
- //
- // For NULL List, return EFI_SUCCESS
- //
- if (ListHead == NULL) {
- return EFI_SUCCESS;
- }
-
- //
- // Convert all the ForwardLink & BackLink pointers in the list
- //
- Link = ListHead;
- do {
- NextLink = Link->ForwardLink;
-
- EfiConvertPointer (
- Link->ForwardLink == ListHead ? DebugDisposition : 0,
- (VOID **) &Link->ForwardLink
- );
-
- EfiConvertPointer (
- Link->BackLink == ListHead ? DebugDisposition : 0,
- (VOID **) &Link->BackLink
- );
-
- Link = NextLink;
- } while (Link != ListHead);
- return EFI_SUCCESS;
-}
-
-
-/**
- This service is a wrapper for the UEFI Runtime Service SetVirtualAddressMap().
-
- The SetVirtualAddressMap() function is used by the OS loader. The function can only be called
- at runtime, and is called by the owner of the system's memory map. I.e., the component which
- called ExitBootServices(). All events of type EVT_SIGNAL_VIRTUAL_ADDRESS_CHANGE must be signaled
- before SetVirtualAddressMap() returns.
-
- @param MemoryMapSize The size in bytes of VirtualMap.
- @param DescriptorSize The size in bytes of an entry in the VirtualMap.
- @param DescriptorVersion The version of the structure entries in VirtualMap.
- @param VirtualMap An array of memory descriptors which contain new virtual
- address mapping information for all runtime ranges. Type
- EFI_MEMORY_DESCRIPTOR is defined in the
- GetMemoryMap() function description.
-
- @retval EFI_SUCCESS The virtual address map has been applied.
- @retval EFI_UNSUPPORTED EFI firmware is not at runtime, or the EFI firmware is already in
- virtual address mapped mode.
- @retval EFI_INVALID_PARAMETER DescriptorSize or DescriptorVersion is
- invalid.
- @retval EFI_NO_MAPPING A virtual address was not supplied for a range in the memory
- map that requires a mapping.
- @retval EFI_NOT_FOUND A virtual address was supplied for an address that is not found
- in the memory map.
-**/
-EFI_STATUS
-EFIAPI
-EfiSetVirtualAddressMap (
- IN UINTN MemoryMapSize,
- IN UINTN DescriptorSize,
- IN UINT32 DescriptorVersion,
- IN CONST EFI_MEMORY_DESCRIPTOR *VirtualMap
- )
-{
- return mInternalRT->SetVirtualAddressMap (
- MemoryMapSize,
- DescriptorSize,
- DescriptorVersion,
- (EFI_MEMORY_DESCRIPTOR *) VirtualMap
- );
-}
-
-
-/**
- This service is a wrapper for the UEFI Runtime Service UpdateCapsule().
-
- Passes capsules to the firmware with both virtual and physical mapping. Depending on the intended
- consumption, the firmware may process the capsule immediately. If the payload should persist across a
- system reset, the reset value returned from EFI_QueryCapsuleCapabilities must be passed into ResetSystem()
- and will cause the capsule to be processed by the firmware as part of the reset process.
-
- @param CapsuleHeaderArray Virtual pointer to an array of virtual pointers to the capsules
- being passed into update capsule. Each capsules is assumed to
- stored in contiguous virtual memory. The capsules in the
- CapsuleHeaderArray must be the same capsules as the
- ScatterGatherList. The CapsuleHeaderArray must
- have the capsules in the same order as the ScatterGatherList.
- @param CapsuleCount The number of pointers to EFI_CAPSULE_HEADER in
- CaspuleHeaderArray.
- @param ScatterGatherList Physical pointer to a set of
- EFI_CAPSULE_BLOCK_DESCRIPTOR that describes the
- location in physical memory of a set of capsules. See Related
- Definitions for an explanation of how more than one capsule is
- passed via this interface. The capsules in the
- ScatterGatherList must be in the same order as the
- CapsuleHeaderArray. This parameter is only referenced if
- the capsules are defined to persist across system reset.
-
- @retval EFI_SUCCESS Valid capsule was passed. If CAPSULE_FLAGS_PERSIT_ACROSS_RESET is not set,
- the capsule has been successfully processed by the firmware.
- @retval EFI_INVALID_PARAMETER CapsuleSize or HeaderSize is NULL.
- @retval EFI_INVALID_PARAMETER CapsuleCount is 0
- @retval EFI_DEVICE_ERROR The capsule update was started, but failed due to a device error.
- @retval EFI_UNSUPPORTED The capsule type is not supported on this platform.
- @retval EFI_OUT_OF_RESOURCES There were insufficient resources to process the capsule.
-
-**/
-EFI_STATUS
-EFIAPI
-EfiUpdateCapsule (
- IN EFI_CAPSULE_HEADER **CapsuleHeaderArray,
- IN UINTN CapsuleCount,
- IN EFI_PHYSICAL_ADDRESS ScatterGatherList OPTIONAL
- )
-{
- return mInternalRT->UpdateCapsule (
- CapsuleHeaderArray,
- CapsuleCount,
- ScatterGatherList
- );
-}
-
-
-/**
- This service is a wrapper for the UEFI Runtime Service QueryCapsuleCapabilities().
-
- The QueryCapsuleCapabilities() function allows a caller to test to see if a capsule or
- capsules can be updated via UpdateCapsule(). The Flags values in the capsule header and
- size of the entire capsule is checked.
- If the caller needs to query for generic capsule capability a fake EFI_CAPSULE_HEADER can be
- constructed where CapsuleImageSize is equal to HeaderSize that is equal to sizeof
- (EFI_CAPSULE_HEADER). To determine reset requirements,
- CAPSULE_FLAGS_PERSIST_ACROSS_RESET should be set in the Flags field of the
- EFI_CAPSULE_HEADER.
- The firmware must support any capsule that has the
- CAPSULE_FLAGS_PERSIST_ACROSS_RESET flag set in EFI_CAPSULE_HEADER. The
- firmware sets the policy for what capsules are supported that do not have the
- CAPSULE_FLAGS_PERSIST_ACROSS_RESET flag set.
-
- @param CapsuleHeaderArray Virtual pointer to an array of virtual pointers to the capsules
- being passed into update capsule. The capsules are assumed to
- stored in contiguous virtual memory.
- @param CapsuleCount The number of pointers to EFI_CAPSULE_HEADER in
- CaspuleHeaderArray.
- @param MaximumCapsuleSize On output the maximum size that UpdateCapsule() can
- support as an argument to UpdateCapsule() via
- CapsuleHeaderArray and ScatterGatherList.
- Undefined on input.
- @param ResetType Returns the type of reset required for the capsule update.
-
- @retval EFI_SUCCESS A valid answer was returned.
- @retval EFI_INVALID_PARAMETER MaximumCapsuleSize is NULL.
- @retval EFI_UNSUPPORTED The capsule type is not supported on this platform, and
- MaximumCapsuleSize and ResetType are undefined.
- @retval EFI_OUT_OF_RESOURCES There were insufficient resources to process the query request.
-
-**/
-EFI_STATUS
-EFIAPI
-EfiQueryCapsuleCapabilities (
- IN EFI_CAPSULE_HEADER **CapsuleHeaderArray,
- IN UINTN CapsuleCount,
- OUT UINT64 *MaximumCapsuleSize,
- OUT EFI_RESET_TYPE *ResetType
- )
-{
- return mInternalRT->QueryCapsuleCapabilities (
- CapsuleHeaderArray,
- CapsuleCount,
- MaximumCapsuleSize,
- ResetType
- );
-}
-
-
-/**
- This service is a wrapper for the UEFI Runtime Service QueryVariableInfo().
-
- The QueryVariableInfo() function allows a caller to obtain the information about the
- maximum size of the storage space available for the EFI variables, the remaining size of the storage
- space available for the EFI variables and the maximum size of each individual EFI variable,
- associated with the attributes specified.
- The returned MaximumVariableStorageSize, RemainingVariableStorageSize,
- MaximumVariableSize information may change immediately after the call based on other
- runtime activities including asynchronous error events. Also, these values associated with different
- attributes are not additive in nature.
-
- @param Attributes Attributes bitmask to specify the type of variables on
- which to return information. Refer to the
- GetVariable() function description.
- @param MaximumVariableStorageSize
- On output the maximum size of the storage space
- available for the EFI variables associated with the
- attributes specified.
- @param RemainingVariableStorageSize
- Returns the remaining size of the storage space
- available for the EFI variables associated with the
- attributes specified..
- @param MaximumVariableSize Returns the maximum size of the individual EFI
- variables associated with the attributes specified.
-
- @retval EFI_SUCCESS A valid answer was returned.
- @retval EFI_INVALID_PARAMETER An invalid combination of attribute bits was supplied.
- @retval EFI_UNSUPPORTED EFI_UNSUPPORTED The attribute is not supported on this platform, and the
- MaximumVariableStorageSize,
- RemainingVariableStorageSize, MaximumVariableSize
- are undefined.
-
-**/
-EFI_STATUS
-EFIAPI
-EfiQueryVariableInfo (
- IN UINT32 Attributes,
- OUT UINT64 *MaximumVariableStorageSize,
- OUT UINT64 *RemainingVariableStorageSize,
- OUT UINT64 *MaximumVariableSize
- )
-{
- return mInternalRT->QueryVariableInfo (
- Attributes,
- MaximumVariableStorageSize,
- RemainingVariableStorageSize,
- MaximumVariableSize
- );
-}
diff --git a/MdePkg/Library/UefiRuntimeLib/UefiRuntimeLib.inf b/MdePkg/Library/UefiRuntimeLib/UefiRuntimeLib.inf
deleted file mode 100644
index 8f46495fc5..0000000000
--- a/MdePkg/Library/UefiRuntimeLib/UefiRuntimeLib.inf
+++ /dev/null
@@ -1,51 +0,0 @@
-## @file
-# Instance of UEFI Runtime Library.
-#
-# Instance of UEFI Runtime Library, with hooked EVT_SIGNAL_VIRTUAL_ADDRESS_CHANGE and
-# EVT_SIGNAL_EXIT_BOOT_SERVICES event, to provide runtime services.
-# This instance also supports SAL drivers for better performance.
-#
-# Copyright (c) 2006 - 2014, Intel Corporation. All rights reserved.<BR>
-#
-# This program and the accompanying materials
-# are licensed and made available under the terms and conditions of the BSD License
-# which accompanies this distribution. The full text of the license may be found at
-# http://opensource.org/licenses/bsd-license.php.
-# THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
-# WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
-#
-#
-##
-
-[Defines]
- INF_VERSION = 0x00010005
- BASE_NAME = UefiRuntimeLib
- MODULE_UNI_FILE = UefiRuntimeLib.uni
- FILE_GUID = b1ee6c28-54aa-4d17-b705-3e28ccb27b2e
- MODULE_TYPE = DXE_RUNTIME_DRIVER
- VERSION_STRING = 1.0
- LIBRARY_CLASS = UefiRuntimeLib|DXE_RUNTIME_DRIVER DXE_SAL_DRIVER
-
- CONSTRUCTOR = RuntimeDriverLibConstruct
- DESTRUCTOR = RuntimeDriverLibDeconstruct
-
-#
-# VALID_ARCHITECTURES = IA32 X64 IPF EBC
-#
-
-
-[Sources]
- RuntimeLib.c
-
-[Packages]
- MdePkg/MdePkg.dec
-
-[LibraryClasses]
- UefiBootServicesTableLib
- UefiRuntimeServicesTableLib
- DebugLib
-
-[Guids]
- gEfiEventExitBootServicesGuid ## CONSUMES ## Event
- gEfiEventVirtualAddressChangeGuid ## CONSUMES ## Event
-
diff --git a/MdePkg/Library/UefiRuntimeLib/UefiRuntimeLib.uni b/MdePkg/Library/UefiRuntimeLib/UefiRuntimeLib.uni
deleted file mode 100644
index 14a5e802bf..0000000000
--- a/MdePkg/Library/UefiRuntimeLib/UefiRuntimeLib.uni
+++ /dev/null
Binary files differ