diff options
7 files changed, 11174 insertions, 0 deletions
diff --git a/AppPkg/Applications/Python/PyMod-2.7.2/Include/fileobject.h b/AppPkg/Applications/Python/PyMod-2.7.2/Include/fileobject.h new file mode 100644 index 0000000000..c5d15b1352 --- /dev/null +++ b/AppPkg/Applications/Python/PyMod-2.7.2/Include/fileobject.h @@ -0,0 +1,90 @@ +
+/* File object interface */
+
+#ifndef Py_FILEOBJECT_H
+#define Py_FILEOBJECT_H
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+typedef struct {
+ PyObject_HEAD
+ FILE *f_fp;
+ PyObject *f_name;
+ PyObject *f_mode;
+ int (*f_close)(FILE *);
+ int f_softspace; /* Flag used by 'print' command */
+ int f_binary; /* Flag which indicates whether the file is
+ open in binary (1) or text (0) mode */
+ char* f_buf; /* Allocated readahead buffer */
+ char* f_bufend; /* Points after last occupied position */
+ char* f_bufptr; /* Current buffer position */
+ char *f_setbuf; /* Buffer for setbuf(3) and setvbuf(3) */
+ int f_univ_newline; /* Handle any newline convention */
+ int f_newlinetypes; /* Types of newlines seen */
+ int f_skipnextlf; /* Skip next \n */
+ PyObject *f_encoding;
+ PyObject *f_errors;
+ PyObject *weakreflist; /* List of weak references */
+ int unlocked_count; /* Num. currently running sections of code
+ using f_fp with the GIL released. */
+ int readable;
+ int writable;
+} PyFileObject;
+
+PyAPI_DATA(PyTypeObject) PyFile_Type;
+
+#define PyFile_Check(op) PyObject_TypeCheck(op, &PyFile_Type)
+#define PyFile_CheckExact(op) (Py_TYPE(op) == &PyFile_Type)
+
+PyAPI_FUNC(PyObject *) PyFile_FromString(char *, char *);
+PyAPI_FUNC(void) PyFile_SetBufSize(PyObject *, int);
+PyAPI_FUNC(int) PyFile_SetEncoding(PyObject *, const char *);
+PyAPI_FUNC(int) PyFile_SetEncodingAndErrors(PyObject *, const char *, char *errors);
+PyAPI_FUNC(PyObject *) PyFile_FromFile(FILE *, char *, char *,
+ int (*)(FILE *));
+PyAPI_FUNC(FILE *) PyFile_AsFile(PyObject *);
+PyAPI_FUNC(void) PyFile_IncUseCount(PyFileObject *);
+PyAPI_FUNC(void) PyFile_DecUseCount(PyFileObject *);
+PyAPI_FUNC(PyObject *) PyFile_Name(PyObject *);
+PyAPI_FUNC(PyObject *) PyFile_GetLine(PyObject *, int);
+PyAPI_FUNC(int) PyFile_WriteObject(PyObject *, PyObject *, int);
+PyAPI_FUNC(int) PyFile_SoftSpace(PyObject *, int);
+PyAPI_FUNC(int) PyFile_WriteString(const char *, PyObject *);
+PyAPI_FUNC(int) PyObject_AsFileDescriptor(PyObject *);
+
+/* The default encoding used by the platform file system APIs
+ If non-NULL, this is different than the default encoding for strings
+*/
+PyAPI_DATA(const char *) Py_FileSystemDefaultEncoding;
+
+/* Routines to replace fread() and fgets() which accept any of \r, \n
+ or \r\n as line terminators.
+*/
+#define PY_STDIOTEXTMODE "b"
+char *Py_UniversalNewlineFgets(char *, int, FILE*, PyObject *);
+size_t Py_UniversalNewlineFread(char *, size_t, FILE *, PyObject *);
+
+/* A routine to do sanity checking on the file mode string. returns
+ non-zero on if an exception occurred
+*/
+int _PyFile_SanitizeMode(char *mode);
+
+//#if defined _MSC_VER && _MSC_VER >= 1400
+/* A routine to check if a file descriptor is valid on Windows. Returns 0
+ * and sets errno to EBADF if it isn't. This is to avoid Assertions
+ * from various functions in the Windows CRT beginning with
+ * Visual Studio 2005
+ */
+//int _PyVerify_fd(int fd);
+//#elif defined _MSC_VER && _MSC_VER >= 1200
+/* fdopen doesn't set errno EBADF and crashes for large fd on debug build */
+//#define _PyVerify_fd(fd) (_get_osfhandle(fd) >= 0)
+//#else
+#define _PyVerify_fd(A) (1) /* dummy */
+//#endif
+
+#ifdef __cplusplus
+}
+#endif
+#endif /* !Py_FILEOBJECT_H */
diff --git a/AppPkg/Applications/Python/PyMod-2.7.2/Include/pyport.h b/AppPkg/Applications/Python/PyMod-2.7.2/Include/pyport.h new file mode 100644 index 0000000000..4c6eef0aef --- /dev/null +++ b/AppPkg/Applications/Python/PyMod-2.7.2/Include/pyport.h @@ -0,0 +1,905 @@ +#ifndef Py_PYPORT_H
+#define Py_PYPORT_H
+
+#include "pyconfig.h" /* include for defines */
+
+/* Some versions of HP-UX & Solaris need inttypes.h for int32_t,
+ INT32_MAX, etc. */
+#ifdef HAVE_INTTYPES_H
+#include <inttypes.h>
+#endif
+
+#ifdef HAVE_STDINT_H
+#include <stdint.h>
+#endif
+
+/**************************************************************************
+Symbols and macros to supply platform-independent interfaces to basic
+C language & library operations whose spellings vary across platforms.
+
+Please try to make documentation here as clear as possible: by definition,
+the stuff here is trying to illuminate C's darkest corners.
+
+Config #defines referenced here:
+
+SIGNED_RIGHT_SHIFT_ZERO_FILLS
+Meaning: To be defined iff i>>j does not extend the sign bit when i is a
+ signed integral type and i < 0.
+Used in: Py_ARITHMETIC_RIGHT_SHIFT
+
+Py_DEBUG
+Meaning: Extra checks compiled in for debug mode.
+Used in: Py_SAFE_DOWNCAST
+
+HAVE_UINTPTR_T
+Meaning: The C9X type uintptr_t is supported by the compiler
+Used in: Py_uintptr_t
+
+HAVE_LONG_LONG
+Meaning: The compiler supports the C type "long long"
+Used in: PY_LONG_LONG
+
+**************************************************************************/
+
+
+/* For backward compatibility only. Obsolete, do not use. */
+#ifdef HAVE_PROTOTYPES
+#define Py_PROTO(x) x
+#else
+#define Py_PROTO(x) ()
+#endif
+#ifndef Py_FPROTO
+#define Py_FPROTO(x) Py_PROTO(x)
+#endif
+
+/* typedefs for some C9X-defined synonyms for integral types.
+ *
+ * The names in Python are exactly the same as the C9X names, except with a
+ * Py_ prefix. Until C9X is universally implemented, this is the only way
+ * to ensure that Python gets reliable names that don't conflict with names
+ * in non-Python code that are playing their own tricks to define the C9X
+ * names.
+ *
+ * NOTE: don't go nuts here! Python has no use for *most* of the C9X
+ * integral synonyms. Only define the ones we actually need.
+ */
+
+#ifdef HAVE_LONG_LONG
+#ifndef PY_LONG_LONG
+#define PY_LONG_LONG long long
+#if defined(LLONG_MAX)
+/* If LLONG_MAX is defined in limits.h, use that. */
+#define PY_LLONG_MIN LLONG_MIN
+#define PY_LLONG_MAX LLONG_MAX
+#define PY_ULLONG_MAX ULLONG_MAX
+#elif defined(__LONG_LONG_MAX__)
+/* Otherwise, if GCC has a builtin define, use that. */
+#define PY_LLONG_MAX __LONG_LONG_MAX__
+#define PY_LLONG_MIN (-PY_LLONG_MAX-1)
+#define PY_ULLONG_MAX (__LONG_LONG_MAX__*2ULL + 1ULL)
+#else
+/* Otherwise, rely on two's complement. */
+#define PY_ULLONG_MAX (~0ULL)
+#define PY_LLONG_MAX ((long long)(PY_ULLONG_MAX>>1))
+#define PY_LLONG_MIN (-PY_LLONG_MAX-1)
+#endif /* LLONG_MAX */
+#endif
+#endif /* HAVE_LONG_LONG */
+
+/* a build with 30-bit digits for Python long integers needs an exact-width
+ * 32-bit unsigned integer type to store those digits. (We could just use
+ * type 'unsigned long', but that would be wasteful on a system where longs
+ * are 64-bits.) On Unix systems, the autoconf macro AC_TYPE_UINT32_T defines
+ * uint32_t to be such a type unless stdint.h or inttypes.h defines uint32_t.
+ * However, it doesn't set HAVE_UINT32_T, so we do that here.
+ */
+#if (defined UINT32_MAX || defined uint32_t)
+#ifndef PY_UINT32_T
+#define HAVE_UINT32_T 1
+#define PY_UINT32_T uint32_t
+#endif
+#endif
+
+/* Macros for a 64-bit unsigned integer type; used for type 'twodigits' in the
+ * long integer implementation, when 30-bit digits are enabled.
+ */
+#if (defined UINT64_MAX || defined uint64_t)
+#ifndef PY_UINT64_T
+#define HAVE_UINT64_T 1
+#define PY_UINT64_T uint64_t
+#endif
+#endif
+
+/* Signed variants of the above */
+#if (defined INT32_MAX || defined int32_t)
+#ifndef PY_INT32_T
+#define HAVE_INT32_T 1
+#define PY_INT32_T int32_t
+#endif
+#endif
+#if (defined INT64_MAX || defined int64_t)
+#ifndef PY_INT64_T
+#define HAVE_INT64_T 1
+#define PY_INT64_T int64_t
+#endif
+#endif
+
+/* If PYLONG_BITS_IN_DIGIT is not defined then we'll use 30-bit digits if all
+ the necessary integer types are available, and we're on a 64-bit platform
+ (as determined by SIZEOF_VOID_P); otherwise we use 15-bit digits. */
+
+#ifndef PYLONG_BITS_IN_DIGIT
+#if (defined HAVE_UINT64_T && defined HAVE_INT64_T && \
+ defined HAVE_UINT32_T && defined HAVE_INT32_T && SIZEOF_VOID_P >= 8)
+#define PYLONG_BITS_IN_DIGIT 30
+#else
+#define PYLONG_BITS_IN_DIGIT 15
+#endif
+#endif
+
+/* uintptr_t is the C9X name for an unsigned integral type such that a
+ * legitimate void* can be cast to uintptr_t and then back to void* again
+ * without loss of information. Similarly for intptr_t, wrt a signed
+ * integral type.
+ */
+#ifdef HAVE_UINTPTR_T
+typedef uintptr_t Py_uintptr_t;
+typedef intptr_t Py_intptr_t;
+
+#elif SIZEOF_VOID_P <= SIZEOF_INT
+typedef unsigned int Py_uintptr_t;
+typedef int Py_intptr_t;
+
+#elif SIZEOF_VOID_P <= SIZEOF_LONG
+typedef unsigned long Py_uintptr_t;
+typedef long Py_intptr_t;
+
+#elif defined(HAVE_LONG_LONG) && (SIZEOF_VOID_P <= SIZEOF_LONG_LONG)
+typedef unsigned PY_LONG_LONG Py_uintptr_t;
+typedef PY_LONG_LONG Py_intptr_t;
+
+#else
+# error "Python needs a typedef for Py_uintptr_t in pyport.h."
+#endif /* HAVE_UINTPTR_T */
+
+/* Py_ssize_t is a signed integral type such that sizeof(Py_ssize_t) ==
+ * sizeof(size_t). C99 doesn't define such a thing directly (size_t is an
+ * unsigned integral type). See PEP 353 for details.
+ */
+#ifdef HAVE_SSIZE_T
+typedef ssize_t Py_ssize_t;
+#elif SIZEOF_VOID_P == SIZEOF_SIZE_T
+typedef Py_intptr_t Py_ssize_t;
+#else
+# error "Python needs a typedef for Py_ssize_t in pyport.h."
+#endif
+
+/* Largest possible value of size_t.
+ SIZE_MAX is part of C99, so it might be defined on some
+ platforms. If it is not defined, (size_t)-1 is a portable
+ definition for C89, due to the way signed->unsigned
+ conversion is defined. */
+#ifdef SIZE_MAX
+#define PY_SIZE_MAX SIZE_MAX
+#else
+#define PY_SIZE_MAX ((size_t)-1)
+#endif
+
+/* Largest positive value of type Py_ssize_t. */
+#define PY_SSIZE_T_MAX ((Py_ssize_t)(((size_t)-1)>>1))
+/* Smallest negative value of type Py_ssize_t. */
+#define PY_SSIZE_T_MIN (-PY_SSIZE_T_MAX-1)
+
+#if SIZEOF_PID_T > SIZEOF_LONG
+# error "Python doesn't support sizeof(pid_t) > sizeof(long)"
+#endif
+
+/* PY_FORMAT_SIZE_T is a platform-specific modifier for use in a printf
+ * format to convert an argument with the width of a size_t or Py_ssize_t.
+ * C99 introduced "z" for this purpose, but not all platforms support that;
+ * e.g., MS compilers use "I" instead.
+ *
+ * These "high level" Python format functions interpret "z" correctly on
+ * all platforms (Python interprets the format string itself, and does whatever
+ * the platform C requires to convert a size_t/Py_ssize_t argument):
+ *
+ * PyString_FromFormat
+ * PyErr_Format
+ * PyString_FromFormatV
+ *
+ * Lower-level uses require that you interpolate the correct format modifier
+ * yourself (e.g., calling printf, fprintf, sprintf, PyOS_snprintf); for
+ * example,
+ *
+ * Py_ssize_t index;
+ * fprintf(stderr, "index %" PY_FORMAT_SIZE_T "d sucks\n", index);
+ *
+ * That will expand to %ld, or %Id, or to something else correct for a
+ * Py_ssize_t on the platform.
+ */
+#ifndef PY_FORMAT_SIZE_T
+# if SIZEOF_SIZE_T == SIZEOF_INT && !defined(__APPLE__)
+# define PY_FORMAT_SIZE_T ""
+# elif SIZEOF_SIZE_T == SIZEOF_LONG
+# define PY_FORMAT_SIZE_T "l"
+# elif defined(MS_WINDOWS)
+# define PY_FORMAT_SIZE_T "I"
+# else
+# error "This platform's pyconfig.h needs to define PY_FORMAT_SIZE_T"
+# endif
+#endif
+
+/* PY_FORMAT_LONG_LONG is analogous to PY_FORMAT_SIZE_T above, but for
+ * the long long type instead of the size_t type. It's only available
+ * when HAVE_LONG_LONG is defined. The "high level" Python format
+ * functions listed above will interpret "lld" or "llu" correctly on
+ * all platforms.
+ */
+#ifdef HAVE_LONG_LONG
+# ifndef PY_FORMAT_LONG_LONG
+# if defined(MS_WIN64) || defined(MS_WINDOWS)
+# define PY_FORMAT_LONG_LONG "I64"
+# else
+# error "This platform's pyconfig.h needs to define PY_FORMAT_LONG_LONG"
+# endif
+# endif
+#endif
+
+/* Py_LOCAL can be used instead of static to get the fastest possible calling
+ * convention for functions that are local to a given module.
+ *
+ * Py_LOCAL_INLINE does the same thing, and also explicitly requests inlining,
+ * for platforms that support that.
+ *
+ * If PY_LOCAL_AGGRESSIVE is defined before python.h is included, more
+ * "aggressive" inlining/optimizaion is enabled for the entire module. This
+ * may lead to code bloat, and may slow things down for those reasons. It may
+ * also lead to errors, if the code relies on pointer aliasing. Use with
+ * care.
+ *
+ * NOTE: You can only use this for functions that are entirely local to a
+ * module; functions that are exported via method tables, callbacks, etc,
+ * should keep using static.
+ */
+
+#undef USE_INLINE /* XXX - set via configure? */
+
+#if defined(_MSC_VER)
+#if defined(PY_LOCAL_AGGRESSIVE)
+/* enable more aggressive optimization for visual studio */
+//#pragma optimize("agtw", on)
+#pragma optimize("gt", on) // a and w are not legal for VS2005
+#endif
+/* ignore warnings if the compiler decides not to inline a function */
+#pragma warning(disable: 4710)
+/* fastest possible local call under MSVC */
+#define Py_LOCAL(type) static type __fastcall
+#define Py_LOCAL_INLINE(type) static __inline type __fastcall
+#elif defined(USE_INLINE)
+#define Py_LOCAL(type) static type
+#define Py_LOCAL_INLINE(type) static inline type
+#else
+#define Py_LOCAL(type) static type
+#define Py_LOCAL_INLINE(type) static type
+#endif
+
+/* Py_MEMCPY can be used instead of memcpy in cases where the copied blocks
+ * are often very short. While most platforms have highly optimized code for
+ * large transfers, the setup costs for memcpy are often quite high. MEMCPY
+ * solves this by doing short copies "in line".
+ */
+
+#if defined(_MSC_VER)
+#define Py_MEMCPY(target, source, length) do { \
+ size_t i_, n_ = (length); \
+ char *t_ = (void*) (target); \
+ const char *s_ = (void*) (source); \
+ if (n_ >= 16) \
+ memcpy(t_, s_, n_); \
+ else \
+ for (i_ = 0; i_ < n_; i_++) \
+ t_[i_] = s_[i_]; \
+ } while (0)
+#else
+#define Py_MEMCPY memcpy
+#endif
+
+#include <stdlib.h>
+
+#ifdef HAVE_IEEEFP_H
+#include <ieeefp.h> /* needed for 'finite' declaration on some platforms */
+#endif
+
+#include <math.h> /* Moved here from the math section, before extern "C" */
+
+/********************************************
+ * WRAPPER FOR <time.h> and/or <sys/time.h> *
+ ********************************************/
+
+#ifdef TIME_WITH_SYS_TIME
+#include <sys/time.h>
+#include <time.h>
+#else /* !TIME_WITH_SYS_TIME */
+#ifdef HAVE_SYS_TIME_H
+#include <sys/time.h>
+#else /* !HAVE_SYS_TIME_H */
+#include <time.h>
+#endif /* !HAVE_SYS_TIME_H */
+#endif /* !TIME_WITH_SYS_TIME */
+
+
+/******************************
+ * WRAPPER FOR <sys/select.h> *
+ ******************************/
+
+/* NB caller must include <sys/types.h> */
+
+#ifdef HAVE_SYS_SELECT_H
+
+#include <sys/select.h>
+
+#endif /* !HAVE_SYS_SELECT_H */
+
+/*******************************
+ * stat() and fstat() fiddling *
+ *******************************/
+
+/* We expect that stat and fstat exist on most systems.
+ * It's confirmed on Unix, Mac and Windows.
+ * If you don't have them, add
+ * #define DONT_HAVE_STAT
+ * and/or
+ * #define DONT_HAVE_FSTAT
+ * to your pyconfig.h. Python code beyond this should check HAVE_STAT and
+ * HAVE_FSTAT instead.
+ * Also
+ * #define HAVE_SYS_STAT_H
+ * if <sys/stat.h> exists on your platform, and
+ * #define HAVE_STAT_H
+ * if <stat.h> does.
+ */
+#ifndef DONT_HAVE_STAT
+#define HAVE_STAT
+#endif
+
+#ifndef DONT_HAVE_FSTAT
+#define HAVE_FSTAT
+#endif
+
+#ifdef RISCOS
+#include <sys/types.h>
+#include "unixstuff.h"
+#endif
+
+#ifdef HAVE_SYS_STAT_H
+#if defined(PYOS_OS2) && defined(PYCC_GCC)
+#include <sys/types.h>
+#endif
+#include <sys/stat.h>
+#elif defined(HAVE_STAT_H)
+#include <stat.h>
+#endif
+
+#if defined(PYCC_VACPP)
+/* VisualAge C/C++ Failed to Define MountType Field in sys/stat.h */
+#define S_IFMT (S_IFDIR|S_IFCHR|S_IFREG)
+#endif
+
+#ifndef S_ISREG
+#define S_ISREG(x) (((x) & S_IFMT) == S_IFREG)
+#endif
+
+#ifndef S_ISDIR
+#define S_ISDIR(x) (((x) & S_IFMT) == S_IFDIR)
+#endif
+
+
+#ifdef __cplusplus
+/* Move this down here since some C++ #include's don't like to be included
+ inside an extern "C" */
+extern "C" {
+#endif
+
+
+/* Py_ARITHMETIC_RIGHT_SHIFT
+ * C doesn't define whether a right-shift of a signed integer sign-extends
+ * or zero-fills. Here a macro to force sign extension:
+ * Py_ARITHMETIC_RIGHT_SHIFT(TYPE, I, J)
+ * Return I >> J, forcing sign extension. Arithmetically, return the
+ * floor of I/2**J.
+ * Requirements:
+ * I should have signed integer type. In the terminology of C99, this can
+ * be either one of the five standard signed integer types (signed char,
+ * short, int, long, long long) or an extended signed integer type.
+ * J is an integer >= 0 and strictly less than the number of bits in the
+ * type of I (because C doesn't define what happens for J outside that
+ * range either).
+ * TYPE used to specify the type of I, but is now ignored. It's been left
+ * in for backwards compatibility with versions <= 2.6 or 3.0.
+ * Caution:
+ * I may be evaluated more than once.
+ */
+#ifdef SIGNED_RIGHT_SHIFT_ZERO_FILLS
+#define Py_ARITHMETIC_RIGHT_SHIFT(TYPE, I, J) \
+ ((I) < 0 ? -1-((-1-(I)) >> (J)) : (I) >> (J))
+#else
+#define Py_ARITHMETIC_RIGHT_SHIFT(TYPE, I, J) ((I) >> (J))
+#endif
+
+/* Py_FORCE_EXPANSION(X)
+ * "Simply" returns its argument. However, macro expansions within the
+ * argument are evaluated. This unfortunate trickery is needed to get
+ * token-pasting to work as desired in some cases.
+ */
+#define Py_FORCE_EXPANSION(X) X
+
+/* Py_SAFE_DOWNCAST(VALUE, WIDE, NARROW)
+ * Cast VALUE to type NARROW from type WIDE. In Py_DEBUG mode, this
+ * assert-fails if any information is lost.
+ * Caution:
+ * VALUE may be evaluated more than once.
+ */
+#ifdef Py_DEBUG
+#define Py_SAFE_DOWNCAST(VALUE, WIDE, NARROW) \
+ (assert((WIDE)(NARROW)(VALUE) == (VALUE)), (NARROW)(VALUE))
+#else
+#define Py_SAFE_DOWNCAST(VALUE, WIDE, NARROW) (NARROW)(VALUE)
+#endif
+
+/* Py_SET_ERRNO_ON_MATH_ERROR(x)
+ * If a libm function did not set errno, but it looks like the result
+ * overflowed or not-a-number, set errno to ERANGE or EDOM. Set errno
+ * to 0 before calling a libm function, and invoke this macro after,
+ * passing the function result.
+ * Caution:
+ * This isn't reliable. See Py_OVERFLOWED comments.
+ * X is evaluated more than once.
+ */
+#if defined(__FreeBSD__) || defined(__OpenBSD__) || (defined(__hpux) && defined(__ia64))
+#define _Py_SET_EDOM_FOR_NAN(X) if (isnan(X)) errno = EDOM;
+#else
+#define _Py_SET_EDOM_FOR_NAN(X) ;
+#endif
+#define Py_SET_ERRNO_ON_MATH_ERROR(X) \
+ do { \
+ if (errno == 0) { \
+ if ((X) == Py_HUGE_VAL || (X) == -Py_HUGE_VAL) \
+ errno = ERANGE; \
+ else _Py_SET_EDOM_FOR_NAN(X) \
+ } \
+ } while(0)
+
+/* Py_SET_ERANGE_ON_OVERFLOW(x)
+ * An alias of Py_SET_ERRNO_ON_MATH_ERROR for backward-compatibility.
+ */
+#define Py_SET_ERANGE_IF_OVERFLOW(X) Py_SET_ERRNO_ON_MATH_ERROR(X)
+
+/* Py_ADJUST_ERANGE1(x)
+ * Py_ADJUST_ERANGE2(x, y)
+ * Set errno to 0 before calling a libm function, and invoke one of these
+ * macros after, passing the function result(s) (Py_ADJUST_ERANGE2 is useful
+ * for functions returning complex results). This makes two kinds of
+ * adjustments to errno: (A) If it looks like the platform libm set
+ * errno=ERANGE due to underflow, clear errno. (B) If it looks like the
+ * platform libm overflowed but didn't set errno, force errno to ERANGE. In
+ * effect, we're trying to force a useful implementation of C89 errno
+ * behavior.
+ * Caution:
+ * This isn't reliable. See Py_OVERFLOWED comments.
+ * X and Y may be evaluated more than once.
+ */
+#define Py_ADJUST_ERANGE1(X) \
+ do { \
+ if (errno == 0) { \
+ if ((X) == Py_HUGE_VAL || (X) == -Py_HUGE_VAL) \
+ errno = ERANGE; \
+ } \
+ else if (errno == ERANGE && (X) == 0.0) \
+ errno = 0; \
+ } while(0)
+
+#define Py_ADJUST_ERANGE2(X, Y) \
+ do { \
+ if ((X) == Py_HUGE_VAL || (X) == -Py_HUGE_VAL || \
+ (Y) == Py_HUGE_VAL || (Y) == -Py_HUGE_VAL) { \
+ if (errno == 0) \
+ errno = ERANGE; \
+ } \
+ else if (errno == ERANGE) \
+ errno = 0; \
+ } while(0)
+
+/* The functions _Py_dg_strtod and _Py_dg_dtoa in Python/dtoa.c (which are
+ * required to support the short float repr introduced in Python 3.1) require
+ * that the floating-point unit that's being used for arithmetic operations
+ * on C doubles is set to use 53-bit precision. It also requires that the
+ * FPU rounding mode is round-half-to-even, but that's less often an issue.
+ *
+ * If your FPU isn't already set to 53-bit precision/round-half-to-even, and
+ * you want to make use of _Py_dg_strtod and _Py_dg_dtoa, then you should
+ *
+ * #define HAVE_PY_SET_53BIT_PRECISION 1
+ *
+ * and also give appropriate definitions for the following three macros:
+ *
+ * _PY_SET_53BIT_PRECISION_START : store original FPU settings, and
+ * set FPU to 53-bit precision/round-half-to-even
+ * _PY_SET_53BIT_PRECISION_END : restore original FPU settings
+ * _PY_SET_53BIT_PRECISION_HEADER : any variable declarations needed to
+ * use the two macros above.
+ *
+ * The macros are designed to be used within a single C function: see
+ * Python/pystrtod.c for an example of their use.
+ */
+
+/* get and set x87 control word for gcc/x86 */
+#ifdef HAVE_GCC_ASM_FOR_X87
+#define HAVE_PY_SET_53BIT_PRECISION 1
+/* _Py_get/set_387controlword functions are defined in Python/pymath.c */
+#define _Py_SET_53BIT_PRECISION_HEADER \
+ unsigned short old_387controlword, new_387controlword
+#define _Py_SET_53BIT_PRECISION_START \
+ do { \
+ old_387controlword = _Py_get_387controlword(); \
+ new_387controlword = (old_387controlword & ~0x0f00) | 0x0200; \
+ if (new_387controlword != old_387controlword) \
+ _Py_set_387controlword(new_387controlword); \
+ } while (0)
+#define _Py_SET_53BIT_PRECISION_END \
+ if (new_387controlword != old_387controlword) \
+ _Py_set_387controlword(old_387controlword)
+#endif
+
+/* default definitions are empty */
+#ifndef HAVE_PY_SET_53BIT_PRECISION
+#define _Py_SET_53BIT_PRECISION_HEADER
+#define _Py_SET_53BIT_PRECISION_START
+#define _Py_SET_53BIT_PRECISION_END
+#endif
+
+/* If we can't guarantee 53-bit precision, don't use the code
+ in Python/dtoa.c, but fall back to standard code. This
+ means that repr of a float will be long (17 sig digits).
+
+ Realistically, there are two things that could go wrong:
+
+ (1) doubles aren't IEEE 754 doubles, or
+ (2) we're on x86 with the rounding precision set to 64-bits
+ (extended precision), and we don't know how to change
+ the rounding precision.
+ */
+
+#if !defined(DOUBLE_IS_LITTLE_ENDIAN_IEEE754) && \
+ !defined(DOUBLE_IS_BIG_ENDIAN_IEEE754) && \
+ !defined(DOUBLE_IS_ARM_MIXED_ENDIAN_IEEE754)
+#define PY_NO_SHORT_FLOAT_REPR
+#endif
+
+/* double rounding is symptomatic of use of extended precision on x86. If
+ we're seeing double rounding, and we don't have any mechanism available for
+ changing the FPU rounding precision, then don't use Python/dtoa.c. */
+#if defined(X87_DOUBLE_ROUNDING) && !defined(HAVE_PY_SET_53BIT_PRECISION)
+#define PY_NO_SHORT_FLOAT_REPR
+#endif
+
+/* Py_DEPRECATED(version)
+ * Declare a variable, type, or function deprecated.
+ * Usage:
+ * extern int old_var Py_DEPRECATED(2.3);
+ * typedef int T1 Py_DEPRECATED(2.4);
+ * extern int x() Py_DEPRECATED(2.5);
+ */
+#if defined(__GNUC__) && ((__GNUC__ >= 4) || \
+ (__GNUC__ == 3) && (__GNUC_MINOR__ >= 1))
+#define Py_DEPRECATED(VERSION_UNUSED) __attribute__((__deprecated__))
+#else
+#define Py_DEPRECATED(VERSION_UNUSED)
+#endif
+
+/**************************************************************************
+Prototypes that are missing from the standard include files on some systems
+(and possibly only some versions of such systems.)
+
+Please be conservative with adding new ones, document them and enclose them
+in platform-specific #ifdefs.
+**************************************************************************/
+
+#ifdef SOLARIS
+/* Unchecked */
+extern int gethostname(char *, int);
+#endif
+
+#ifdef __BEOS__
+/* Unchecked */
+/* It's in the libs, but not the headers... - [cjh] */
+int shutdown( int, int );
+#endif
+
+#ifdef HAVE__GETPTY
+#include <sys/types.h> /* we need to import mode_t */
+extern char * _getpty(int *, int, mode_t, int);
+#endif
+
+/* On QNX 6, struct termio must be declared by including sys/termio.h
+ if TCGETA, TCSETA, TCSETAW, or TCSETAF are used. sys/termio.h must
+ be included before termios.h or it will generate an error. */
+#ifdef HAVE_SYS_TERMIO_H
+#include <sys/termio.h>
+#endif
+
+#if defined(HAVE_OPENPTY) || defined(HAVE_FORKPTY)
+#if !defined(HAVE_PTY_H) && !defined(HAVE_LIBUTIL_H) && !defined(HAVE_UTIL_H)
+/* BSDI does not supply a prototype for the 'openpty' and 'forkpty'
+ functions, even though they are included in libutil. */
+#include <termios.h>
+extern int openpty(int *, int *, char *, struct termios *, struct winsize *);
+extern pid_t forkpty(int *, char *, struct termios *, struct winsize *);
+#endif /* !defined(HAVE_PTY_H) && !defined(HAVE_LIBUTIL_H) */
+#endif /* defined(HAVE_OPENPTY) || defined(HAVE_FORKPTY) */
+
+
+/* These are pulled from various places. It isn't obvious on what platforms
+ they are necessary, nor what the exact prototype should look like (which
+ is likely to vary between platforms!) If you find you need one of these
+ declarations, please move them to a platform-specific block and include
+ proper prototypes. */
+#if 0
+
+/* From Modules/resource.c */
+extern int getrusage();
+extern int getpagesize();
+
+/* From Python/sysmodule.c and Modules/posixmodule.c */
+extern int fclose(FILE *);
+
+/* From Modules/posixmodule.c */
+extern int fdatasync(int);
+#endif /* 0 */
+
+
+/* On 4.4BSD-descendants, ctype functions serves the whole range of
+ * wchar_t character set rather than single byte code points only.
+ * This characteristic can break some operations of string object
+ * including str.upper() and str.split() on UTF-8 locales. This
+ * workaround was provided by Tim Robbins of FreeBSD project.
+ */
+
+#ifdef __FreeBSD__
+#include <osreldate.h>
+#if __FreeBSD_version > 500039
+# define _PY_PORT_CTYPE_UTF8_ISSUE
+#endif
+#endif
+
+
+#if defined(__APPLE__)
+# define _PY_PORT_CTYPE_UTF8_ISSUE
+#endif
+
+#ifdef _PY_PORT_CTYPE_UTF8_ISSUE
+#include <ctype.h>
+#include <wctype.h>
+#undef isalnum
+#define isalnum(c) iswalnum(btowc(c))
+#undef isalpha
+#define isalpha(c) iswalpha(btowc(c))
+#undef islower
+#define islower(c) iswlower(btowc(c))
+#undef isspace
+#define isspace(c) iswspace(btowc(c))
+#undef isupper
+#define isupper(c) iswupper(btowc(c))
+#undef tolower
+#define tolower(c) towlower(btowc(c))
+#undef toupper
+#define toupper(c) towupper(btowc(c))
+#endif
+
+
+/* Declarations for symbol visibility.
+
+ PyAPI_FUNC(type): Declares a public Python API function and return type
+ PyAPI_DATA(type): Declares public Python data and its type
+ PyMODINIT_FUNC: A Python module init function. If these functions are
+ inside the Python core, they are private to the core.
+ If in an extension module, it may be declared with
+ external linkage depending on the platform.
+
+ As a number of platforms support/require "__declspec(dllimport/dllexport)",
+ we support a HAVE_DECLSPEC_DLL macro to save duplication.
+*/
+
+/*
+ All windows ports, except cygwin, are handled in PC/pyconfig.h.
+
+ BeOS and cygwin are the only other autoconf platform requiring special
+ linkage handling and both of these use __declspec().
+*/
+#if defined(__CYGWIN__) || defined(__BEOS__)
+# define HAVE_DECLSPEC_DLL
+#endif
+
+/* only get special linkage if built as shared or platform is Cygwin */
+#if defined(Py_ENABLE_SHARED) || defined(__CYGWIN__)
+# if defined(HAVE_DECLSPEC_DLL)
+# ifdef Py_BUILD_CORE
+# define PyAPI_FUNC(RTYPE) __declspec(dllexport) RTYPE
+# define PyAPI_DATA(RTYPE) extern __declspec(dllexport) RTYPE
+ /* module init functions inside the core need no external linkage */
+ /* except for Cygwin to handle embedding (FIXME: BeOS too?) */
+# if defined(__CYGWIN__)
+# define PyMODINIT_FUNC __declspec(dllexport) void
+# else /* __CYGWIN__ */
+# define PyMODINIT_FUNC void
+# endif /* __CYGWIN__ */
+# else /* Py_BUILD_CORE */
+ /* Building an extension module, or an embedded situation */
+ /* public Python functions and data are imported */
+ /* Under Cygwin, auto-import functions to prevent compilation */
+ /* failures similar to those described at the bottom of 4.1: */
+ /* http://docs.python.org/extending/windows.html#a-cookbook-approach */
+# if !defined(__CYGWIN__)
+# define PyAPI_FUNC(RTYPE) __declspec(dllimport) RTYPE
+# endif /* !__CYGWIN__ */
+# define PyAPI_DATA(RTYPE) extern __declspec(dllimport) RTYPE
+ /* module init functions outside the core must be exported */
+# if defined(__cplusplus)
+# define PyMODINIT_FUNC extern "C" __declspec(dllexport) void
+# else /* __cplusplus */
+# define PyMODINIT_FUNC __declspec(dllexport) void
+# endif /* __cplusplus */
+# endif /* Py_BUILD_CORE */
+# endif /* HAVE_DECLSPEC */
+#endif /* Py_ENABLE_SHARED */
+
+/* If no external linkage macros defined by now, create defaults */
+#ifndef PyAPI_FUNC
+# define PyAPI_FUNC(RTYPE) RTYPE
+#endif
+#ifndef PyAPI_DATA
+# define PyAPI_DATA(RTYPE) extern RTYPE
+#endif
+#ifndef PyMODINIT_FUNC
+# if defined(__cplusplus)
+# define PyMODINIT_FUNC extern "C" void
+# else /* __cplusplus */
+# define PyMODINIT_FUNC void
+# endif /* __cplusplus */
+#endif
+
+/* Deprecated DL_IMPORT and DL_EXPORT macros */
+#if defined(Py_ENABLE_SHARED) && defined (HAVE_DECLSPEC_DLL)
+# if defined(Py_BUILD_CORE)
+# define DL_IMPORT(RTYPE) __declspec(dllexport) RTYPE
+# define DL_EXPORT(RTYPE) __declspec(dllexport) RTYPE
+# else
+# define DL_IMPORT(RTYPE) __declspec(dllimport) RTYPE
+# define DL_EXPORT(RTYPE) __declspec(dllexport) RTYPE
+# endif
+#endif
+#ifndef DL_EXPORT
+# define DL_EXPORT(RTYPE) RTYPE
+#endif
+#ifndef DL_IMPORT
+# define DL_IMPORT(RTYPE) RTYPE
+#endif
+/* End of deprecated DL_* macros */
+
+/* If the fd manipulation macros aren't defined,
+ here is a set that should do the job */
+
+#if 0 /* disabled and probably obsolete */
+
+#ifndef FD_SETSIZE
+#define FD_SETSIZE 256
+#endif
+
+#ifndef FD_SET
+
+typedef long fd_mask;
+
+#define NFDBITS (sizeof(fd_mask) * NBBY) /* bits per mask */
+#ifndef howmany
+#define howmany(x, y) (((x)+((y)-1))/(y))
+#endif /* howmany */
+
+typedef struct fd_set {
+ fd_mask fds_bits[howmany(FD_SETSIZE, NFDBITS)];
+} fd_set;
+
+#define FD_SET(n, p) ((p)->fds_bits[(n)/NFDBITS] |= (1 << ((n) % NFDBITS)))
+#define FD_CLR(n, p) ((p)->fds_bits[(n)/NFDBITS] &= ~(1 << ((n) % NFDBITS)))
+#define FD_ISSET(n, p) ((p)->fds_bits[(n)/NFDBITS] & (1 << ((n) % NFDBITS)))
+#define FD_ZERO(p) memset((char *)(p), '\0', sizeof(*(p)))
+
+#endif /* FD_SET */
+
+#endif /* fd manipulation macros */
+
+
+/* limits.h constants that may be missing */
+
+#ifndef INT_MAX
+#define INT_MAX 2147483647
+#endif
+
+#ifndef LONG_MAX
+#if SIZEOF_LONG == 4
+#define LONG_MAX 0X7FFFFFFFL
+#elif SIZEOF_LONG == 8
+#define LONG_MAX 0X7FFFFFFFFFFFFFFFL
+#else
+#error "could not set LONG_MAX in pyport.h"
+#endif
+#endif
+
+#ifndef LONG_MIN
+#define LONG_MIN (-LONG_MAX-1)
+#endif
+
+#ifndef LONG_BIT
+#define LONG_BIT (8 * SIZEOF_LONG)
+#endif
+
+#if LONG_BIT != 8 * SIZEOF_LONG
+/* 04-Oct-2000 LONG_BIT is apparently (mis)defined as 64 on some recent
+ * 32-bit platforms using gcc. We try to catch that here at compile-time
+ * rather than waiting for integer multiplication to trigger bogus
+ * overflows.
+ */
+#error "LONG_BIT definition appears wrong for platform (bad gcc/glibc config?)."
+#endif
+
+#ifdef __cplusplus
+}
+#endif
+
+/*
+ * Hide GCC attributes from compilers that don't support them.
+ */
+#if (!defined(__GNUC__) || __GNUC__ < 2 || \
+ (__GNUC__ == 2 && __GNUC_MINOR__ < 7) ) && \
+ !defined(RISCOS)
+#define Py_GCC_ATTRIBUTE(x)
+#else
+#define Py_GCC_ATTRIBUTE(x) __attribute__(x)
+#endif
+
+/*
+ * Add PyArg_ParseTuple format where available.
+ */
+#ifdef HAVE_ATTRIBUTE_FORMAT_PARSETUPLE
+#define Py_FORMAT_PARSETUPLE(func,p1,p2) __attribute__((format(func,p1,p2)))
+#else
+#define Py_FORMAT_PARSETUPLE(func,p1,p2)
+#endif
+
+/*
+ * Specify alignment on compilers that support it.
+ */
+#if defined(__GNUC__) && __GNUC__ >= 3
+#define Py_ALIGNED(x) __attribute__((aligned(x)))
+#else
+#define Py_ALIGNED(x)
+#endif
+
+/* Eliminate end-of-loop code not reached warnings from SunPro C
+ * when using do{...}while(0) macros
+ */
+#ifdef __SUNPRO_C
+#pragma error_messages (off,E_END_OF_LOOP_CODE_NOT_REACHED)
+#endif
+
+/*
+ * Older Microsoft compilers don't support the C99 long long literal suffixes,
+ * so these will be defined in PC/pyconfig.h for those compilers.
+ */
+#ifndef Py_LL
+#define Py_LL(x) x##LL
+#endif
+
+#ifndef Py_ULL
+#define Py_ULL(x) Py_LL(x##U)
+#endif
+
+#endif /* Py_PYPORT_H */
diff --git a/AppPkg/Applications/Python/PyMod-2.7.2/Modules/_sre.c b/AppPkg/Applications/Python/PyMod-2.7.2/Modules/_sre.c new file mode 100644 index 0000000000..ec723cc675 --- /dev/null +++ b/AppPkg/Applications/Python/PyMod-2.7.2/Modules/_sre.c @@ -0,0 +1,3912 @@ +/*
+ * Secret Labs' Regular Expression Engine
+ *
+ * regular expression matching engine
+ *
+ * partial history:
+ * 1999-10-24 fl created (based on existing template matcher code)
+ * 2000-03-06 fl first alpha, sort of
+ * 2000-08-01 fl fixes for 1.6b1
+ * 2000-08-07 fl use PyOS_CheckStack() if available
+ * 2000-09-20 fl added expand method
+ * 2001-03-20 fl lots of fixes for 2.1b2
+ * 2001-04-15 fl export copyright as Python attribute, not global
+ * 2001-04-28 fl added __copy__ methods (work in progress)
+ * 2001-05-14 fl fixes for 1.5.2 compatibility
+ * 2001-07-01 fl added BIGCHARSET support (from Martin von Loewis)
+ * 2001-10-18 fl fixed group reset issue (from Matthew Mueller)
+ * 2001-10-20 fl added split primitive; reenable unicode for 1.6/2.0/2.1
+ * 2001-10-21 fl added sub/subn primitive
+ * 2001-10-24 fl added finditer primitive (for 2.2 only)
+ * 2001-12-07 fl fixed memory leak in sub/subn (Guido van Rossum)
+ * 2002-11-09 fl fixed empty sub/subn return type
+ * 2003-04-18 mvl fully support 4-byte codes
+ * 2003-10-17 gn implemented non recursive scheme
+ *
+ * Copyright (c) 1997-2001 by Secret Labs AB. All rights reserved.
+ *
+ * This version of the SRE library can be redistributed under CNRI's
+ * Python 1.6 license. For any other use, please contact Secret Labs
+ * AB (info@pythonware.com).
+ *
+ * Portions of this engine have been developed in cooperation with
+ * CNRI. Hewlett-Packard provided funding for 1.6 integration and
+ * other compatibility work.
+ */
+
+/* Get rid of these macros to prevent collisions between EFI and Python in this file. */
+#undef RETURN_ERROR
+#undef RETURN_SUCCESS
+
+#ifndef SRE_RECURSIVE
+
+static char copyright[] =
+ " SRE 2.2.2 Copyright (c) 1997-2002 by Secret Labs AB ";
+
+#define PY_SSIZE_T_CLEAN
+
+#include "Python.h"
+#include "structmember.h" /* offsetof */
+
+#include "sre.h"
+
+#include <ctype.h>
+
+/* name of this module, minus the leading underscore */
+#if !defined(SRE_MODULE)
+#define SRE_MODULE "sre"
+#endif
+
+#define SRE_PY_MODULE "re"
+
+/* defining this one enables tracing */
+#undef VERBOSE
+
+#if PY_VERSION_HEX >= 0x01060000
+#if PY_VERSION_HEX < 0x02020000 || defined(Py_USING_UNICODE)
+/* defining this enables unicode support (default under 1.6a1 and later) */
+#define HAVE_UNICODE
+#endif
+#endif
+
+/* -------------------------------------------------------------------- */
+/* optional features */
+
+/* enables fast searching */
+#define USE_FAST_SEARCH
+
+/* enables aggressive inlining (always on for Visual C) */
+#undef USE_INLINE
+
+/* enables copy/deepcopy handling (work in progress) */
+#undef USE_BUILTIN_COPY
+
+#if PY_VERSION_HEX < 0x01060000
+#define PyObject_DEL(op) PyMem_DEL((op))
+#endif
+
+/* -------------------------------------------------------------------- */
+
+#if defined(_MSC_VER)
+#pragma optimize("gt", on) /* doesn't seem to make much difference... */
+#pragma warning(disable: 4710) /* who cares if functions are not inlined ;-) */
+/* fastest possible local call under MSVC */
+#define LOCAL(type) static __inline type __fastcall
+#elif defined(USE_INLINE)
+#define LOCAL(type) static inline type
+#else
+#define LOCAL(type) static type
+#endif
+
+/* error codes */
+#define SRE_ERROR_ILLEGAL -1 /* illegal opcode */
+#define SRE_ERROR_STATE -2 /* illegal state */
+#define SRE_ERROR_RECURSION_LIMIT -3 /* runaway recursion */
+#define SRE_ERROR_MEMORY -9 /* out of memory */
+#define SRE_ERROR_INTERRUPTED -10 /* signal handler raised exception */
+
+#if defined(VERBOSE)
+#define TRACE(v) printf v
+#else
+#define TRACE(v)
+#endif
+
+/* -------------------------------------------------------------------- */
+/* search engine state */
+
+/* default character predicates (run sre_chars.py to regenerate tables) */
+
+#define SRE_DIGIT_MASK 1
+#define SRE_SPACE_MASK 2
+#define SRE_LINEBREAK_MASK 4
+#define SRE_ALNUM_MASK 8
+#define SRE_WORD_MASK 16
+
+/* FIXME: this assumes ASCII. create tables in init_sre() instead */
+
+static char sre_char_info[128] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 6, 2,
+2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0,
+0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 25, 25, 25, 25, 25, 25, 25, 25,
+25, 25, 0, 0, 0, 0, 0, 0, 0, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 0, 0,
+0, 0, 16, 0, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 0, 0, 0, 0, 0 };
+
+static char sre_char_lower[128] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
+10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,
+27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43,
+44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60,
+61, 62, 63, 64, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107,
+108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121,
+122, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105,
+106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119,
+120, 121, 122, 123, 124, 125, 126, 127 };
+
+#define SRE_IS_DIGIT(ch)\
+ ((ch) < 128 ? (sre_char_info[(ch)] & SRE_DIGIT_MASK) : 0)
+#define SRE_IS_SPACE(ch)\
+ ((ch) < 128 ? (sre_char_info[(ch)] & SRE_SPACE_MASK) : 0)
+#define SRE_IS_LINEBREAK(ch)\
+ ((ch) < 128 ? (sre_char_info[(ch)] & SRE_LINEBREAK_MASK) : 0)
+#define SRE_IS_ALNUM(ch)\
+ ((ch) < 128 ? (sre_char_info[(ch)] & SRE_ALNUM_MASK) : 0)
+#define SRE_IS_WORD(ch)\
+ ((ch) < 128 ? (sre_char_info[(ch)] & SRE_WORD_MASK) : 0)
+
+static unsigned int sre_lower(unsigned int ch)
+{
+ return ((ch) < 128 ? (unsigned int)sre_char_lower[ch] : ch);
+}
+
+/* locale-specific character predicates */
+/* !(c & ~N) == (c < N+1) for any unsigned c, this avoids
+ * warnings when c's type supports only numbers < N+1 */
+#define SRE_LOC_IS_DIGIT(ch) (!((ch) & ~255) ? isdigit((ch)) : 0)
+#define SRE_LOC_IS_SPACE(ch) (!((ch) & ~255) ? isspace((ch)) : 0)
+#define SRE_LOC_IS_LINEBREAK(ch) ((ch) == '\n')
+#define SRE_LOC_IS_ALNUM(ch) (!((ch) & ~255) ? isalnum((ch)) : 0)
+#define SRE_LOC_IS_WORD(ch) (SRE_LOC_IS_ALNUM((ch)) || (ch) == '_')
+
+static unsigned int sre_lower_locale(unsigned int ch)
+{
+ return ((ch) < 256 ? (unsigned int)tolower((ch)) : ch);
+}
+
+/* unicode-specific character predicates */
+
+#if defined(HAVE_UNICODE)
+
+#define SRE_UNI_IS_DIGIT(ch) Py_UNICODE_ISDECIMAL((Py_UNICODE)(ch))
+#define SRE_UNI_IS_SPACE(ch) Py_UNICODE_ISSPACE((Py_UNICODE)(ch))
+#define SRE_UNI_IS_LINEBREAK(ch) Py_UNICODE_ISLINEBREAK((Py_UNICODE)(ch))
+#define SRE_UNI_IS_ALNUM(ch) Py_UNICODE_ISALNUM((Py_UNICODE)(ch))
+#define SRE_UNI_IS_WORD(ch) (SRE_UNI_IS_ALNUM((ch)) || (ch) == '_')
+
+static unsigned int sre_lower_unicode(unsigned int ch)
+{
+ return (unsigned int) Py_UNICODE_TOLOWER((Py_UNICODE)(ch));
+}
+
+#endif
+
+LOCAL(int)
+sre_category(SRE_CODE category, unsigned int ch)
+{
+ switch (category) {
+
+ case SRE_CATEGORY_DIGIT:
+ return SRE_IS_DIGIT(ch);
+ case SRE_CATEGORY_NOT_DIGIT:
+ return !SRE_IS_DIGIT(ch);
+ case SRE_CATEGORY_SPACE:
+ return SRE_IS_SPACE(ch);
+ case SRE_CATEGORY_NOT_SPACE:
+ return !SRE_IS_SPACE(ch);
+ case SRE_CATEGORY_WORD:
+ return SRE_IS_WORD(ch);
+ case SRE_CATEGORY_NOT_WORD:
+ return !SRE_IS_WORD(ch);
+ case SRE_CATEGORY_LINEBREAK:
+ return SRE_IS_LINEBREAK(ch);
+ case SRE_CATEGORY_NOT_LINEBREAK:
+ return !SRE_IS_LINEBREAK(ch);
+
+ case SRE_CATEGORY_LOC_WORD:
+ return SRE_LOC_IS_WORD(ch);
+ case SRE_CATEGORY_LOC_NOT_WORD:
+ return !SRE_LOC_IS_WORD(ch);
+
+#if defined(HAVE_UNICODE)
+ case SRE_CATEGORY_UNI_DIGIT:
+ return SRE_UNI_IS_DIGIT(ch);
+ case SRE_CATEGORY_UNI_NOT_DIGIT:
+ return !SRE_UNI_IS_DIGIT(ch);
+ case SRE_CATEGORY_UNI_SPACE:
+ return SRE_UNI_IS_SPACE(ch);
+ case SRE_CATEGORY_UNI_NOT_SPACE:
+ return !SRE_UNI_IS_SPACE(ch);
+ case SRE_CATEGORY_UNI_WORD:
+ return SRE_UNI_IS_WORD(ch);
+ case SRE_CATEGORY_UNI_NOT_WORD:
+ return !SRE_UNI_IS_WORD(ch);
+ case SRE_CATEGORY_UNI_LINEBREAK:
+ return SRE_UNI_IS_LINEBREAK(ch);
+ case SRE_CATEGORY_UNI_NOT_LINEBREAK:
+ return !SRE_UNI_IS_LINEBREAK(ch);
+#else
+ case SRE_CATEGORY_UNI_DIGIT:
+ return SRE_IS_DIGIT(ch);
+ case SRE_CATEGORY_UNI_NOT_DIGIT:
+ return !SRE_IS_DIGIT(ch);
+ case SRE_CATEGORY_UNI_SPACE:
+ return SRE_IS_SPACE(ch);
+ case SRE_CATEGORY_UNI_NOT_SPACE:
+ return !SRE_IS_SPACE(ch);
+ case SRE_CATEGORY_UNI_WORD:
+ return SRE_LOC_IS_WORD(ch);
+ case SRE_CATEGORY_UNI_NOT_WORD:
+ return !SRE_LOC_IS_WORD(ch);
+ case SRE_CATEGORY_UNI_LINEBREAK:
+ return SRE_IS_LINEBREAK(ch);
+ case SRE_CATEGORY_UNI_NOT_LINEBREAK:
+ return !SRE_IS_LINEBREAK(ch);
+#endif
+ }
+ return 0;
+}
+
+/* helpers */
+
+static void
+data_stack_dealloc(SRE_STATE* state)
+{
+ if (state->data_stack) {
+ PyMem_FREE(state->data_stack);
+ state->data_stack = NULL;
+ }
+ state->data_stack_size = state->data_stack_base = 0;
+}
+
+static int
+data_stack_grow(SRE_STATE* state, Py_ssize_t size)
+{
+ Py_ssize_t minsize, cursize;
+ minsize = state->data_stack_base+size;
+ cursize = state->data_stack_size;
+ if (cursize < minsize) {
+ void* stack;
+ cursize = minsize+minsize/4+1024;
+ TRACE(("allocate/grow stack %d\n", cursize));
+ stack = PyMem_REALLOC(state->data_stack, cursize);
+ if (!stack) {
+ data_stack_dealloc(state);
+ return SRE_ERROR_MEMORY;
+ }
+ state->data_stack = (char *)stack;
+ state->data_stack_size = cursize;
+ }
+ return 0;
+}
+
+/* generate 8-bit version */
+
+#define SRE_CHAR unsigned char
+#define SRE_AT sre_at
+#define SRE_COUNT sre_count
+#define SRE_CHARSET sre_charset
+#define SRE_INFO sre_info
+#define SRE_MATCH sre_match
+#define SRE_MATCH_CONTEXT sre_match_context
+#define SRE_SEARCH sre_search
+#define SRE_LITERAL_TEMPLATE sre_literal_template
+
+#if defined(HAVE_UNICODE)
+
+#define SRE_RECURSIVE
+#include "_sre.c"
+#undef SRE_RECURSIVE
+
+#undef SRE_LITERAL_TEMPLATE
+#undef SRE_SEARCH
+#undef SRE_MATCH
+#undef SRE_MATCH_CONTEXT
+#undef SRE_INFO
+#undef SRE_CHARSET
+#undef SRE_COUNT
+#undef SRE_AT
+#undef SRE_CHAR
+
+/* generate 16-bit unicode version */
+
+#define SRE_CHAR Py_UNICODE
+#define SRE_AT sre_uat
+#define SRE_COUNT sre_ucount
+#define SRE_CHARSET sre_ucharset
+#define SRE_INFO sre_uinfo
+#define SRE_MATCH sre_umatch
+#define SRE_MATCH_CONTEXT sre_umatch_context
+#define SRE_SEARCH sre_usearch
+#define SRE_LITERAL_TEMPLATE sre_uliteral_template
+#endif
+
+#endif /* SRE_RECURSIVE */
+
+/* -------------------------------------------------------------------- */
+/* String matching engine */
+
+/* the following section is compiled twice, with different character
+ settings */
+
+LOCAL(int)
+SRE_AT(SRE_STATE* state, SRE_CHAR* ptr, SRE_CODE at)
+{
+ /* check if pointer is at given position */
+
+ Py_ssize_t thisp, thatp;
+
+ switch (at) {
+
+ case SRE_AT_BEGINNING:
+ case SRE_AT_BEGINNING_STRING:
+ return ((void*) ptr == state->beginning);
+
+ case SRE_AT_BEGINNING_LINE:
+ return ((void*) ptr == state->beginning ||
+ SRE_IS_LINEBREAK((int) ptr[-1]));
+
+ case SRE_AT_END:
+ return (((void*) (ptr+1) == state->end &&
+ SRE_IS_LINEBREAK((int) ptr[0])) ||
+ ((void*) ptr == state->end));
+
+ case SRE_AT_END_LINE:
+ return ((void*) ptr == state->end ||
+ SRE_IS_LINEBREAK((int) ptr[0]));
+
+ case SRE_AT_END_STRING:
+ return ((void*) ptr == state->end);
+
+ case SRE_AT_BOUNDARY:
+ if (state->beginning == state->end)
+ return 0;
+ thatp = ((void*) ptr > state->beginning) ?
+ SRE_IS_WORD((int) ptr[-1]) : 0;
+ thisp = ((void*) ptr < state->end) ?
+ SRE_IS_WORD((int) ptr[0]) : 0;
+ return thisp != thatp;
+
+ case SRE_AT_NON_BOUNDARY:
+ if (state->beginning == state->end)
+ return 0;
+ thatp = ((void*) ptr > state->beginning) ?
+ SRE_IS_WORD((int) ptr[-1]) : 0;
+ thisp = ((void*) ptr < state->end) ?
+ SRE_IS_WORD((int) ptr[0]) : 0;
+ return thisp == thatp;
+
+ case SRE_AT_LOC_BOUNDARY:
+ if (state->beginning == state->end)
+ return 0;
+ thatp = ((void*) ptr > state->beginning) ?
+ SRE_LOC_IS_WORD((int) ptr[-1]) : 0;
+ thisp = ((void*) ptr < state->end) ?
+ SRE_LOC_IS_WORD((int) ptr[0]) : 0;
+ return thisp != thatp;
+
+ case SRE_AT_LOC_NON_BOUNDARY:
+ if (state->beginning == state->end)
+ return 0;
+ thatp = ((void*) ptr > state->beginning) ?
+ SRE_LOC_IS_WORD((int) ptr[-1]) : 0;
+ thisp = ((void*) ptr < state->end) ?
+ SRE_LOC_IS_WORD((int) ptr[0]) : 0;
+ return thisp == thatp;
+
+#if defined(HAVE_UNICODE)
+ case SRE_AT_UNI_BOUNDARY:
+ if (state->beginning == state->end)
+ return 0;
+ thatp = ((void*) ptr > state->beginning) ?
+ SRE_UNI_IS_WORD((int) ptr[-1]) : 0;
+ thisp = ((void*) ptr < state->end) ?
+ SRE_UNI_IS_WORD((int) ptr[0]) : 0;
+ return thisp != thatp;
+
+ case SRE_AT_UNI_NON_BOUNDARY:
+ if (state->beginning == state->end)
+ return 0;
+ thatp = ((void*) ptr > state->beginning) ?
+ SRE_UNI_IS_WORD((int) ptr[-1]) : 0;
+ thisp = ((void*) ptr < state->end) ?
+ SRE_UNI_IS_WORD((int) ptr[0]) : 0;
+ return thisp == thatp;
+#endif
+
+ }
+
+ return 0;
+}
+
+LOCAL(int)
+SRE_CHARSET(SRE_CODE* set, SRE_CODE ch)
+{
+ /* check if character is a member of the given set */
+
+ int ok = 1;
+
+ for (;;) {
+ switch (*set++) {
+
+ case SRE_OP_FAILURE:
+ return !ok;
+
+ case SRE_OP_LITERAL:
+ /* <LITERAL> <code> */
+ if (ch == set[0])
+ return ok;
+ set++;
+ break;
+
+ case SRE_OP_CATEGORY:
+ /* <CATEGORY> <code> */
+ if (sre_category(set[0], (int) ch))
+ return ok;
+ set += 1;
+ break;
+
+ case SRE_OP_CHARSET:
+ if (sizeof(SRE_CODE) == 2) {
+ /* <CHARSET> <bitmap> (16 bits per code word) */
+ if (ch < 256 && (set[ch >> 4] & (1 << (ch & 15))))
+ return ok;
+ set += 16;
+ }
+ else {
+ /* <CHARSET> <bitmap> (32 bits per code word) */
+ if (ch < 256 && (set[ch >> 5] & (1 << (ch & 31))))
+ return ok;
+ set += 8;
+ }
+ break;
+
+ case SRE_OP_RANGE:
+ /* <RANGE> <lower> <upper> */
+ if (set[0] <= ch && ch <= set[1])
+ return ok;
+ set += 2;
+ break;
+
+ case SRE_OP_NEGATE:
+ ok = !ok;
+ break;
+
+ case SRE_OP_BIGCHARSET:
+ /* <BIGCHARSET> <blockcount> <256 blockindices> <blocks> */
+ {
+ Py_ssize_t count, block;
+ count = *(set++);
+
+ if (sizeof(SRE_CODE) == 2) {
+ block = ((unsigned char*)set)[ch >> 8];
+ set += 128;
+ if (set[block*16 + ((ch & 255)>>4)] & (1 << (ch & 15)))
+ return ok;
+ set += count*16;
+ }
+ else {
+ /* !(c & ~N) == (c < N+1) for any unsigned c, this avoids
+ * warnings when c's type supports only numbers < N+1 */
+ if (!(ch & ~65535))
+ block = ((unsigned char*)set)[ch >> 8];
+ else
+ block = -1;
+ set += 64;
+ if (block >=0 &&
+ (set[block*8 + ((ch & 255)>>5)] & (1 << (ch & 31))))
+ return ok;
+ set += count*8;
+ }
+ break;
+ }
+
+ default:
+ /* internal error -- there's not much we can do about it
+ here, so let's just pretend it didn't match... */
+ return 0;
+ }
+ }
+}
+
+LOCAL(Py_ssize_t) SRE_MATCH(SRE_STATE* state, SRE_CODE* pattern);
+
+LOCAL(Py_ssize_t)
+SRE_COUNT(SRE_STATE* state, SRE_CODE* pattern, Py_ssize_t maxcount)
+{
+ SRE_CODE chr;
+ SRE_CHAR* ptr = (SRE_CHAR *)state->ptr;
+ SRE_CHAR* end = (SRE_CHAR *)state->end;
+ Py_ssize_t i;
+
+ /* adjust end */
+ if (maxcount < end - ptr && maxcount != 65535)
+ end = ptr + maxcount;
+
+ switch (pattern[0]) {
+
+ case SRE_OP_IN:
+ /* repeated set */
+ TRACE(("|%p|%p|COUNT IN\n", pattern, ptr));
+ while (ptr < end && SRE_CHARSET(pattern + 2, *ptr))
+ ptr++;
+ break;
+
+ case SRE_OP_ANY:
+ /* repeated dot wildcard. */
+ TRACE(("|%p|%p|COUNT ANY\n", pattern, ptr));
+ while (ptr < end && !SRE_IS_LINEBREAK(*ptr))
+ ptr++;
+ break;
+
+ case SRE_OP_ANY_ALL:
+ /* repeated dot wildcard. skip to the end of the target
+ string, and backtrack from there */
+ TRACE(("|%p|%p|COUNT ANY_ALL\n", pattern, ptr));
+ ptr = end;
+ break;
+
+ case SRE_OP_LITERAL:
+ /* repeated literal */
+ chr = pattern[1];
+ TRACE(("|%p|%p|COUNT LITERAL %d\n", pattern, ptr, chr));
+ while (ptr < end && (SRE_CODE) *ptr == chr)
+ ptr++;
+ break;
+
+ case SRE_OP_LITERAL_IGNORE:
+ /* repeated literal */
+ chr = pattern[1];
+ TRACE(("|%p|%p|COUNT LITERAL_IGNORE %d\n", pattern, ptr, chr));
+ while (ptr < end && (SRE_CODE) state->lower(*ptr) == chr)
+ ptr++;
+ break;
+
+ case SRE_OP_NOT_LITERAL:
+ /* repeated non-literal */
+ chr = pattern[1];
+ TRACE(("|%p|%p|COUNT NOT_LITERAL %d\n", pattern, ptr, chr));
+ while (ptr < end && (SRE_CODE) *ptr != chr)
+ ptr++;
+ break;
+
+ case SRE_OP_NOT_LITERAL_IGNORE:
+ /* repeated non-literal */
+ chr = pattern[1];
+ TRACE(("|%p|%p|COUNT NOT_LITERAL_IGNORE %d\n", pattern, ptr, chr));
+ while (ptr < end && (SRE_CODE) state->lower(*ptr) != chr)
+ ptr++;
+ break;
+
+ default:
+ /* repeated single character pattern */
+ TRACE(("|%p|%p|COUNT SUBPATTERN\n", pattern, ptr));
+ while ((SRE_CHAR*) state->ptr < end) {
+ i = SRE_MATCH(state, pattern);
+ if (i < 0)
+ return i;
+ if (!i)
+ break;
+ }
+ TRACE(("|%p|%p|COUNT %d\n", pattern, ptr,
+ (SRE_CHAR*) state->ptr - ptr));
+ return (SRE_CHAR*) state->ptr - ptr;
+ }
+
+ TRACE(("|%p|%p|COUNT %d\n", pattern, ptr, ptr - (SRE_CHAR*) state->ptr));
+ return ptr - (SRE_CHAR*) state->ptr;
+}
+
+#if 0 /* not used in this release */
+LOCAL(int)
+SRE_INFO(SRE_STATE* state, SRE_CODE* pattern)
+{
+ /* check if an SRE_OP_INFO block matches at the current position.
+ returns the number of SRE_CODE objects to skip if successful, 0
+ if no match */
+
+ SRE_CHAR* end = state->end;
+ SRE_CHAR* ptr = state->ptr;
+ Py_ssize_t i;
+
+ /* check minimal length */
+ if (pattern[3] && (end - ptr) < pattern[3])
+ return 0;
+
+ /* check known prefix */
+ if (pattern[2] & SRE_INFO_PREFIX && pattern[5] > 1) {
+ /* <length> <skip> <prefix data> <overlap data> */
+ for (i = 0; i < pattern[5]; i++)
+ if ((SRE_CODE) ptr[i] != pattern[7 + i])
+ return 0;
+ return pattern[0] + 2 * pattern[6];
+ }
+ return pattern[0];
+}
+#endif
+
+/* The macros below should be used to protect recursive SRE_MATCH()
+ * calls that *failed* and do *not* return immediately (IOW, those
+ * that will backtrack). Explaining:
+ *
+ * - Recursive SRE_MATCH() returned true: that's usually a success
+ * (besides atypical cases like ASSERT_NOT), therefore there's no
+ * reason to restore lastmark;
+ *
+ * - Recursive SRE_MATCH() returned false but the current SRE_MATCH()
+ * is returning to the caller: If the current SRE_MATCH() is the
+ * top function of the recursion, returning false will be a matching
+ * failure, and it doesn't matter where lastmark is pointing to.
+ * If it's *not* the top function, it will be a recursive SRE_MATCH()
+ * failure by itself, and the calling SRE_MATCH() will have to deal
+ * with the failure by the same rules explained here (it will restore
+ * lastmark by itself if necessary);
+ *
+ * - Recursive SRE_MATCH() returned false, and will continue the
+ * outside 'for' loop: must be protected when breaking, since the next
+ * OP could potentially depend on lastmark;
+ *
+ * - Recursive SRE_MATCH() returned false, and will be called again
+ * inside a local for/while loop: must be protected between each
+ * loop iteration, since the recursive SRE_MATCH() could do anything,
+ * and could potentially depend on lastmark.
+ *
+ * For more information, check the discussion at SF patch #712900.
+ */
+#define LASTMARK_SAVE() \
+ do { \
+ ctx->lastmark = state->lastmark; \
+ ctx->lastindex = state->lastindex; \
+ } while (0)
+#define LASTMARK_RESTORE() \
+ do { \
+ state->lastmark = ctx->lastmark; \
+ state->lastindex = ctx->lastindex; \
+ } while (0)
+
+#define RETURN_ERROR(i) do { return i; } while(0)
+#define RETURN_FAILURE do { ret = 0; goto exit; } while(0)
+#define RETURN_SUCCESS do { ret = 1; goto exit; } while(0)
+
+#define RETURN_ON_ERROR(i) \
+ do { if (i < 0) RETURN_ERROR(i); } while (0)
+#define RETURN_ON_SUCCESS(i) \
+ do { RETURN_ON_ERROR(i); if (i > 0) RETURN_SUCCESS; } while (0)
+#define RETURN_ON_FAILURE(i) \
+ do { RETURN_ON_ERROR(i); if (i == 0) RETURN_FAILURE; } while (0)
+
+#define SFY(x) #x
+
+#define DATA_STACK_ALLOC(state, type, ptr) \
+do { \
+ alloc_pos = state->data_stack_base; \
+ TRACE(("allocating %s in %d (%d)\n", \
+ SFY(type), alloc_pos, sizeof(type))); \
+ if (state->data_stack_size < alloc_pos+sizeof(type)) { \
+ int j = data_stack_grow(state, sizeof(type)); \
+ if (j < 0) return j; \
+ if (ctx_pos != -1) \
+ DATA_STACK_LOOKUP_AT(state, SRE_MATCH_CONTEXT, ctx, ctx_pos); \
+ } \
+ ptr = (type*)(state->data_stack+alloc_pos); \
+ state->data_stack_base += sizeof(type); \
+} while (0)
+
+#define DATA_STACK_LOOKUP_AT(state, type, ptr, pos) \
+do { \
+ TRACE(("looking up %s at %d\n", SFY(type), pos)); \
+ ptr = (type*)(state->data_stack+pos); \
+} while (0)
+
+#define DATA_STACK_PUSH(state, data, size) \
+do { \
+ TRACE(("copy data in %p to %d (%d)\n", \
+ data, state->data_stack_base, size)); \
+ if (state->data_stack_size < state->data_stack_base+size) { \
+ int j = data_stack_grow(state, size); \
+ if (j < 0) return j; \
+ if (ctx_pos != -1) \
+ DATA_STACK_LOOKUP_AT(state, SRE_MATCH_CONTEXT, ctx, ctx_pos); \
+ } \
+ memcpy(state->data_stack+state->data_stack_base, data, size); \
+ state->data_stack_base += size; \
+} while (0)
+
+#define DATA_STACK_POP(state, data, size, discard) \
+do { \
+ TRACE(("copy data to %p from %d (%d)\n", \
+ data, state->data_stack_base-size, size)); \
+ memcpy(data, state->data_stack+state->data_stack_base-size, size); \
+ if (discard) \
+ state->data_stack_base -= size; \
+} while (0)
+
+#define DATA_STACK_POP_DISCARD(state, size) \
+do { \
+ TRACE(("discard data from %d (%d)\n", \
+ state->data_stack_base-size, size)); \
+ state->data_stack_base -= size; \
+} while(0)
+
+#define DATA_PUSH(x) \
+ DATA_STACK_PUSH(state, (x), sizeof(*(x)))
+#define DATA_POP(x) \
+ DATA_STACK_POP(state, (x), sizeof(*(x)), 1)
+#define DATA_POP_DISCARD(x) \
+ DATA_STACK_POP_DISCARD(state, sizeof(*(x)))
+#define DATA_ALLOC(t,p) \
+ DATA_STACK_ALLOC(state, t, p)
+#define DATA_LOOKUP_AT(t,p,pos) \
+ DATA_STACK_LOOKUP_AT(state,t,p,pos)
+
+#define MARK_PUSH(lastmark) \
+ do if (lastmark > 0) { \
+ i = lastmark; /* ctx->lastmark may change if reallocated */ \
+ DATA_STACK_PUSH(state, state->mark, (i+1)*sizeof(void*)); \
+ } while (0)
+#define MARK_POP(lastmark) \
+ do if (lastmark > 0) { \
+ DATA_STACK_POP(state, state->mark, (lastmark+1)*sizeof(void*), 1); \
+ } while (0)
+#define MARK_POP_KEEP(lastmark) \
+ do if (lastmark > 0) { \
+ DATA_STACK_POP(state, state->mark, (lastmark+1)*sizeof(void*), 0); \
+ } while (0)
+#define MARK_POP_DISCARD(lastmark) \
+ do if (lastmark > 0) { \
+ DATA_STACK_POP_DISCARD(state, (lastmark+1)*sizeof(void*)); \
+ } while (0)
+
+#define JUMP_NONE 0
+#define JUMP_MAX_UNTIL_1 1
+#define JUMP_MAX_UNTIL_2 2
+#define JUMP_MAX_UNTIL_3 3
+#define JUMP_MIN_UNTIL_1 4
+#define JUMP_MIN_UNTIL_2 5
+#define JUMP_MIN_UNTIL_3 6
+#define JUMP_REPEAT 7
+#define JUMP_REPEAT_ONE_1 8
+#define JUMP_REPEAT_ONE_2 9
+#define JUMP_MIN_REPEAT_ONE 10
+#define JUMP_BRANCH 11
+#define JUMP_ASSERT 12
+#define JUMP_ASSERT_NOT 13
+
+#define DO_JUMP(jumpvalue, jumplabel, nextpattern) \
+ DATA_ALLOC(SRE_MATCH_CONTEXT, nextctx); \
+ nextctx->last_ctx_pos = ctx_pos; \
+ nextctx->jump = jumpvalue; \
+ nextctx->pattern = nextpattern; \
+ ctx_pos = alloc_pos; \
+ ctx = nextctx; \
+ goto entrance; \
+ jumplabel: \
+ while (0) /* gcc doesn't like labels at end of scopes */ \
+
+typedef struct {
+ Py_ssize_t last_ctx_pos;
+ Py_ssize_t jump;
+ SRE_CHAR* ptr;
+ SRE_CODE* pattern;
+ Py_ssize_t count;
+ Py_ssize_t lastmark;
+ Py_ssize_t lastindex;
+ union {
+ SRE_CODE chr;
+ SRE_REPEAT* rep;
+ } u;
+} SRE_MATCH_CONTEXT;
+
+/* check if string matches the given pattern. returns <0 for
+ error, 0 for failure, and 1 for success */
+LOCAL(Py_ssize_t)
+SRE_MATCH(SRE_STATE* state, SRE_CODE* pattern)
+{
+ SRE_CHAR* end = (SRE_CHAR *)state->end;
+ Py_ssize_t alloc_pos, ctx_pos = -1;
+ Py_ssize_t i, ret = 0;
+ Py_ssize_t jump;
+ unsigned int sigcount=0;
+
+ SRE_MATCH_CONTEXT* ctx;
+ SRE_MATCH_CONTEXT* nextctx;
+
+ TRACE(("|%p|%p|ENTER\n", pattern, state->ptr));
+
+ DATA_ALLOC(SRE_MATCH_CONTEXT, ctx);
+ ctx->last_ctx_pos = -1;
+ ctx->jump = JUMP_NONE;
+ ctx->pattern = pattern;
+ ctx_pos = alloc_pos;
+
+entrance:
+
+ ctx->ptr = (SRE_CHAR *)state->ptr;
+
+ if (ctx->pattern[0] == SRE_OP_INFO) {
+ /* optimization info block */
+ /* <INFO> <1=skip> <2=flags> <3=min> ... */
+ if (ctx->pattern[3] && (end - ctx->ptr) < ctx->pattern[3]) {
+ TRACE(("reject (got %d chars, need %d)\n",
+ (end - ctx->ptr), ctx->pattern[3]));
+ RETURN_FAILURE;
+ }
+ ctx->pattern += ctx->pattern[1] + 1;
+ }
+
+ for (;;) {
+ ++sigcount;
+ if ((0 == (sigcount & 0xfff)) && PyErr_CheckSignals())
+ RETURN_ERROR(SRE_ERROR_INTERRUPTED);
+
+ switch (*ctx->pattern++) {
+
+ case SRE_OP_MARK:
+ /* set mark */
+ /* <MARK> <gid> */
+ TRACE(("|%p|%p|MARK %d\n", ctx->pattern,
+ ctx->ptr, ctx->pattern[0]));
+ i = ctx->pattern[0];
+ if (i & 1)
+ state->lastindex = i/2 + 1;
+ if (i > state->lastmark) {
+ /* state->lastmark is the highest valid index in the
+ state->mark array. If it is increased by more than 1,
+ the intervening marks must be set to NULL to signal
+ that these marks have not been encountered. */
+ Py_ssize_t j = state->lastmark + 1;
+ while (j < i)
+ state->mark[j++] = NULL;
+ state->lastmark = i;
+ }
+ state->mark[i] = ctx->ptr;
+ ctx->pattern++;
+ break;
+
+ case SRE_OP_LITERAL:
+ /* match literal string */
+ /* <LITERAL> <code> */
+ TRACE(("|%p|%p|LITERAL %d\n", ctx->pattern,
+ ctx->ptr, *ctx->pattern));
+ if (ctx->ptr >= end || (SRE_CODE) ctx->ptr[0] != ctx->pattern[0])
+ RETURN_FAILURE;
+ ctx->pattern++;
+ ctx->ptr++;
+ break;
+
+ case SRE_OP_NOT_LITERAL:
+ /* match anything that is not literal character */
+ /* <NOT_LITERAL> <code> */
+ TRACE(("|%p|%p|NOT_LITERAL %d\n", ctx->pattern,
+ ctx->ptr, *ctx->pattern));
+ if (ctx->ptr >= end || (SRE_CODE) ctx->ptr[0] == ctx->pattern[0])
+ RETURN_FAILURE;
+ ctx->pattern++;
+ ctx->ptr++;
+ break;
+
+ case SRE_OP_SUCCESS:
+ /* end of pattern */
+ TRACE(("|%p|%p|SUCCESS\n", ctx->pattern, ctx->ptr));
+ state->ptr = ctx->ptr;
+ RETURN_SUCCESS;
+
+ case SRE_OP_AT:
+ /* match at given position */
+ /* <AT> <code> */
+ TRACE(("|%p|%p|AT %d\n", ctx->pattern, ctx->ptr, *ctx->pattern));
+ if (!SRE_AT(state, ctx->ptr, *ctx->pattern))
+ RETURN_FAILURE;
+ ctx->pattern++;
+ break;
+
+ case SRE_OP_CATEGORY:
+ /* match at given category */
+ /* <CATEGORY> <code> */
+ TRACE(("|%p|%p|CATEGORY %d\n", ctx->pattern,
+ ctx->ptr, *ctx->pattern));
+ if (ctx->ptr >= end || !sre_category(ctx->pattern[0], ctx->ptr[0]))
+ RETURN_FAILURE;
+ ctx->pattern++;
+ ctx->ptr++;
+ break;
+
+ case SRE_OP_ANY:
+ /* match anything (except a newline) */
+ /* <ANY> */
+ TRACE(("|%p|%p|ANY\n", ctx->pattern, ctx->ptr));
+ if (ctx->ptr >= end || SRE_IS_LINEBREAK(ctx->ptr[0]))
+ RETURN_FAILURE;
+ ctx->ptr++;
+ break;
+
+ case SRE_OP_ANY_ALL:
+ /* match anything */
+ /* <ANY_ALL> */
+ TRACE(("|%p|%p|ANY_ALL\n", ctx->pattern, ctx->ptr));
+ if (ctx->ptr >= end)
+ RETURN_FAILURE;
+ ctx->ptr++;
+ break;
+
+ case SRE_OP_IN:
+ /* match set member (or non_member) */
+ /* <IN> <skip> <set> */
+ TRACE(("|%p|%p|IN\n", ctx->pattern, ctx->ptr));
+ if (ctx->ptr >= end || !SRE_CHARSET(ctx->pattern + 1, *ctx->ptr))
+ RETURN_FAILURE;
+ ctx->pattern += ctx->pattern[0];
+ ctx->ptr++;
+ break;
+
+ case SRE_OP_LITERAL_IGNORE:
+ TRACE(("|%p|%p|LITERAL_IGNORE %d\n",
+ ctx->pattern, ctx->ptr, ctx->pattern[0]));
+ if (ctx->ptr >= end ||
+ state->lower(*ctx->ptr) != state->lower(*ctx->pattern))
+ RETURN_FAILURE;
+ ctx->pattern++;
+ ctx->ptr++;
+ break;
+
+ case SRE_OP_NOT_LITERAL_IGNORE:
+ TRACE(("|%p|%p|NOT_LITERAL_IGNORE %d\n",
+ ctx->pattern, ctx->ptr, *ctx->pattern));
+ if (ctx->ptr >= end ||
+ state->lower(*ctx->ptr) == state->lower(*ctx->pattern))
+ RETURN_FAILURE;
+ ctx->pattern++;
+ ctx->ptr++;
+ break;
+
+ case SRE_OP_IN_IGNORE:
+ TRACE(("|%p|%p|IN_IGNORE\n", ctx->pattern, ctx->ptr));
+ if (ctx->ptr >= end
+ || !SRE_CHARSET(ctx->pattern+1,
+ (SRE_CODE)state->lower(*ctx->ptr)))
+ RETURN_FAILURE;
+ ctx->pattern += ctx->pattern[0];
+ ctx->ptr++;
+ break;
+
+ case SRE_OP_JUMP:
+ case SRE_OP_INFO:
+ /* jump forward */
+ /* <JUMP> <offset> */
+ TRACE(("|%p|%p|JUMP %d\n", ctx->pattern,
+ ctx->ptr, ctx->pattern[0]));
+ ctx->pattern += ctx->pattern[0];
+ break;
+
+ case SRE_OP_BRANCH:
+ /* alternation */
+ /* <BRANCH> <0=skip> code <JUMP> ... <NULL> */
+ TRACE(("|%p|%p|BRANCH\n", ctx->pattern, ctx->ptr));
+ LASTMARK_SAVE();
+ ctx->u.rep = state->repeat;
+ if (ctx->u.rep)
+ MARK_PUSH(ctx->lastmark);
+ for (; ctx->pattern[0]; ctx->pattern += ctx->pattern[0]) {
+ if (ctx->pattern[1] == SRE_OP_LITERAL &&
+ (ctx->ptr >= end ||
+ (SRE_CODE) *ctx->ptr != ctx->pattern[2]))
+ continue;
+ if (ctx->pattern[1] == SRE_OP_IN &&
+ (ctx->ptr >= end ||
+ !SRE_CHARSET(ctx->pattern + 3, (SRE_CODE) *ctx->ptr)))
+ continue;
+ state->ptr = ctx->ptr;
+ DO_JUMP(JUMP_BRANCH, jump_branch, ctx->pattern+1);
+ if (ret) {
+ if (ctx->u.rep)
+ MARK_POP_DISCARD(ctx->lastmark);
+ RETURN_ON_ERROR(ret);
+ RETURN_SUCCESS;
+ }
+ if (ctx->u.rep)
+ MARK_POP_KEEP(ctx->lastmark);
+ LASTMARK_RESTORE();
+ }
+ if (ctx->u.rep)
+ MARK_POP_DISCARD(ctx->lastmark);
+ RETURN_FAILURE;
+
+ case SRE_OP_REPEAT_ONE:
+ /* match repeated sequence (maximizing regexp) */
+
+ /* this operator only works if the repeated item is
+ exactly one character wide, and we're not already
+ collecting backtracking points. for other cases,
+ use the MAX_REPEAT operator */
+
+ /* <REPEAT_ONE> <skip> <1=min> <2=max> item <SUCCESS> tail */
+
+ TRACE(("|%p|%p|REPEAT_ONE %d %d\n", ctx->pattern, ctx->ptr,
+ ctx->pattern[1], ctx->pattern[2]));
+
+ if (ctx->ptr + ctx->pattern[1] > end)
+ RETURN_FAILURE; /* cannot match */
+
+ state->ptr = ctx->ptr;
+
+ ret = SRE_COUNT(state, ctx->pattern+3, ctx->pattern[2]);
+ RETURN_ON_ERROR(ret);
+ DATA_LOOKUP_AT(SRE_MATCH_CONTEXT, ctx, ctx_pos);
+ ctx->count = ret;
+ ctx->ptr += ctx->count;
+
+ /* when we arrive here, count contains the number of
+ matches, and ctx->ptr points to the tail of the target
+ string. check if the rest of the pattern matches,
+ and backtrack if not. */
+
+ if (ctx->count < (Py_ssize_t) ctx->pattern[1])
+ RETURN_FAILURE;
+
+ if (ctx->pattern[ctx->pattern[0]] == SRE_OP_SUCCESS) {
+ /* tail is empty. we're finished */
+ state->ptr = ctx->ptr;
+ RETURN_SUCCESS;
+ }
+
+ LASTMARK_SAVE();
+
+ if (ctx->pattern[ctx->pattern[0]] == SRE_OP_LITERAL) {
+ /* tail starts with a literal. skip positions where
+ the rest of the pattern cannot possibly match */
+ ctx->u.chr = ctx->pattern[ctx->pattern[0]+1];
+ for (;;) {
+ while (ctx->count >= (Py_ssize_t) ctx->pattern[1] &&
+ (ctx->ptr >= end || *ctx->ptr != ctx->u.chr)) {
+ ctx->ptr--;
+ ctx->count--;
+ }
+ if (ctx->count < (Py_ssize_t) ctx->pattern[1])
+ break;
+ state->ptr = ctx->ptr;
+ DO_JUMP(JUMP_REPEAT_ONE_1, jump_repeat_one_1,
+ ctx->pattern+ctx->pattern[0]);
+ if (ret) {
+ RETURN_ON_ERROR(ret);
+ RETURN_SUCCESS;
+ }
+
+ LASTMARK_RESTORE();
+
+ ctx->ptr--;
+ ctx->count--;
+ }
+
+ } else {
+ /* general case */
+ while (ctx->count >= (Py_ssize_t) ctx->pattern[1]) {
+ state->ptr = ctx->ptr;
+ DO_JUMP(JUMP_REPEAT_ONE_2, jump_repeat_one_2,
+ ctx->pattern+ctx->pattern[0]);
+ if (ret) {
+ RETURN_ON_ERROR(ret);
+ RETURN_SUCCESS;
+ }
+ ctx->ptr--;
+ ctx->count--;
+ LASTMARK_RESTORE();
+ }
+ }
+ RETURN_FAILURE;
+
+ case SRE_OP_MIN_REPEAT_ONE:
+ /* match repeated sequence (minimizing regexp) */
+
+ /* this operator only works if the repeated item is
+ exactly one character wide, and we're not already
+ collecting backtracking points. for other cases,
+ use the MIN_REPEAT operator */
+
+ /* <MIN_REPEAT_ONE> <skip> <1=min> <2=max> item <SUCCESS> tail */
+
+ TRACE(("|%p|%p|MIN_REPEAT_ONE %d %d\n", ctx->pattern, ctx->ptr,
+ ctx->pattern[1], ctx->pattern[2]));
+
+ if (ctx->ptr + ctx->pattern[1] > end)
+ RETURN_FAILURE; /* cannot match */
+
+ state->ptr = ctx->ptr;
+
+ if (ctx->pattern[1] == 0)
+ ctx->count = 0;
+ else {
+ /* count using pattern min as the maximum */
+ ret = SRE_COUNT(state, ctx->pattern+3, ctx->pattern[1]);
+ RETURN_ON_ERROR(ret);
+ DATA_LOOKUP_AT(SRE_MATCH_CONTEXT, ctx, ctx_pos);
+ if (ret < (Py_ssize_t) ctx->pattern[1])
+ /* didn't match minimum number of times */
+ RETURN_FAILURE;
+ /* advance past minimum matches of repeat */
+ ctx->count = ret;
+ ctx->ptr += ctx->count;
+ }
+
+ if (ctx->pattern[ctx->pattern[0]] == SRE_OP_SUCCESS) {
+ /* tail is empty. we're finished */
+ state->ptr = ctx->ptr;
+ RETURN_SUCCESS;
+
+ } else {
+ /* general case */
+ LASTMARK_SAVE();
+ while ((Py_ssize_t)ctx->pattern[2] == 65535
+ || ctx->count <= (Py_ssize_t)ctx->pattern[2]) {
+ state->ptr = ctx->ptr;
+ DO_JUMP(JUMP_MIN_REPEAT_ONE,jump_min_repeat_one,
+ ctx->pattern+ctx->pattern[0]);
+ if (ret) {
+ RETURN_ON_ERROR(ret);
+ RETURN_SUCCESS;
+ }
+ state->ptr = ctx->ptr;
+ ret = SRE_COUNT(state, ctx->pattern+3, 1);
+ RETURN_ON_ERROR(ret);
+ DATA_LOOKUP_AT(SRE_MATCH_CONTEXT, ctx, ctx_pos);
+ if (ret == 0)
+ break;
+ assert(ret == 1);
+ ctx->ptr++;
+ ctx->count++;
+ LASTMARK_RESTORE();
+ }
+ }
+ RETURN_FAILURE;
+
+ case SRE_OP_REPEAT:
+ /* create repeat context. all the hard work is done
+ by the UNTIL operator (MAX_UNTIL, MIN_UNTIL) */
+ /* <REPEAT> <skip> <1=min> <2=max> item <UNTIL> tail */
+ TRACE(("|%p|%p|REPEAT %d %d\n", ctx->pattern, ctx->ptr,
+ ctx->pattern[1], ctx->pattern[2]));
+
+ /* install new repeat context */
+ ctx->u.rep = (SRE_REPEAT*) PyObject_MALLOC(sizeof(*ctx->u.rep));
+ if (!ctx->u.rep) {
+ PyErr_NoMemory();
+ RETURN_FAILURE;
+ }
+ ctx->u.rep->count = -1;
+ ctx->u.rep->pattern = ctx->pattern;
+ ctx->u.rep->prev = state->repeat;
+ ctx->u.rep->last_ptr = NULL;
+ state->repeat = ctx->u.rep;
+
+ state->ptr = ctx->ptr;
+ DO_JUMP(JUMP_REPEAT, jump_repeat, ctx->pattern+ctx->pattern[0]);
+ state->repeat = ctx->u.rep->prev;
+ PyObject_FREE(ctx->u.rep);
+
+ if (ret) {
+ RETURN_ON_ERROR(ret);
+ RETURN_SUCCESS;
+ }
+ RETURN_FAILURE;
+
+ case SRE_OP_MAX_UNTIL:
+ /* maximizing repeat */
+ /* <REPEAT> <skip> <1=min> <2=max> item <MAX_UNTIL> tail */
+
+ /* FIXME: we probably need to deal with zero-width
+ matches in here... */
+
+ ctx->u.rep = state->repeat;
+ if (!ctx->u.rep)
+ RETURN_ERROR(SRE_ERROR_STATE);
+
+ state->ptr = ctx->ptr;
+
+ ctx->count = ctx->u.rep->count+1;
+
+ TRACE(("|%p|%p|MAX_UNTIL %d\n", ctx->pattern,
+ ctx->ptr, ctx->count));
+
+ if (ctx->count < ctx->u.rep->pattern[1]) {
+ /* not enough matches */
+ ctx->u.rep->count = ctx->count;
+ DO_JUMP(JUMP_MAX_UNTIL_1, jump_max_until_1,
+ ctx->u.rep->pattern+3);
+ if (ret) {
+ RETURN_ON_ERROR(ret);
+ RETURN_SUCCESS;
+ }
+ ctx->u.rep->count = ctx->count-1;
+ state->ptr = ctx->ptr;
+ RETURN_FAILURE;
+ }
+
+ if ((ctx->count < ctx->u.rep->pattern[2] ||
+ ctx->u.rep->pattern[2] == 65535) &&
+ state->ptr != ctx->u.rep->last_ptr) {
+ /* we may have enough matches, but if we can
+ match another item, do so */
+ ctx->u.rep->count = ctx->count;
+ LASTMARK_SAVE();
+ MARK_PUSH(ctx->lastmark);
+ /* zero-width match protection */
+ DATA_PUSH(&ctx->u.rep->last_ptr);
+ ctx->u.rep->last_ptr = state->ptr;
+ DO_JUMP(JUMP_MAX_UNTIL_2, jump_max_until_2,
+ ctx->u.rep->pattern+3);
+ DATA_POP(&ctx->u.rep->last_ptr);
+ if (ret) {
+ MARK_POP_DISCARD(ctx->lastmark);
+ RETURN_ON_ERROR(ret);
+ RETURN_SUCCESS;
+ }
+ MARK_POP(ctx->lastmark);
+ LASTMARK_RESTORE();
+ ctx->u.rep->count = ctx->count-1;
+ state->ptr = ctx->ptr;
+ }
+
+ /* cannot match more repeated items here. make sure the
+ tail matches */
+ state->repeat = ctx->u.rep->prev;
+ DO_JUMP(JUMP_MAX_UNTIL_3, jump_max_until_3, ctx->pattern);
+ RETURN_ON_SUCCESS(ret);
+ state->repeat = ctx->u.rep;
+ state->ptr = ctx->ptr;
+ RETURN_FAILURE;
+
+ case SRE_OP_MIN_UNTIL:
+ /* minimizing repeat */
+ /* <REPEAT> <skip> <1=min> <2=max> item <MIN_UNTIL> tail */
+
+ ctx->u.rep = state->repeat;
+ if (!ctx->u.rep)
+ RETURN_ERROR(SRE_ERROR_STATE);
+
+ state->ptr = ctx->ptr;
+
+ ctx->count = ctx->u.rep->count+1;
+
+ TRACE(("|%p|%p|MIN_UNTIL %d %p\n", ctx->pattern,
+ ctx->ptr, ctx->count, ctx->u.rep->pattern));
+
+ if (ctx->count < ctx->u.rep->pattern[1]) {
+ /* not enough matches */
+ ctx->u.rep->count = ctx->count;
+ DO_JUMP(JUMP_MIN_UNTIL_1, jump_min_until_1,
+ ctx->u.rep->pattern+3);
+ if (ret) {
+ RETURN_ON_ERROR(ret);
+ RETURN_SUCCESS;
+ }
+ ctx->u.rep->count = ctx->count-1;
+ state->ptr = ctx->ptr;
+ RETURN_FAILURE;
+ }
+
+ LASTMARK_SAVE();
+
+ /* see if the tail matches */
+ state->repeat = ctx->u.rep->prev;
+ DO_JUMP(JUMP_MIN_UNTIL_2, jump_min_until_2, ctx->pattern);
+ if (ret) {
+ RETURN_ON_ERROR(ret);
+ RETURN_SUCCESS;
+ }
+
+ state->repeat = ctx->u.rep;
+ state->ptr = ctx->ptr;
+
+ LASTMARK_RESTORE();
+
+ if (ctx->count >= ctx->u.rep->pattern[2]
+ && ctx->u.rep->pattern[2] != 65535)
+ RETURN_FAILURE;
+
+ ctx->u.rep->count = ctx->count;
+ DO_JUMP(JUMP_MIN_UNTIL_3,jump_min_until_3,
+ ctx->u.rep->pattern+3);
+ if (ret) {
+ RETURN_ON_ERROR(ret);
+ RETURN_SUCCESS;
+ }
+ ctx->u.rep->count = ctx->count-1;
+ state->ptr = ctx->ptr;
+ RETURN_FAILURE;
+
+ case SRE_OP_GROUPREF:
+ /* match backreference */
+ TRACE(("|%p|%p|GROUPREF %d\n", ctx->pattern,
+ ctx->ptr, ctx->pattern[0]));
+ i = ctx->pattern[0];
+ {
+ Py_ssize_t groupref = i+i;
+ if (groupref >= state->lastmark) {
+ RETURN_FAILURE;
+ } else {
+ SRE_CHAR* p = (SRE_CHAR*) state->mark[groupref];
+ SRE_CHAR* e = (SRE_CHAR*) state->mark[groupref+1];
+ if (!p || !e || e < p)
+ RETURN_FAILURE;
+ while (p < e) {
+ if (ctx->ptr >= end || *ctx->ptr != *p)
+ RETURN_FAILURE;
+ p++; ctx->ptr++;
+ }
+ }
+ }
+ ctx->pattern++;
+ break;
+
+ case SRE_OP_GROUPREF_IGNORE:
+ /* match backreference */
+ TRACE(("|%p|%p|GROUPREF_IGNORE %d\n", ctx->pattern,
+ ctx->ptr, ctx->pattern[0]));
+ i = ctx->pattern[0];
+ {
+ Py_ssize_t groupref = i+i;
+ if (groupref >= state->lastmark) {
+ RETURN_FAILURE;
+ } else {
+ SRE_CHAR* p = (SRE_CHAR*) state->mark[groupref];
+ SRE_CHAR* e = (SRE_CHAR*) state->mark[groupref+1];
+ if (!p || !e || e < p)
+ RETURN_FAILURE;
+ while (p < e) {
+ if (ctx->ptr >= end ||
+ state->lower(*ctx->ptr) != state->lower(*p))
+ RETURN_FAILURE;
+ p++; ctx->ptr++;
+ }
+ }
+ }
+ ctx->pattern++;
+ break;
+
+ case SRE_OP_GROUPREF_EXISTS:
+ TRACE(("|%p|%p|GROUPREF_EXISTS %d\n", ctx->pattern,
+ ctx->ptr, ctx->pattern[0]));
+ /* <GROUPREF_EXISTS> <group> <skip> codeyes <JUMP> codeno ... */
+ i = ctx->pattern[0];
+ {
+ Py_ssize_t groupref = i+i;
+ if (groupref >= state->lastmark) {
+ ctx->pattern += ctx->pattern[1];
+ break;
+ } else {
+ SRE_CHAR* p = (SRE_CHAR*) state->mark[groupref];
+ SRE_CHAR* e = (SRE_CHAR*) state->mark[groupref+1];
+ if (!p || !e || e < p) {
+ ctx->pattern += ctx->pattern[1];
+ break;
+ }
+ }
+ }
+ ctx->pattern += 2;
+ break;
+
+ case SRE_OP_ASSERT:
+ /* assert subpattern */
+ /* <ASSERT> <skip> <back> <pattern> */
+ TRACE(("|%p|%p|ASSERT %d\n", ctx->pattern,
+ ctx->ptr, ctx->pattern[1]));
+ state->ptr = ctx->ptr - ctx->pattern[1];
+ if (state->ptr < state->beginning)
+ RETURN_FAILURE;
+ DO_JUMP(JUMP_ASSERT, jump_assert, ctx->pattern+2);
+ RETURN_ON_FAILURE(ret);
+ ctx->pattern += ctx->pattern[0];
+ break;
+
+ case SRE_OP_ASSERT_NOT:
+ /* assert not subpattern */
+ /* <ASSERT_NOT> <skip> <back> <pattern> */
+ TRACE(("|%p|%p|ASSERT_NOT %d\n", ctx->pattern,
+ ctx->ptr, ctx->pattern[1]));
+ state->ptr = ctx->ptr - ctx->pattern[1];
+ if (state->ptr >= state->beginning) {
+ DO_JUMP(JUMP_ASSERT_NOT, jump_assert_not, ctx->pattern+2);
+ if (ret) {
+ RETURN_ON_ERROR(ret);
+ RETURN_FAILURE;
+ }
+ }
+ ctx->pattern += ctx->pattern[0];
+ break;
+
+ case SRE_OP_FAILURE:
+ /* immediate failure */
+ TRACE(("|%p|%p|FAILURE\n", ctx->pattern, ctx->ptr));
+ RETURN_FAILURE;
+
+ default:
+ TRACE(("|%p|%p|UNKNOWN %d\n", ctx->pattern, ctx->ptr,
+ ctx->pattern[-1]));
+ RETURN_ERROR(SRE_ERROR_ILLEGAL);
+ }
+ }
+
+exit:
+ ctx_pos = ctx->last_ctx_pos;
+ jump = ctx->jump;
+ DATA_POP_DISCARD(ctx);
+ if (ctx_pos == -1)
+ return ret;
+ DATA_LOOKUP_AT(SRE_MATCH_CONTEXT, ctx, ctx_pos);
+
+ switch (jump) {
+ case JUMP_MAX_UNTIL_2:
+ TRACE(("|%p|%p|JUMP_MAX_UNTIL_2\n", ctx->pattern, ctx->ptr));
+ goto jump_max_until_2;
+ case JUMP_MAX_UNTIL_3:
+ TRACE(("|%p|%p|JUMP_MAX_UNTIL_3\n", ctx->pattern, ctx->ptr));
+ goto jump_max_until_3;
+ case JUMP_MIN_UNTIL_2:
+ TRACE(("|%p|%p|JUMP_MIN_UNTIL_2\n", ctx->pattern, ctx->ptr));
+ goto jump_min_until_2;
+ case JUMP_MIN_UNTIL_3:
+ TRACE(("|%p|%p|JUMP_MIN_UNTIL_3\n", ctx->pattern, ctx->ptr));
+ goto jump_min_until_3;
+ case JUMP_BRANCH:
+ TRACE(("|%p|%p|JUMP_BRANCH\n", ctx->pattern, ctx->ptr));
+ goto jump_branch;
+ case JUMP_MAX_UNTIL_1:
+ TRACE(("|%p|%p|JUMP_MAX_UNTIL_1\n", ctx->pattern, ctx->ptr));
+ goto jump_max_until_1;
+ case JUMP_MIN_UNTIL_1:
+ TRACE(("|%p|%p|JUMP_MIN_UNTIL_1\n", ctx->pattern, ctx->ptr));
+ goto jump_min_until_1;
+ case JUMP_REPEAT:
+ TRACE(("|%p|%p|JUMP_REPEAT\n", ctx->pattern, ctx->ptr));
+ goto jump_repeat;
+ case JUMP_REPEAT_ONE_1:
+ TRACE(("|%p|%p|JUMP_REPEAT_ONE_1\n", ctx->pattern, ctx->ptr));
+ goto jump_repeat_one_1;
+ case JUMP_REPEAT_ONE_2:
+ TRACE(("|%p|%p|JUMP_REPEAT_ONE_2\n", ctx->pattern, ctx->ptr));
+ goto jump_repeat_one_2;
+ case JUMP_MIN_REPEAT_ONE:
+ TRACE(("|%p|%p|JUMP_MIN_REPEAT_ONE\n", ctx->pattern, ctx->ptr));
+ goto jump_min_repeat_one;
+ case JUMP_ASSERT:
+ TRACE(("|%p|%p|JUMP_ASSERT\n", ctx->pattern, ctx->ptr));
+ goto jump_assert;
+ case JUMP_ASSERT_NOT:
+ TRACE(("|%p|%p|JUMP_ASSERT_NOT\n", ctx->pattern, ctx->ptr));
+ goto jump_assert_not;
+ case JUMP_NONE:
+ TRACE(("|%p|%p|RETURN %d\n", ctx->pattern, ctx->ptr, ret));
+ break;
+ }
+
+ return ret; /* should never get here */
+}
+
+LOCAL(Py_ssize_t)
+SRE_SEARCH(SRE_STATE* state, SRE_CODE* pattern)
+{
+ SRE_CHAR* ptr = (SRE_CHAR *)state->start;
+ SRE_CHAR* end = (SRE_CHAR *)state->end;
+ Py_ssize_t status = 0;
+ Py_ssize_t prefix_len = 0;
+ Py_ssize_t prefix_skip = 0;
+ SRE_CODE* prefix = NULL;
+ SRE_CODE* charset = NULL;
+ SRE_CODE* overlap = NULL;
+ int flags = 0;
+
+ if (pattern[0] == SRE_OP_INFO) {
+ /* optimization info block */
+ /* <INFO> <1=skip> <2=flags> <3=min> <4=max> <5=prefix info> */
+
+ flags = pattern[2];
+
+ if (pattern[3] > 1) {
+ /* adjust end point (but make sure we leave at least one
+ character in there, so literal search will work) */
+ end -= pattern[3]-1;
+ if (end <= ptr)
+ end = ptr+1;
+ }
+
+ if (flags & SRE_INFO_PREFIX) {
+ /* pattern starts with a known prefix */
+ /* <length> <skip> <prefix data> <overlap data> */
+ prefix_len = pattern[5];
+ prefix_skip = pattern[6];
+ prefix = pattern + 7;
+ overlap = prefix + prefix_len - 1;
+ } else if (flags & SRE_INFO_CHARSET)
+ /* pattern starts with a character from a known set */
+ /* <charset> */
+ charset = pattern + 5;
+
+ pattern += 1 + pattern[1];
+ }
+
+ TRACE(("prefix = %p %d %d\n", prefix, prefix_len, prefix_skip));
+ TRACE(("charset = %p\n", charset));
+
+#if defined(USE_FAST_SEARCH)
+ if (prefix_len > 1) {
+ /* pattern starts with a known prefix. use the overlap
+ table to skip forward as fast as we possibly can */
+ Py_ssize_t i = 0;
+ end = (SRE_CHAR *)state->end;
+ while (ptr < end) {
+ for (;;) {
+ if ((SRE_CODE) ptr[0] != prefix[i]) {
+ if (!i)
+ break;
+ else
+ i = overlap[i];
+ } else {
+ if (++i == prefix_len) {
+ /* found a potential match */
+ TRACE(("|%p|%p|SEARCH SCAN\n", pattern, ptr));
+ state->start = ptr + 1 - prefix_len;
+ state->ptr = ptr + 1 - prefix_len + prefix_skip;
+ if (flags & SRE_INFO_LITERAL)
+ return 1; /* we got all of it */
+ status = SRE_MATCH(state, pattern + 2*prefix_skip);
+ if (status != 0)
+ return status;
+ /* close but no cigar -- try again */
+ i = overlap[i];
+ }
+ break;
+ }
+ }
+ ptr++;
+ }
+ return 0;
+ }
+#endif
+
+ if (pattern[0] == SRE_OP_LITERAL) {
+ /* pattern starts with a literal character. this is used
+ for short prefixes, and if fast search is disabled */
+ SRE_CODE chr = pattern[1];
+ end = (SRE_CHAR *)state->end;
+ for (;;) {
+ while (ptr < end && (SRE_CODE) ptr[0] != chr)
+ ptr++;
+ if (ptr >= end)
+ return 0;
+ TRACE(("|%p|%p|SEARCH LITERAL\n", pattern, ptr));
+ state->start = ptr;
+ state->ptr = ++ptr;
+ if (flags & SRE_INFO_LITERAL)
+ return 1; /* we got all of it */
+ status = SRE_MATCH(state, pattern + 2);
+ if (status != 0)
+ break;
+ }
+ } else if (charset) {
+ /* pattern starts with a character from a known set */
+ end = (SRE_CHAR *)state->end;
+ for (;;) {
+ while (ptr < end && !SRE_CHARSET(charset, ptr[0]))
+ ptr++;
+ if (ptr >= end)
+ return 0;
+ TRACE(("|%p|%p|SEARCH CHARSET\n", pattern, ptr));
+ state->start = ptr;
+ state->ptr = ptr;
+ status = SRE_MATCH(state, pattern);
+ if (status != 0)
+ break;
+ ptr++;
+ }
+ } else
+ /* general case */
+ while (ptr <= end) {
+ TRACE(("|%p|%p|SEARCH\n", pattern, ptr));
+ state->start = state->ptr = ptr++;
+ status = SRE_MATCH(state, pattern);
+ if (status != 0)
+ break;
+ }
+
+ return status;
+}
+
+LOCAL(int)
+SRE_LITERAL_TEMPLATE(SRE_CHAR* ptr, Py_ssize_t len)
+{
+ /* check if given string is a literal template (i.e. no escapes) */
+ while (len-- > 0)
+ if (*ptr++ == '\\')
+ return 0;
+ return 1;
+}
+
+#if !defined(SRE_RECURSIVE)
+
+/* -------------------------------------------------------------------- */
+/* factories and destructors */
+
+/* see sre.h for object declarations */
+static PyObject*pattern_new_match(PatternObject*, SRE_STATE*, int);
+static PyObject*pattern_scanner(PatternObject*, PyObject*);
+
+static PyObject *
+sre_codesize(PyObject* self, PyObject *unused)
+{
+ return Py_BuildValue("l", sizeof(SRE_CODE));
+}
+
+static PyObject *
+sre_getlower(PyObject* self, PyObject* args)
+{
+ int character, flags;
+ if (!PyArg_ParseTuple(args, "ii", &character, &flags))
+ return NULL;
+ if (flags & SRE_FLAG_LOCALE)
+ return Py_BuildValue("i", sre_lower_locale(character));
+ if (flags & SRE_FLAG_UNICODE)
+#if defined(HAVE_UNICODE)
+ return Py_BuildValue("i", sre_lower_unicode(character));
+#else
+ return Py_BuildValue("i", sre_lower_locale(character));
+#endif
+ return Py_BuildValue("i", sre_lower(character));
+}
+
+LOCAL(void)
+state_reset(SRE_STATE* state)
+{
+ /* FIXME: dynamic! */
+ /*memset(state->mark, 0, sizeof(*state->mark) * SRE_MARK_SIZE);*/
+
+ state->lastmark = -1;
+ state->lastindex = -1;
+
+ state->repeat = NULL;
+
+ data_stack_dealloc(state);
+}
+
+static void*
+getstring(PyObject* string, Py_ssize_t* p_length, int* p_charsize)
+{
+ /* given a python object, return a data pointer, a length (in
+ characters), and a character size. return NULL if the object
+ is not a string (or not compatible) */
+
+ PyBufferProcs *buffer;
+ Py_ssize_t size, bytes;
+ int charsize;
+ void* ptr;
+
+#if defined(HAVE_UNICODE)
+ if (PyUnicode_Check(string)) {
+ /* unicode strings doesn't always support the buffer interface */
+ ptr = (void*) PyUnicode_AS_DATA(string);
+ /* bytes = PyUnicode_GET_DATA_SIZE(string); */
+ size = PyUnicode_GET_SIZE(string);
+ charsize = sizeof(Py_UNICODE);
+
+ } else {
+#endif
+
+ /* get pointer to string buffer */
+ buffer = Py_TYPE(string)->tp_as_buffer;
+ if (!buffer || !buffer->bf_getreadbuffer || !buffer->bf_getsegcount ||
+ buffer->bf_getsegcount(string, NULL) != 1) {
+ PyErr_SetString(PyExc_TypeError, "expected string or buffer");
+ return NULL;
+ }
+
+ /* determine buffer size */
+ bytes = buffer->bf_getreadbuffer(string, 0, &ptr);
+ if (bytes < 0) {
+ PyErr_SetString(PyExc_TypeError, "buffer has negative size");
+ return NULL;
+ }
+
+ /* determine character size */
+#if PY_VERSION_HEX >= 0x01060000
+ size = PyObject_Size(string);
+#else
+ size = PyObject_Length(string);
+#endif
+
+ if (PyString_Check(string) || bytes == size)
+ charsize = 1;
+#if defined(HAVE_UNICODE)
+ else if (bytes == (Py_ssize_t) (size * sizeof(Py_UNICODE)))
+ charsize = sizeof(Py_UNICODE);
+#endif
+ else {
+ PyErr_SetString(PyExc_TypeError, "buffer size mismatch");
+ return NULL;
+ }
+
+#if defined(HAVE_UNICODE)
+ }
+#endif
+
+ *p_length = size;
+ *p_charsize = charsize;
+
+ return ptr;
+}
+
+LOCAL(PyObject*)
+state_init(SRE_STATE* state, PatternObject* pattern, PyObject* string,
+ Py_ssize_t start, Py_ssize_t end)
+{
+ /* prepare state object */
+
+ Py_ssize_t length;
+ int charsize;
+ void* ptr;
+
+ memset(state, 0, sizeof(SRE_STATE));
+
+ state->lastmark = -1;
+ state->lastindex = -1;
+
+ ptr = getstring(string, &length, &charsize);
+ if (!ptr)
+ return NULL;
+
+ /* adjust boundaries */
+ if (start < 0)
+ start = 0;
+ else if (start > length)
+ start = length;
+
+ if (end < 0)
+ end = 0;
+ else if (end > length)
+ end = length;
+
+ state->charsize = charsize;
+
+ state->beginning = ptr;
+
+ state->start = (void*) ((char*) ptr + start * state->charsize);
+ state->end = (void*) ((char*) ptr + end * state->charsize);
+
+ Py_INCREF(string);
+ state->string = string;
+ state->pos = start;
+ state->endpos = end;
+
+ if (pattern->flags & SRE_FLAG_LOCALE)
+ state->lower = sre_lower_locale;
+ else if (pattern->flags & SRE_FLAG_UNICODE)
+#if defined(HAVE_UNICODE)
+ state->lower = sre_lower_unicode;
+#else
+ state->lower = sre_lower_locale;
+#endif
+ else
+ state->lower = sre_lower;
+
+ return string;
+}
+
+LOCAL(void)
+state_fini(SRE_STATE* state)
+{
+ Py_XDECREF(state->string);
+ data_stack_dealloc(state);
+}
+
+/* calculate offset from start of string */
+#define STATE_OFFSET(state, member)\
+ (((char*)(member) - (char*)(state)->beginning) / (state)->charsize)
+
+LOCAL(PyObject*)
+state_getslice(SRE_STATE* state, Py_ssize_t index, PyObject* string, int empty)
+{
+ Py_ssize_t i, j;
+
+ index = (index - 1) * 2;
+
+ if (string == Py_None || index >= state->lastmark || !state->mark[index] || !state->mark[index+1]) {
+ if (empty)
+ /* want empty string */
+ i = j = 0;
+ else {
+ Py_INCREF(Py_None);
+ return Py_None;
+ }
+ } else {
+ i = STATE_OFFSET(state, state->mark[index]);
+ j = STATE_OFFSET(state, state->mark[index+1]);
+ }
+
+ return PySequence_GetSlice(string, i, j);
+}
+
+static void
+pattern_error(int status)
+{
+ switch (status) {
+ case SRE_ERROR_RECURSION_LIMIT:
+ PyErr_SetString(
+ PyExc_RuntimeError,
+ "maximum recursion limit exceeded"
+ );
+ break;
+ case SRE_ERROR_MEMORY:
+ PyErr_NoMemory();
+ break;
+ case SRE_ERROR_INTERRUPTED:
+ /* An exception has already been raised, so let it fly */
+ break;
+ default:
+ /* other error codes indicate compiler/engine bugs */
+ PyErr_SetString(
+ PyExc_RuntimeError,
+ "internal error in regular expression engine"
+ );
+ }
+}
+
+static void
+pattern_dealloc(PatternObject* self)
+{
+ if (self->weakreflist != NULL)
+ PyObject_ClearWeakRefs((PyObject *) self);
+ Py_XDECREF(self->pattern);
+ Py_XDECREF(self->groupindex);
+ Py_XDECREF(self->indexgroup);
+ PyObject_DEL(self);
+}
+
+static PyObject*
+pattern_match(PatternObject* self, PyObject* args, PyObject* kw)
+{
+ SRE_STATE state;
+ int status;
+
+ PyObject* string;
+ Py_ssize_t start = 0;
+ Py_ssize_t end = PY_SSIZE_T_MAX;
+ static char* kwlist[] = { "pattern", "pos", "endpos", NULL };
+ if (!PyArg_ParseTupleAndKeywords(args, kw, "O|nn:match", kwlist,
+ &string, &start, &end))
+ return NULL;
+
+ string = state_init(&state, self, string, start, end);
+ if (!string)
+ return NULL;
+
+ state.ptr = state.start;
+
+ TRACE(("|%p|%p|MATCH\n", PatternObject_GetCode(self), state.ptr));
+
+ if (state.charsize == 1) {
+ status = sre_match(&state, PatternObject_GetCode(self));
+ } else {
+#if defined(HAVE_UNICODE)
+ status = sre_umatch(&state, PatternObject_GetCode(self));
+#endif
+ }
+
+ TRACE(("|%p|%p|END\n", PatternObject_GetCode(self), state.ptr));
+ if (PyErr_Occurred())
+ return NULL;
+
+ state_fini(&state);
+
+ return pattern_new_match(self, &state, status);
+}
+
+static PyObject*
+pattern_search(PatternObject* self, PyObject* args, PyObject* kw)
+{
+ SRE_STATE state;
+ int status;
+
+ PyObject* string;
+ Py_ssize_t start = 0;
+ Py_ssize_t end = PY_SSIZE_T_MAX;
+ static char* kwlist[] = { "pattern", "pos", "endpos", NULL };
+ if (!PyArg_ParseTupleAndKeywords(args, kw, "O|nn:search", kwlist,
+ &string, &start, &end))
+ return NULL;
+
+ string = state_init(&state, self, string, start, end);
+ if (!string)
+ return NULL;
+
+ TRACE(("|%p|%p|SEARCH\n", PatternObject_GetCode(self), state.ptr));
+
+ if (state.charsize == 1) {
+ status = sre_search(&state, PatternObject_GetCode(self));
+ } else {
+#if defined(HAVE_UNICODE)
+ status = sre_usearch(&state, PatternObject_GetCode(self));
+#endif
+ }
+
+ TRACE(("|%p|%p|END\n", PatternObject_GetCode(self), state.ptr));
+
+ state_fini(&state);
+
+ if (PyErr_Occurred())
+ return NULL;
+
+ return pattern_new_match(self, &state, status);
+}
+
+static PyObject*
+call(char* module, char* function, PyObject* args)
+{
+ PyObject* name;
+ PyObject* mod;
+ PyObject* func;
+ PyObject* result;
+
+ if (!args)
+ return NULL;
+ name = PyString_FromString(module);
+ if (!name)
+ return NULL;
+ mod = PyImport_Import(name);
+ Py_DECREF(name);
+ if (!mod)
+ return NULL;
+ func = PyObject_GetAttrString(mod, function);
+ Py_DECREF(mod);
+ if (!func)
+ return NULL;
+ result = PyObject_CallObject(func, args);
+ Py_DECREF(func);
+ Py_DECREF(args);
+ return result;
+}
+
+#ifdef USE_BUILTIN_COPY
+static int
+deepcopy(PyObject** object, PyObject* memo)
+{
+ PyObject* copy;
+
+ copy = call(
+ "copy", "deepcopy",
+ PyTuple_Pack(2, *object, memo)
+ );
+ if (!copy)
+ return 0;
+
+ Py_DECREF(*object);
+ *object = copy;
+
+ return 1; /* success */
+}
+#endif
+
+static PyObject*
+join_list(PyObject* list, PyObject* string)
+{
+ /* join list elements */
+
+ PyObject* joiner;
+#if PY_VERSION_HEX >= 0x01060000
+ PyObject* function;
+ PyObject* args;
+#endif
+ PyObject* result;
+
+ joiner = PySequence_GetSlice(string, 0, 0);
+ if (!joiner)
+ return NULL;
+
+ if (PyList_GET_SIZE(list) == 0) {
+ Py_DECREF(list);
+ return joiner;
+ }
+
+#if PY_VERSION_HEX >= 0x01060000
+ function = PyObject_GetAttrString(joiner, "join");
+ if (!function) {
+ Py_DECREF(joiner);
+ return NULL;
+ }
+ args = PyTuple_New(1);
+ if (!args) {
+ Py_DECREF(function);
+ Py_DECREF(joiner);
+ return NULL;
+ }
+ PyTuple_SET_ITEM(args, 0, list);
+ result = PyObject_CallObject(function, args);
+ Py_DECREF(args); /* also removes list */
+ Py_DECREF(function);
+#else
+ result = call(
+ "string", "join",
+ PyTuple_Pack(2, list, joiner)
+ );
+#endif
+ Py_DECREF(joiner);
+
+ return result;
+}
+
+static PyObject*
+pattern_findall(PatternObject* self, PyObject* args, PyObject* kw)
+{
+ SRE_STATE state;
+ PyObject* list;
+ int status;
+ Py_ssize_t i, b, e;
+
+ PyObject* string;
+ Py_ssize_t start = 0;
+ Py_ssize_t end = PY_SSIZE_T_MAX;
+ static char* kwlist[] = { "source", "pos", "endpos", NULL };
+ if (!PyArg_ParseTupleAndKeywords(args, kw, "O|nn:findall", kwlist,
+ &string, &start, &end))
+ return NULL;
+
+ string = state_init(&state, self, string, start, end);
+ if (!string)
+ return NULL;
+
+ list = PyList_New(0);
+ if (!list) {
+ state_fini(&state);
+ return NULL;
+ }
+
+ while (state.start <= state.end) {
+
+ PyObject* item;
+
+ state_reset(&state);
+
+ state.ptr = state.start;
+
+ if (state.charsize == 1) {
+ status = sre_search(&state, PatternObject_GetCode(self));
+ } else {
+#if defined(HAVE_UNICODE)
+ status = sre_usearch(&state, PatternObject_GetCode(self));
+#endif
+ }
+
+ if (PyErr_Occurred())
+ goto error;
+
+ if (status <= 0) {
+ if (status == 0)
+ break;
+ pattern_error(status);
+ goto error;
+ }
+
+ /* don't bother to build a match object */
+ switch (self->groups) {
+ case 0:
+ b = STATE_OFFSET(&state, state.start);
+ e = STATE_OFFSET(&state, state.ptr);
+ item = PySequence_GetSlice(string, b, e);
+ if (!item)
+ goto error;
+ break;
+ case 1:
+ item = state_getslice(&state, 1, string, 1);
+ if (!item)
+ goto error;
+ break;
+ default:
+ item = PyTuple_New(self->groups);
+ if (!item)
+ goto error;
+ for (i = 0; i < self->groups; i++) {
+ PyObject* o = state_getslice(&state, i+1, string, 1);
+ if (!o) {
+ Py_DECREF(item);
+ goto error;
+ }
+ PyTuple_SET_ITEM(item, i, o);
+ }
+ break;
+ }
+
+ status = PyList_Append(list, item);
+ Py_DECREF(item);
+ if (status < 0)
+ goto error;
+
+ if (state.ptr == state.start)
+ state.start = (void*) ((char*) state.ptr + state.charsize);
+ else
+ state.start = state.ptr;
+
+ }
+
+ state_fini(&state);
+ return list;
+
+error:
+ Py_DECREF(list);
+ state_fini(&state);
+ return NULL;
+
+}
+
+#if PY_VERSION_HEX >= 0x02020000
+static PyObject*
+pattern_finditer(PatternObject* pattern, PyObject* args)
+{
+ PyObject* scanner;
+ PyObject* search;
+ PyObject* iterator;
+
+ scanner = pattern_scanner(pattern, args);
+ if (!scanner)
+ return NULL;
+
+ search = PyObject_GetAttrString(scanner, "search");
+ Py_DECREF(scanner);
+ if (!search)
+ return NULL;
+
+ iterator = PyCallIter_New(search, Py_None);
+ Py_DECREF(search);
+
+ return iterator;
+}
+#endif
+
+static PyObject*
+pattern_split(PatternObject* self, PyObject* args, PyObject* kw)
+{
+ SRE_STATE state;
+ PyObject* list;
+ PyObject* item;
+ int status;
+ Py_ssize_t n;
+ Py_ssize_t i;
+ void* last;
+
+ PyObject* string;
+ Py_ssize_t maxsplit = 0;
+ static char* kwlist[] = { "source", "maxsplit", NULL };
+ if (!PyArg_ParseTupleAndKeywords(args, kw, "O|n:split", kwlist,
+ &string, &maxsplit))
+ return NULL;
+
+ string = state_init(&state, self, string, 0, PY_SSIZE_T_MAX);
+ if (!string)
+ return NULL;
+
+ list = PyList_New(0);
+ if (!list) {
+ state_fini(&state);
+ return NULL;
+ }
+
+ n = 0;
+ last = state.start;
+
+ while (!maxsplit || n < maxsplit) {
+
+ state_reset(&state);
+
+ state.ptr = state.start;
+
+ if (state.charsize == 1) {
+ status = sre_search(&state, PatternObject_GetCode(self));
+ } else {
+#if defined(HAVE_UNICODE)
+ status = sre_usearch(&state, PatternObject_GetCode(self));
+#endif
+ }
+
+ if (PyErr_Occurred())
+ goto error;
+
+ if (status <= 0) {
+ if (status == 0)
+ break;
+ pattern_error(status);
+ goto error;
+ }
+
+ if (state.start == state.ptr) {
+ if (last == state.end)
+ break;
+ /* skip one character */
+ state.start = (void*) ((char*) state.ptr + state.charsize);
+ continue;
+ }
+
+ /* get segment before this match */
+ item = PySequence_GetSlice(
+ string, STATE_OFFSET(&state, last),
+ STATE_OFFSET(&state, state.start)
+ );
+ if (!item)
+ goto error;
+ status = PyList_Append(list, item);
+ Py_DECREF(item);
+ if (status < 0)
+ goto error;
+
+ /* add groups (if any) */
+ for (i = 0; i < self->groups; i++) {
+ item = state_getslice(&state, i+1, string, 0);
+ if (!item)
+ goto error;
+ status = PyList_Append(list, item);
+ Py_DECREF(item);
+ if (status < 0)
+ goto error;
+ }
+
+ n = n + 1;
+
+ last = state.start = state.ptr;
+
+ }
+
+ /* get segment following last match (even if empty) */
+ item = PySequence_GetSlice(
+ string, STATE_OFFSET(&state, last), state.endpos
+ );
+ if (!item)
+ goto error;
+ status = PyList_Append(list, item);
+ Py_DECREF(item);
+ if (status < 0)
+ goto error;
+
+ state_fini(&state);
+ return list;
+
+error:
+ Py_DECREF(list);
+ state_fini(&state);
+ return NULL;
+
+}
+
+static PyObject*
+pattern_subx(PatternObject* self, PyObject* ptemplate, PyObject* string,
+ Py_ssize_t count, Py_ssize_t subn)
+{
+ SRE_STATE state;
+ PyObject* list;
+ PyObject* item;
+ PyObject* filter;
+ PyObject* args;
+ PyObject* match;
+ void* ptr;
+ int status;
+ Py_ssize_t n;
+ Py_ssize_t i, b, e;
+ int bint;
+ int filter_is_callable;
+
+ if (PyCallable_Check(ptemplate)) {
+ /* sub/subn takes either a function or a template */
+ filter = ptemplate;
+ Py_INCREF(filter);
+ filter_is_callable = 1;
+ } else {
+ /* if not callable, check if it's a literal string */
+ int literal;
+ ptr = getstring(ptemplate, &n, &bint);
+ b = bint;
+ if (ptr) {
+ if (b == 1) {
+ literal = sre_literal_template((unsigned char *)ptr, n);
+ } else {
+#if defined(HAVE_UNICODE)
+ literal = sre_uliteral_template((Py_UNICODE *)ptr, n);
+#endif
+ }
+ } else {
+ PyErr_Clear();
+ literal = 0;
+ }
+ if (literal) {
+ filter = ptemplate;
+ Py_INCREF(filter);
+ filter_is_callable = 0;
+ } else {
+ /* not a literal; hand it over to the template compiler */
+ filter = call(
+ SRE_PY_MODULE, "_subx",
+ PyTuple_Pack(2, self, ptemplate)
+ );
+ if (!filter)
+ return NULL;
+ filter_is_callable = PyCallable_Check(filter);
+ }
+ }
+
+ string = state_init(&state, self, string, 0, PY_SSIZE_T_MAX);
+ if (!string) {
+ Py_DECREF(filter);
+ return NULL;
+ }
+
+ list = PyList_New(0);
+ if (!list) {
+ Py_DECREF(filter);
+ state_fini(&state);
+ return NULL;
+ }
+
+ n = i = 0;
+
+ while (!count || n < count) {
+
+ state_reset(&state);
+
+ state.ptr = state.start;
+
+ if (state.charsize == 1) {
+ status = sre_search(&state, PatternObject_GetCode(self));
+ } else {
+#if defined(HAVE_UNICODE)
+ status = sre_usearch(&state, PatternObject_GetCode(self));
+#endif
+ }
+
+ if (PyErr_Occurred())
+ goto error;
+
+ if (status <= 0) {
+ if (status == 0)
+ break;
+ pattern_error(status);
+ goto error;
+ }
+
+ b = STATE_OFFSET(&state, state.start);
+ e = STATE_OFFSET(&state, state.ptr);
+
+ if (i < b) {
+ /* get segment before this match */
+ item = PySequence_GetSlice(string, i, b);
+ if (!item)
+ goto error;
+ status = PyList_Append(list, item);
+ Py_DECREF(item);
+ if (status < 0)
+ goto error;
+
+ } else if (i == b && i == e && n > 0)
+ /* ignore empty match on latest position */
+ goto next;
+
+ if (filter_is_callable) {
+ /* pass match object through filter */
+ match = pattern_new_match(self, &state, 1);
+ if (!match)
+ goto error;
+ args = PyTuple_Pack(1, match);
+ if (!args) {
+ Py_DECREF(match);
+ goto error;
+ }
+ item = PyObject_CallObject(filter, args);
+ Py_DECREF(args);
+ Py_DECREF(match);
+ if (!item)
+ goto error;
+ } else {
+ /* filter is literal string */
+ item = filter;
+ Py_INCREF(item);
+ }
+
+ /* add to list */
+ if (item != Py_None) {
+ status = PyList_Append(list, item);
+ Py_DECREF(item);
+ if (status < 0)
+ goto error;
+ }
+
+ i = e;
+ n = n + 1;
+
+next:
+ /* move on */
+ if (state.ptr == state.start)
+ state.start = (void*) ((char*) state.ptr + state.charsize);
+ else
+ state.start = state.ptr;
+
+ }
+
+ /* get segment following last match */
+ if (i < state.endpos) {
+ item = PySequence_GetSlice(string, i, state.endpos);
+ if (!item)
+ goto error;
+ status = PyList_Append(list, item);
+ Py_DECREF(item);
+ if (status < 0)
+ goto error;
+ }
+
+ state_fini(&state);
+
+ Py_DECREF(filter);
+
+ /* convert list to single string (also removes list) */
+ item = join_list(list, string);
+
+ if (!item)
+ return NULL;
+
+ if (subn)
+ return Py_BuildValue("Ni", item, n);
+
+ return item;
+
+error:
+ Py_DECREF(list);
+ state_fini(&state);
+ Py_DECREF(filter);
+ return NULL;
+
+}
+
+static PyObject*
+pattern_sub(PatternObject* self, PyObject* args, PyObject* kw)
+{
+ PyObject* ptemplate;
+ PyObject* string;
+ Py_ssize_t count = 0;
+ static char* kwlist[] = { "repl", "string", "count", NULL };
+ if (!PyArg_ParseTupleAndKeywords(args, kw, "OO|n:sub", kwlist,
+ &ptemplate, &string, &count))
+ return NULL;
+
+ return pattern_subx(self, ptemplate, string, count, 0);
+}
+
+static PyObject*
+pattern_subn(PatternObject* self, PyObject* args, PyObject* kw)
+{
+ PyObject* ptemplate;
+ PyObject* string;
+ Py_ssize_t count = 0;
+ static char* kwlist[] = { "repl", "string", "count", NULL };
+ if (!PyArg_ParseTupleAndKeywords(args, kw, "OO|n:subn", kwlist,
+ &ptemplate, &string, &count))
+ return NULL;
+
+ return pattern_subx(self, ptemplate, string, count, 1);
+}
+
+static PyObject*
+pattern_copy(PatternObject* self, PyObject *unused)
+{
+#ifdef USE_BUILTIN_COPY
+ PatternObject* copy;
+ int offset;
+
+ copy = PyObject_NEW_VAR(PatternObject, &Pattern_Type, self->codesize);
+ if (!copy)
+ return NULL;
+
+ offset = offsetof(PatternObject, groups);
+
+ Py_XINCREF(self->groupindex);
+ Py_XINCREF(self->indexgroup);
+ Py_XINCREF(self->pattern);
+
+ memcpy((char*) copy + offset, (char*) self + offset,
+ sizeof(PatternObject) + self->codesize * sizeof(SRE_CODE) - offset);
+ copy->weakreflist = NULL;
+
+ return (PyObject*) copy;
+#else
+ PyErr_SetString(PyExc_TypeError, "cannot copy this pattern object");
+ return NULL;
+#endif
+}
+
+static PyObject*
+pattern_deepcopy(PatternObject* self, PyObject* memo)
+{
+#ifdef USE_BUILTIN_COPY
+ PatternObject* copy;
+
+ copy = (PatternObject*) pattern_copy(self);
+ if (!copy)
+ return NULL;
+
+ if (!deepcopy(©->groupindex, memo) ||
+ !deepcopy(©->indexgroup, memo) ||
+ !deepcopy(©->pattern, memo)) {
+ Py_DECREF(copy);
+ return NULL;
+ }
+
+#else
+ PyErr_SetString(PyExc_TypeError, "cannot deepcopy this pattern object");
+ return NULL;
+#endif
+}
+
+PyDoc_STRVAR(pattern_match_doc,
+"match(string[, pos[, endpos]]) --> match object or None.\n\
+ Matches zero or more characters at the beginning of the string");
+
+PyDoc_STRVAR(pattern_search_doc,
+"search(string[, pos[, endpos]]) --> match object or None.\n\
+ Scan through string looking for a match, and return a corresponding\n\
+ MatchObject instance. Return None if no position in the string matches.");
+
+PyDoc_STRVAR(pattern_split_doc,
+"split(string[, maxsplit = 0]) --> list.\n\
+ Split string by the occurrences of pattern.");
+
+PyDoc_STRVAR(pattern_findall_doc,
+"findall(string[, pos[, endpos]]) --> list.\n\
+ Return a list of all non-overlapping matches of pattern in string.");
+
+PyDoc_STRVAR(pattern_finditer_doc,
+"finditer(string[, pos[, endpos]]) --> iterator.\n\
+ Return an iterator over all non-overlapping matches for the \n\
+ RE pattern in string. For each match, the iterator returns a\n\
+ match object.");
+
+PyDoc_STRVAR(pattern_sub_doc,
+"sub(repl, string[, count = 0]) --> newstring\n\
+ Return the string obtained by replacing the leftmost non-overlapping\n\
+ occurrences of pattern in string by the replacement repl.");
+
+PyDoc_STRVAR(pattern_subn_doc,
+"subn(repl, string[, count = 0]) --> (newstring, number of subs)\n\
+ Return the tuple (new_string, number_of_subs_made) found by replacing\n\
+ the leftmost non-overlapping occurrences of pattern with the\n\
+ replacement repl.");
+
+PyDoc_STRVAR(pattern_doc, "Compiled regular expression objects");
+
+static PyMethodDef pattern_methods[] = {
+ {"match", (PyCFunction) pattern_match, METH_VARARGS|METH_KEYWORDS,
+ pattern_match_doc},
+ {"search", (PyCFunction) pattern_search, METH_VARARGS|METH_KEYWORDS,
+ pattern_search_doc},
+ {"sub", (PyCFunction) pattern_sub, METH_VARARGS|METH_KEYWORDS,
+ pattern_sub_doc},
+ {"subn", (PyCFunction) pattern_subn, METH_VARARGS|METH_KEYWORDS,
+ pattern_subn_doc},
+ {"split", (PyCFunction) pattern_split, METH_VARARGS|METH_KEYWORDS,
+ pattern_split_doc},
+ {"findall", (PyCFunction) pattern_findall, METH_VARARGS|METH_KEYWORDS,
+ pattern_findall_doc},
+#if PY_VERSION_HEX >= 0x02020000
+ {"finditer", (PyCFunction) pattern_finditer, METH_VARARGS,
+ pattern_finditer_doc},
+#endif
+ {"scanner", (PyCFunction) pattern_scanner, METH_VARARGS},
+ {"__copy__", (PyCFunction) pattern_copy, METH_NOARGS},
+ {"__deepcopy__", (PyCFunction) pattern_deepcopy, METH_O},
+ {NULL, NULL}
+};
+
+#define PAT_OFF(x) offsetof(PatternObject, x)
+static PyMemberDef pattern_members[] = {
+ {"pattern", T_OBJECT, PAT_OFF(pattern), READONLY},
+ {"flags", T_INT, PAT_OFF(flags), READONLY},
+ {"groups", T_PYSSIZET, PAT_OFF(groups), READONLY},
+ {"groupindex", T_OBJECT, PAT_OFF(groupindex), READONLY},
+ {NULL} /* Sentinel */
+};
+
+statichere PyTypeObject Pattern_Type = {
+ PyObject_HEAD_INIT(NULL)
+ 0, "_" SRE_MODULE ".SRE_Pattern",
+ sizeof(PatternObject), sizeof(SRE_CODE),
+ (destructor)pattern_dealloc, /*tp_dealloc*/
+ 0, /* tp_print */
+ 0, /* tp_getattrn */
+ 0, /* tp_setattr */
+ 0, /* tp_compare */
+ 0, /* tp_repr */
+ 0, /* tp_as_number */
+ 0, /* tp_as_sequence */
+ 0, /* tp_as_mapping */
+ 0, /* tp_hash */
+ 0, /* tp_call */
+ 0, /* tp_str */
+ 0, /* tp_getattro */
+ 0, /* tp_setattro */
+ 0, /* tp_as_buffer */
+ Py_TPFLAGS_DEFAULT, /* tp_flags */
+ pattern_doc, /* tp_doc */
+ 0, /* tp_traverse */
+ 0, /* tp_clear */
+ 0, /* tp_richcompare */
+ offsetof(PatternObject, weakreflist), /* tp_weaklistoffset */
+ 0, /* tp_iter */
+ 0, /* tp_iternext */
+ pattern_methods, /* tp_methods */
+ pattern_members, /* tp_members */
+};
+
+static int _validate(PatternObject *self); /* Forward */
+
+static PyObject *
+_compile(PyObject* self_, PyObject* args)
+{
+ /* "compile" pattern descriptor to pattern object */
+
+ PatternObject* self;
+ Py_ssize_t i, n;
+
+ PyObject* pattern;
+ int flags = 0;
+ PyObject* code;
+ Py_ssize_t groups = 0;
+ PyObject* groupindex = NULL;
+ PyObject* indexgroup = NULL;
+ if (!PyArg_ParseTuple(args, "OiO!|nOO", &pattern, &flags,
+ &PyList_Type, &code, &groups,
+ &groupindex, &indexgroup))
+ return NULL;
+
+ n = PyList_GET_SIZE(code);
+ /* coverity[ampersand_in_size] */
+ self = PyObject_NEW_VAR(PatternObject, &Pattern_Type, n);
+ if (!self)
+ return NULL;
+ self->weakreflist = NULL;
+ self->pattern = NULL;
+ self->groupindex = NULL;
+ self->indexgroup = NULL;
+
+ self->codesize = n;
+
+ for (i = 0; i < n; i++) {
+ PyObject *o = PyList_GET_ITEM(code, i);
+ unsigned long value = PyInt_Check(o) ? (unsigned long)PyInt_AsLong(o)
+ : PyLong_AsUnsignedLong(o);
+ self->code[i] = (SRE_CODE) value;
+ if ((unsigned long) self->code[i] != value) {
+ PyErr_SetString(PyExc_OverflowError,
+ "regular expression code size limit exceeded");
+ break;
+ }
+ }
+
+ if (PyErr_Occurred()) {
+ Py_DECREF(self);
+ return NULL;
+ }
+
+ Py_INCREF(pattern);
+ self->pattern = pattern;
+
+ self->flags = flags;
+
+ self->groups = groups;
+
+ Py_XINCREF(groupindex);
+ self->groupindex = groupindex;
+
+ Py_XINCREF(indexgroup);
+ self->indexgroup = indexgroup;
+
+ self->weakreflist = NULL;
+
+ if (!_validate(self)) {
+ Py_DECREF(self);
+ return NULL;
+ }
+
+ return (PyObject*) self;
+}
+
+/* -------------------------------------------------------------------- */
+/* Code validation */
+
+/* To learn more about this code, have a look at the _compile() function in
+ Lib/sre_compile.py. The validation functions below checks the code array
+ for conformance with the code patterns generated there.
+
+ The nice thing about the generated code is that it is position-independent:
+ all jumps are relative jumps forward. Also, jumps don't cross each other:
+ the target of a later jump is always earlier than the target of an earlier
+ jump. IOW, this is okay:
+
+ J---------J-------T--------T
+ \ \_____/ /
+ \______________________/
+
+ but this is not:
+
+ J---------J-------T--------T
+ \_________\_____/ /
+ \____________/
+
+ It also helps that SRE_CODE is always an unsigned type, either 2 bytes or 4
+ bytes wide (the latter if Python is compiled for "wide" unicode support).
+*/
+
+/* Defining this one enables tracing of the validator */
+#undef VVERBOSE
+
+/* Trace macro for the validator */
+#if defined(VVERBOSE)
+#define VTRACE(v) printf v
+#else
+#define VTRACE(v)
+#endif
+
+/* Report failure */
+#define FAIL do { VTRACE(("FAIL: %d\n", __LINE__)); return 0; } while (0)
+
+/* Extract opcode, argument, or skip count from code array */
+#define GET_OP \
+ do { \
+ VTRACE(("%p: ", code)); \
+ if (code >= end) FAIL; \
+ op = *code++; \
+ VTRACE(("%lu (op)\n", (unsigned long)op)); \
+ } while (0)
+#define GET_ARG \
+ do { \
+ VTRACE(("%p= ", code)); \
+ if (code >= end) FAIL; \
+ arg = *code++; \
+ VTRACE(("%lu (arg)\n", (unsigned long)arg)); \
+ } while (0)
+#define GET_SKIP_ADJ(adj) \
+ do { \
+ VTRACE(("%p= ", code)); \
+ if (code >= end) FAIL; \
+ skip = *code; \
+ VTRACE(("%lu (skip to %p)\n", \
+ (unsigned long)skip, code+skip)); \
+ if (code+skip-adj < code || code+skip-adj > end)\
+ FAIL; \
+ code++; \
+ } while (0)
+#define GET_SKIP GET_SKIP_ADJ(0)
+
+static int
+_validate_charset(SRE_CODE *code, SRE_CODE *end)
+{
+ /* Some variables are manipulated by the macros above */
+ SRE_CODE op;
+ SRE_CODE arg;
+ SRE_CODE offset;
+ int i;
+
+ while (code < end) {
+ GET_OP;
+ switch (op) {
+
+ case SRE_OP_NEGATE:
+ break;
+
+ case SRE_OP_LITERAL:
+ GET_ARG;
+ break;
+
+ case SRE_OP_RANGE:
+ GET_ARG;
+ GET_ARG;
+ break;
+
+ case SRE_OP_CHARSET:
+ offset = 32/sizeof(SRE_CODE); /* 32-byte bitmap */
+ if (code+offset < code || code+offset > end)
+ FAIL;
+ code += offset;
+ break;
+
+ case SRE_OP_BIGCHARSET:
+ GET_ARG; /* Number of blocks */
+ offset = 256/sizeof(SRE_CODE); /* 256-byte table */
+ if (code+offset < code || code+offset > end)
+ FAIL;
+ /* Make sure that each byte points to a valid block */
+ for (i = 0; i < 256; i++) {
+ if (((unsigned char *)code)[i] >= arg)
+ FAIL;
+ }
+ code += offset;
+ offset = arg * 32/sizeof(SRE_CODE); /* 32-byte bitmap times arg */
+ if (code+offset < code || code+offset > end)
+ FAIL;
+ code += offset;
+ break;
+
+ case SRE_OP_CATEGORY:
+ GET_ARG;
+ switch (arg) {
+ case SRE_CATEGORY_DIGIT:
+ case SRE_CATEGORY_NOT_DIGIT:
+ case SRE_CATEGORY_SPACE:
+ case SRE_CATEGORY_NOT_SPACE:
+ case SRE_CATEGORY_WORD:
+ case SRE_CATEGORY_NOT_WORD:
+ case SRE_CATEGORY_LINEBREAK:
+ case SRE_CATEGORY_NOT_LINEBREAK:
+ case SRE_CATEGORY_LOC_WORD:
+ case SRE_CATEGORY_LOC_NOT_WORD:
+ case SRE_CATEGORY_UNI_DIGIT:
+ case SRE_CATEGORY_UNI_NOT_DIGIT:
+ case SRE_CATEGORY_UNI_SPACE:
+ case SRE_CATEGORY_UNI_NOT_SPACE:
+ case SRE_CATEGORY_UNI_WORD:
+ case SRE_CATEGORY_UNI_NOT_WORD:
+ case SRE_CATEGORY_UNI_LINEBREAK:
+ case SRE_CATEGORY_UNI_NOT_LINEBREAK:
+ break;
+ default:
+ FAIL;
+ }
+ break;
+
+ default:
+ FAIL;
+
+ }
+ }
+
+ return 1;
+}
+
+static int
+_validate_inner(SRE_CODE *code, SRE_CODE *end, Py_ssize_t groups)
+{
+ /* Some variables are manipulated by the macros above */
+ SRE_CODE op;
+ SRE_CODE arg;
+ SRE_CODE skip;
+
+ VTRACE(("code=%p, end=%p\n", code, end));
+
+ if (code > end)
+ FAIL;
+
+ while (code < end) {
+ GET_OP;
+ switch (op) {
+
+ case SRE_OP_MARK:
+ /* We don't check whether marks are properly nested; the
+ sre_match() code is robust even if they don't, and the worst
+ you can get is nonsensical match results. */
+ GET_ARG;
+ if (arg > 2*groups+1) {
+ VTRACE(("arg=%d, groups=%d\n", (int)arg, (int)groups));
+ FAIL;
+ }
+ break;
+
+ case SRE_OP_LITERAL:
+ case SRE_OP_NOT_LITERAL:
+ case SRE_OP_LITERAL_IGNORE:
+ case SRE_OP_NOT_LITERAL_IGNORE:
+ GET_ARG;
+ /* The arg is just a character, nothing to check */
+ break;
+
+ case SRE_OP_SUCCESS:
+ case SRE_OP_FAILURE:
+ /* Nothing to check; these normally end the matching process */
+ break;
+
+ case SRE_OP_AT:
+ GET_ARG;
+ switch (arg) {
+ case SRE_AT_BEGINNING:
+ case SRE_AT_BEGINNING_STRING:
+ case SRE_AT_BEGINNING_LINE:
+ case SRE_AT_END:
+ case SRE_AT_END_LINE:
+ case SRE_AT_END_STRING:
+ case SRE_AT_BOUNDARY:
+ case SRE_AT_NON_BOUNDARY:
+ case SRE_AT_LOC_BOUNDARY:
+ case SRE_AT_LOC_NON_BOUNDARY:
+ case SRE_AT_UNI_BOUNDARY:
+ case SRE_AT_UNI_NON_BOUNDARY:
+ break;
+ default:
+ FAIL;
+ }
+ break;
+
+ case SRE_OP_ANY:
+ case SRE_OP_ANY_ALL:
+ /* These have no operands */
+ break;
+
+ case SRE_OP_IN:
+ case SRE_OP_IN_IGNORE:
+ GET_SKIP;
+ /* Stop 1 before the end; we check the FAILURE below */
+ if (!_validate_charset(code, code+skip-2))
+ FAIL;
+ if (code[skip-2] != SRE_OP_FAILURE)
+ FAIL;
+ code += skip-1;
+ break;
+
+ case SRE_OP_INFO:
+ {
+ /* A minimal info field is
+ <INFO> <1=skip> <2=flags> <3=min> <4=max>;
+ If SRE_INFO_PREFIX or SRE_INFO_CHARSET is in the flags,
+ more follows. */
+ SRE_CODE flags, i;
+ SRE_CODE *newcode;
+ GET_SKIP;
+ newcode = code+skip-1;
+ GET_ARG; flags = arg;
+ GET_ARG; /* min */
+ GET_ARG; /* max */
+ /* Check that only valid flags are present */
+ if ((flags & ~(SRE_INFO_PREFIX |
+ SRE_INFO_LITERAL |
+ SRE_INFO_CHARSET)) != 0)
+ FAIL;
+ /* PREFIX and CHARSET are mutually exclusive */
+ if ((flags & SRE_INFO_PREFIX) &&
+ (flags & SRE_INFO_CHARSET))
+ FAIL;
+ /* LITERAL implies PREFIX */
+ if ((flags & SRE_INFO_LITERAL) &&
+ !(flags & SRE_INFO_PREFIX))
+ FAIL;
+ /* Validate the prefix */
+ if (flags & SRE_INFO_PREFIX) {
+ SRE_CODE prefix_len;
+ GET_ARG; prefix_len = arg;
+ GET_ARG; /* prefix skip */
+ /* Here comes the prefix string */
+ if (code+prefix_len < code || code+prefix_len > newcode)
+ FAIL;
+ code += prefix_len;
+ /* And here comes the overlap table */
+ if (code+prefix_len < code || code+prefix_len > newcode)
+ FAIL;
+ /* Each overlap value should be < prefix_len */
+ for (i = 0; i < prefix_len; i++) {
+ if (code[i] >= prefix_len)
+ FAIL;
+ }
+ code += prefix_len;
+ }
+ /* Validate the charset */
+ if (flags & SRE_INFO_CHARSET) {
+ if (!_validate_charset(code, newcode-1))
+ FAIL;
+ if (newcode[-1] != SRE_OP_FAILURE)
+ FAIL;
+ code = newcode;
+ }
+ else if (code != newcode) {
+ VTRACE(("code=%p, newcode=%p\n", code, newcode));
+ FAIL;
+ }
+ }
+ break;
+
+ case SRE_OP_BRANCH:
+ {
+ SRE_CODE *target = NULL;
+ for (;;) {
+ GET_SKIP;
+ if (skip == 0)
+ break;
+ /* Stop 2 before the end; we check the JUMP below */
+ if (!_validate_inner(code, code+skip-3, groups))
+ FAIL;
+ code += skip-3;
+ /* Check that it ends with a JUMP, and that each JUMP
+ has the same target */
+ GET_OP;
+ if (op != SRE_OP_JUMP)
+ FAIL;
+ GET_SKIP;
+ if (target == NULL)
+ target = code+skip-1;
+ else if (code+skip-1 != target)
+ FAIL;
+ }
+ }
+ break;
+
+ case SRE_OP_REPEAT_ONE:
+ case SRE_OP_MIN_REPEAT_ONE:
+ {
+ SRE_CODE min, max;
+ GET_SKIP;
+ GET_ARG; min = arg;
+ GET_ARG; max = arg;
+ if (min > max)
+ FAIL;
+#ifdef Py_UNICODE_WIDE
+ if (max > 65535)
+ FAIL;
+#endif
+ if (!_validate_inner(code, code+skip-4, groups))
+ FAIL;
+ code += skip-4;
+ GET_OP;
+ if (op != SRE_OP_SUCCESS)
+ FAIL;
+ }
+ break;
+
+ case SRE_OP_REPEAT:
+ {
+ SRE_CODE min, max;
+ GET_SKIP;
+ GET_ARG; min = arg;
+ GET_ARG; max = arg;
+ if (min > max)
+ FAIL;
+#ifdef Py_UNICODE_WIDE
+ if (max > 65535)
+ FAIL;
+#endif
+ if (!_validate_inner(code, code+skip-3, groups))
+ FAIL;
+ code += skip-3;
+ GET_OP;
+ if (op != SRE_OP_MAX_UNTIL && op != SRE_OP_MIN_UNTIL)
+ FAIL;
+ }
+ break;
+
+ case SRE_OP_GROUPREF:
+ case SRE_OP_GROUPREF_IGNORE:
+ GET_ARG;
+ if (arg >= groups)
+ FAIL;
+ break;
+
+ case SRE_OP_GROUPREF_EXISTS:
+ /* The regex syntax for this is: '(?(group)then|else)', where
+ 'group' is either an integer group number or a group name,
+ 'then' and 'else' are sub-regexes, and 'else' is optional. */
+ GET_ARG;
+ if (arg >= groups)
+ FAIL;
+ GET_SKIP_ADJ(1);
+ code--; /* The skip is relative to the first arg! */
+ /* There are two possibilities here: if there is both a 'then'
+ part and an 'else' part, the generated code looks like:
+
+ GROUPREF_EXISTS
+ <group>
+ <skipyes>
+ ...then part...
+ JUMP
+ <skipno>
+ (<skipyes> jumps here)
+ ...else part...
+ (<skipno> jumps here)
+
+ If there is only a 'then' part, it looks like:
+
+ GROUPREF_EXISTS
+ <group>
+ <skip>
+ ...then part...
+ (<skip> jumps here)
+
+ There is no direct way to decide which it is, and we don't want
+ to allow arbitrary jumps anywhere in the code; so we just look
+ for a JUMP opcode preceding our skip target.
+ */
+ if (skip >= 3 && code+skip-3 >= code &&
+ code[skip-3] == SRE_OP_JUMP)
+ {
+ VTRACE(("both then and else parts present\n"));
+ if (!_validate_inner(code+1, code+skip-3, groups))
+ FAIL;
+ code += skip-2; /* Position after JUMP, at <skipno> */
+ GET_SKIP;
+ if (!_validate_inner(code, code+skip-1, groups))
+ FAIL;
+ code += skip-1;
+ }
+ else {
+ VTRACE(("only a then part present\n"));
+ if (!_validate_inner(code+1, code+skip-1, groups))
+ FAIL;
+ code += skip-1;
+ }
+ break;
+
+ case SRE_OP_ASSERT:
+ case SRE_OP_ASSERT_NOT:
+ GET_SKIP;
+ GET_ARG; /* 0 for lookahead, width for lookbehind */
+ code--; /* Back up over arg to simplify math below */
+ if (arg & 0x80000000)
+ FAIL; /* Width too large */
+ /* Stop 1 before the end; we check the SUCCESS below */
+ if (!_validate_inner(code+1, code+skip-2, groups))
+ FAIL;
+ code += skip-2;
+ GET_OP;
+ if (op != SRE_OP_SUCCESS)
+ FAIL;
+ break;
+
+ default:
+ FAIL;
+
+ }
+ }
+
+ VTRACE(("okay\n"));
+ return 1;
+}
+
+static int
+_validate_outer(SRE_CODE *code, SRE_CODE *end, Py_ssize_t groups)
+{
+ if (groups < 0 || groups > 100 || code >= end || end[-1] != SRE_OP_SUCCESS)
+ FAIL;
+ if (groups == 0) /* fix for simplejson */
+ groups = 100; /* 100 groups should always be safe */
+ return _validate_inner(code, end-1, groups);
+}
+
+static int
+_validate(PatternObject *self)
+{
+ if (!_validate_outer(self->code, self->code+self->codesize, self->groups))
+ {
+ PyErr_SetString(PyExc_RuntimeError, "invalid SRE code");
+ return 0;
+ }
+ else
+ VTRACE(("Success!\n"));
+ return 1;
+}
+
+/* -------------------------------------------------------------------- */
+/* match methods */
+
+static void
+match_dealloc(MatchObject* self)
+{
+ Py_XDECREF(self->regs);
+ Py_XDECREF(self->string);
+ Py_DECREF(self->pattern);
+ PyObject_DEL(self);
+}
+
+static PyObject*
+match_getslice_by_index(MatchObject* self, Py_ssize_t index, PyObject* def)
+{
+ if (index < 0 || index >= self->groups) {
+ /* raise IndexError if we were given a bad group number */
+ PyErr_SetString(
+ PyExc_IndexError,
+ "no such group"
+ );
+ return NULL;
+ }
+
+ index *= 2;
+
+ if (self->string == Py_None || self->mark[index] < 0) {
+ /* return default value if the string or group is undefined */
+ Py_INCREF(def);
+ return def;
+ }
+
+ return PySequence_GetSlice(
+ self->string, self->mark[index], self->mark[index+1]
+ );
+}
+
+static Py_ssize_t
+match_getindex(MatchObject* self, PyObject* index)
+{
+ Py_ssize_t i;
+
+ if (PyInt_Check(index))
+ return PyInt_AsSsize_t(index);
+
+ i = -1;
+
+ if (self->pattern->groupindex) {
+ index = PyObject_GetItem(self->pattern->groupindex, index);
+ if (index) {
+ if (PyInt_Check(index) || PyLong_Check(index))
+ i = PyInt_AsSsize_t(index);
+ Py_DECREF(index);
+ } else
+ PyErr_Clear();
+ }
+
+ return i;
+}
+
+static PyObject*
+match_getslice(MatchObject* self, PyObject* index, PyObject* def)
+{
+ return match_getslice_by_index(self, match_getindex(self, index), def);
+}
+
+static PyObject*
+match_expand(MatchObject* self, PyObject* ptemplate)
+{
+ /* delegate to Python code */
+ return call(
+ SRE_PY_MODULE, "_expand",
+ PyTuple_Pack(3, self->pattern, self, ptemplate)
+ );
+}
+
+static PyObject*
+match_group(MatchObject* self, PyObject* args)
+{
+ PyObject* result;
+ Py_ssize_t i, size;
+
+ size = PyTuple_GET_SIZE(args);
+
+ switch (size) {
+ case 0:
+ result = match_getslice(self, Py_False, Py_None);
+ break;
+ case 1:
+ result = match_getslice(self, PyTuple_GET_ITEM(args, 0), Py_None);
+ break;
+ default:
+ /* fetch multiple items */
+ result = PyTuple_New(size);
+ if (!result)
+ return NULL;
+ for (i = 0; i < size; i++) {
+ PyObject* item = match_getslice(
+ self, PyTuple_GET_ITEM(args, i), Py_None
+ );
+ if (!item) {
+ Py_DECREF(result);
+ return NULL;
+ }
+ PyTuple_SET_ITEM(result, i, item);
+ }
+ break;
+ }
+ return result;
+}
+
+static PyObject*
+match_groups(MatchObject* self, PyObject* args, PyObject* kw)
+{
+ PyObject* result;
+ Py_ssize_t index;
+
+ PyObject* def = Py_None;
+ static char* kwlist[] = { "default", NULL };
+ if (!PyArg_ParseTupleAndKeywords(args, kw, "|O:groups", kwlist, &def))
+ return NULL;
+
+ result = PyTuple_New(self->groups-1);
+ if (!result)
+ return NULL;
+
+ for (index = 1; index < self->groups; index++) {
+ PyObject* item;
+ item = match_getslice_by_index(self, index, def);
+ if (!item) {
+ Py_DECREF(result);
+ return NULL;
+ }
+ PyTuple_SET_ITEM(result, index-1, item);
+ }
+
+ return result;
+}
+
+static PyObject*
+match_groupdict(MatchObject* self, PyObject* args, PyObject* kw)
+{
+ PyObject* result;
+ PyObject* keys;
+ Py_ssize_t index;
+
+ PyObject* def = Py_None;
+ static char* kwlist[] = { "default", NULL };
+ if (!PyArg_ParseTupleAndKeywords(args, kw, "|O:groupdict", kwlist, &def))
+ return NULL;
+
+ result = PyDict_New();
+ if (!result || !self->pattern->groupindex)
+ return result;
+
+ keys = PyMapping_Keys(self->pattern->groupindex);
+ if (!keys)
+ goto failed;
+
+ for (index = 0; index < PyList_GET_SIZE(keys); index++) {
+ int status;
+ PyObject* key;
+ PyObject* value;
+ key = PyList_GET_ITEM(keys, index);
+ if (!key)
+ goto failed;
+ value = match_getslice(self, key, def);
+ if (!value) {
+ Py_DECREF(key);
+ goto failed;
+ }
+ status = PyDict_SetItem(result, key, value);
+ Py_DECREF(value);
+ if (status < 0)
+ goto failed;
+ }
+
+ Py_DECREF(keys);
+
+ return result;
+
+failed:
+ Py_XDECREF(keys);
+ Py_DECREF(result);
+ return NULL;
+}
+
+static PyObject*
+match_start(MatchObject* self, PyObject* args)
+{
+ Py_ssize_t index;
+
+ PyObject* index_ = Py_False; /* zero */
+ if (!PyArg_UnpackTuple(args, "start", 0, 1, &index_))
+ return NULL;
+
+ index = match_getindex(self, index_);
+
+ if (index < 0 || index >= self->groups) {
+ PyErr_SetString(
+ PyExc_IndexError,
+ "no such group"
+ );
+ return NULL;
+ }
+
+ /* mark is -1 if group is undefined */
+ return Py_BuildValue("i", self->mark[index*2]);
+}
+
+static PyObject*
+match_end(MatchObject* self, PyObject* args)
+{
+ Py_ssize_t index;
+
+ PyObject* index_ = Py_False; /* zero */
+ if (!PyArg_UnpackTuple(args, "end", 0, 1, &index_))
+ return NULL;
+
+ index = match_getindex(self, index_);
+
+ if (index < 0 || index >= self->groups) {
+ PyErr_SetString(
+ PyExc_IndexError,
+ "no such group"
+ );
+ return NULL;
+ }
+
+ /* mark is -1 if group is undefined */
+ return Py_BuildValue("i", self->mark[index*2+1]);
+}
+
+LOCAL(PyObject*)
+_pair(Py_ssize_t i1, Py_ssize_t i2)
+{
+ PyObject* pair;
+ PyObject* item;
+
+ pair = PyTuple_New(2);
+ if (!pair)
+ return NULL;
+
+ item = PyInt_FromSsize_t(i1);
+ if (!item)
+ goto error;
+ PyTuple_SET_ITEM(pair, 0, item);
+
+ item = PyInt_FromSsize_t(i2);
+ if (!item)
+ goto error;
+ PyTuple_SET_ITEM(pair, 1, item);
+
+ return pair;
+
+ error:
+ Py_DECREF(pair);
+ return NULL;
+}
+
+static PyObject*
+match_span(MatchObject* self, PyObject* args)
+{
+ Py_ssize_t index;
+
+ PyObject* index_ = Py_False; /* zero */
+ if (!PyArg_UnpackTuple(args, "span", 0, 1, &index_))
+ return NULL;
+
+ index = match_getindex(self, index_);
+
+ if (index < 0 || index >= self->groups) {
+ PyErr_SetString(
+ PyExc_IndexError,
+ "no such group"
+ );
+ return NULL;
+ }
+
+ /* marks are -1 if group is undefined */
+ return _pair(self->mark[index*2], self->mark[index*2+1]);
+}
+
+static PyObject*
+match_regs(MatchObject* self)
+{
+ PyObject* regs;
+ PyObject* item;
+ Py_ssize_t index;
+
+ regs = PyTuple_New(self->groups);
+ if (!regs)
+ return NULL;
+
+ for (index = 0; index < self->groups; index++) {
+ item = _pair(self->mark[index*2], self->mark[index*2+1]);
+ if (!item) {
+ Py_DECREF(regs);
+ return NULL;
+ }
+ PyTuple_SET_ITEM(regs, index, item);
+ }
+
+ Py_INCREF(regs);
+ self->regs = regs;
+
+ return regs;
+}
+
+static PyObject*
+match_copy(MatchObject* self, PyObject *unused)
+{
+#ifdef USE_BUILTIN_COPY
+ MatchObject* copy;
+ Py_ssize_t slots, offset;
+
+ slots = 2 * (self->pattern->groups+1);
+
+ copy = PyObject_NEW_VAR(MatchObject, &Match_Type, slots);
+ if (!copy)
+ return NULL;
+
+ /* this value a constant, but any compiler should be able to
+ figure that out all by itself */
+ offset = offsetof(MatchObject, string);
+
+ Py_XINCREF(self->pattern);
+ Py_XINCREF(self->string);
+ Py_XINCREF(self->regs);
+
+ memcpy((char*) copy + offset, (char*) self + offset,
+ sizeof(MatchObject) + slots * sizeof(Py_ssize_t) - offset);
+
+ return (PyObject*) copy;
+#else
+ PyErr_SetString(PyExc_TypeError, "cannot copy this match object");
+ return NULL;
+#endif
+}
+
+static PyObject*
+match_deepcopy(MatchObject* self, PyObject* memo)
+{
+#ifdef USE_BUILTIN_COPY
+ MatchObject* copy;
+
+ copy = (MatchObject*) match_copy(self);
+ if (!copy)
+ return NULL;
+
+ if (!deepcopy((PyObject**) ©->pattern, memo) ||
+ !deepcopy(©->string, memo) ||
+ !deepcopy(©->regs, memo)) {
+ Py_DECREF(copy);
+ return NULL;
+ }
+
+#else
+ PyErr_SetString(PyExc_TypeError, "cannot deepcopy this match object");
+ return NULL;
+#endif
+}
+
+static struct PyMethodDef match_methods[] = {
+ {"group", (PyCFunction) match_group, METH_VARARGS},
+ {"start", (PyCFunction) match_start, METH_VARARGS},
+ {"end", (PyCFunction) match_end, METH_VARARGS},
+ {"span", (PyCFunction) match_span, METH_VARARGS},
+ {"groups", (PyCFunction) match_groups, METH_VARARGS|METH_KEYWORDS},
+ {"groupdict", (PyCFunction) match_groupdict, METH_VARARGS|METH_KEYWORDS},
+ {"expand", (PyCFunction) match_expand, METH_O},
+ {"__copy__", (PyCFunction) match_copy, METH_NOARGS},
+ {"__deepcopy__", (PyCFunction) match_deepcopy, METH_O},
+ {NULL, NULL}
+};
+
+static PyObject *
+match_lastindex_get(MatchObject *self)
+{
+ if (self->lastindex >= 0)
+ return Py_BuildValue("i", self->lastindex);
+ Py_INCREF(Py_None);
+ return Py_None;
+}
+
+static PyObject *
+match_lastgroup_get(MatchObject *self)
+{
+ if (self->pattern->indexgroup && self->lastindex >= 0) {
+ PyObject* result = PySequence_GetItem(
+ self->pattern->indexgroup, self->lastindex
+ );
+ if (result)
+ return result;
+ PyErr_Clear();
+ }
+ Py_INCREF(Py_None);
+ return Py_None;
+}
+
+static PyObject *
+match_regs_get(MatchObject *self)
+{
+ if (self->regs) {
+ Py_INCREF(self->regs);
+ return self->regs;
+ } else
+ return match_regs(self);
+}
+
+static PyGetSetDef match_getset[] = {
+ {"lastindex", (getter)match_lastindex_get, (setter)NULL},
+ {"lastgroup", (getter)match_lastgroup_get, (setter)NULL},
+ {"regs", (getter)match_regs_get, (setter)NULL},
+ {NULL}
+};
+
+#define MATCH_OFF(x) offsetof(MatchObject, x)
+static PyMemberDef match_members[] = {
+ {"string", T_OBJECT, MATCH_OFF(string), READONLY},
+ {"re", T_OBJECT, MATCH_OFF(pattern), READONLY},
+ {"pos", T_PYSSIZET, MATCH_OFF(pos), READONLY},
+ {"endpos", T_PYSSIZET, MATCH_OFF(endpos), READONLY},
+ {NULL}
+};
+
+
+/* FIXME: implement setattr("string", None) as a special case (to
+ detach the associated string, if any */
+
+static PyTypeObject Match_Type = {
+ PyVarObject_HEAD_INIT(NULL, 0)
+ "_" SRE_MODULE ".SRE_Match",
+ sizeof(MatchObject), sizeof(Py_ssize_t),
+ (destructor)match_dealloc, /* tp_dealloc */
+ 0, /* tp_print */
+ 0, /* tp_getattr */
+ 0, /* tp_setattr */
+ 0, /* tp_compare */
+ 0, /* tp_repr */
+ 0, /* tp_as_number */
+ 0, /* tp_as_sequence */
+ 0, /* tp_as_mapping */
+ 0, /* tp_hash */
+ 0, /* tp_call */
+ 0, /* tp_str */
+ 0, /* tp_getattro */
+ 0, /* tp_setattro */
+ 0, /* tp_as_buffer */
+ Py_TPFLAGS_DEFAULT,
+ 0, /* tp_doc */
+ 0, /* tp_traverse */
+ 0, /* tp_clear */
+ 0, /* tp_richcompare */
+ 0, /* tp_weaklistoffset */
+ 0, /* tp_iter */
+ 0, /* tp_iternext */
+ match_methods, /* tp_methods */
+ match_members, /* tp_members */
+ match_getset, /* tp_getset */
+};
+
+static PyObject*
+pattern_new_match(PatternObject* pattern, SRE_STATE* state, int status)
+{
+ /* create match object (from state object) */
+
+ MatchObject* match;
+ Py_ssize_t i, j;
+ char* base;
+ int n;
+
+ if (status > 0) {
+
+ /* create match object (with room for extra group marks) */
+ /* coverity[ampersand_in_size] */
+ match = PyObject_NEW_VAR(MatchObject, &Match_Type,
+ 2*(pattern->groups+1));
+ if (!match)
+ return NULL;
+
+ Py_INCREF(pattern);
+ match->pattern = pattern;
+
+ Py_INCREF(state->string);
+ match->string = state->string;
+
+ match->regs = NULL;
+ match->groups = pattern->groups+1;
+
+ /* fill in group slices */
+
+ base = (char*) state->beginning;
+ n = state->charsize;
+
+ match->mark[0] = ((char*) state->start - base) / n;
+ match->mark[1] = ((char*) state->ptr - base) / n;
+
+ for (i = j = 0; i < pattern->groups; i++, j+=2)
+ if (j+1 <= state->lastmark && state->mark[j] && state->mark[j+1]) {
+ match->mark[j+2] = ((char*) state->mark[j] - base) / n;
+ match->mark[j+3] = ((char*) state->mark[j+1] - base) / n;
+ } else
+ match->mark[j+2] = match->mark[j+3] = -1; /* undefined */
+
+ match->pos = state->pos;
+ match->endpos = state->endpos;
+
+ match->lastindex = state->lastindex;
+
+ return (PyObject*) match;
+
+ } else if (status == 0) {
+
+ /* no match */
+ Py_INCREF(Py_None);
+ return Py_None;
+
+ }
+
+ /* internal error */
+ pattern_error(status);
+ return NULL;
+}
+
+
+/* -------------------------------------------------------------------- */
+/* scanner methods (experimental) */
+
+static void
+scanner_dealloc(ScannerObject* self)
+{
+ state_fini(&self->state);
+ Py_XDECREF(self->pattern);
+ PyObject_DEL(self);
+}
+
+static PyObject*
+scanner_match(ScannerObject* self, PyObject *unused)
+{
+ SRE_STATE* state = &self->state;
+ PyObject* match;
+ int status;
+
+ state_reset(state);
+
+ state->ptr = state->start;
+
+ if (state->charsize == 1) {
+ status = sre_match(state, PatternObject_GetCode(self->pattern));
+ } else {
+#if defined(HAVE_UNICODE)
+ status = sre_umatch(state, PatternObject_GetCode(self->pattern));
+#endif
+ }
+ if (PyErr_Occurred())
+ return NULL;
+
+ match = pattern_new_match((PatternObject*) self->pattern,
+ state, status);
+
+ if (status == 0 || state->ptr == state->start)
+ state->start = (void*) ((char*) state->ptr + state->charsize);
+ else
+ state->start = state->ptr;
+
+ return match;
+}
+
+
+static PyObject*
+scanner_search(ScannerObject* self, PyObject *unused)
+{
+ SRE_STATE* state = &self->state;
+ PyObject* match;
+ int status;
+
+ state_reset(state);
+
+ state->ptr = state->start;
+
+ if (state->charsize == 1) {
+ status = sre_search(state, PatternObject_GetCode(self->pattern));
+ } else {
+#if defined(HAVE_UNICODE)
+ status = sre_usearch(state, PatternObject_GetCode(self->pattern));
+#endif
+ }
+ if (PyErr_Occurred())
+ return NULL;
+
+ match = pattern_new_match((PatternObject*) self->pattern,
+ state, status);
+
+ if (status == 0 || state->ptr == state->start)
+ state->start = (void*) ((char*) state->ptr + state->charsize);
+ else
+ state->start = state->ptr;
+
+ return match;
+}
+
+static PyMethodDef scanner_methods[] = {
+ {"match", (PyCFunction) scanner_match, METH_NOARGS},
+ {"search", (PyCFunction) scanner_search, METH_NOARGS},
+ {NULL, NULL}
+};
+
+#define SCAN_OFF(x) offsetof(ScannerObject, x)
+static PyMemberDef scanner_members[] = {
+ {"pattern", T_OBJECT, SCAN_OFF(pattern), READONLY},
+ {NULL} /* Sentinel */
+};
+
+statichere PyTypeObject Scanner_Type = {
+ PyObject_HEAD_INIT(NULL)
+ 0, "_" SRE_MODULE ".SRE_Scanner",
+ sizeof(ScannerObject), 0,
+ (destructor)scanner_dealloc, /*tp_dealloc*/
+ 0, /* tp_print */
+ 0, /* tp_getattr */
+ 0, /* tp_setattr */
+ 0, /* tp_reserved */
+ 0, /* tp_repr */
+ 0, /* tp_as_number */
+ 0, /* tp_as_sequence */
+ 0, /* tp_as_mapping */
+ 0, /* tp_hash */
+ 0, /* tp_call */
+ 0, /* tp_str */
+ 0, /* tp_getattro */
+ 0, /* tp_setattro */
+ 0, /* tp_as_buffer */
+ Py_TPFLAGS_DEFAULT, /* tp_flags */
+ 0, /* tp_doc */
+ 0, /* tp_traverse */
+ 0, /* tp_clear */
+ 0, /* tp_richcompare */
+ 0, /* tp_weaklistoffset */
+ 0, /* tp_iter */
+ 0, /* tp_iternext */
+ scanner_methods, /* tp_methods */
+ scanner_members, /* tp_members */
+ 0, /* tp_getset */
+};
+
+static PyObject*
+pattern_scanner(PatternObject* pattern, PyObject* args)
+{
+ /* create search state object */
+
+ ScannerObject* self;
+
+ PyObject* string;
+ Py_ssize_t start = 0;
+ Py_ssize_t end = PY_SSIZE_T_MAX;
+ if (!PyArg_ParseTuple(args, "O|nn:scanner", &string, &start, &end))
+ return NULL;
+
+ /* create scanner object */
+ self = PyObject_NEW(ScannerObject, &Scanner_Type);
+ if (!self)
+ return NULL;
+ self->pattern = NULL;
+
+ string = state_init(&self->state, pattern, string, start, end);
+ if (!string) {
+ Py_DECREF(self);
+ return NULL;
+ }
+
+ Py_INCREF(pattern);
+ self->pattern = (PyObject*) pattern;
+
+ return (PyObject*) self;
+}
+
+static PyMethodDef _functions[] = {
+ {"compile", _compile, METH_VARARGS},
+ {"getcodesize", sre_codesize, METH_NOARGS},
+ {"getlower", sre_getlower, METH_VARARGS},
+ {NULL, NULL}
+};
+
+#if PY_VERSION_HEX < 0x02030000
+DL_EXPORT(void) init_sre(void)
+#else
+PyMODINIT_FUNC init_sre(void)
+#endif
+{
+ PyObject* m;
+ PyObject* d;
+ PyObject* x;
+
+ /* Patch object types */
+ if (PyType_Ready(&Pattern_Type) || PyType_Ready(&Match_Type) ||
+ PyType_Ready(&Scanner_Type))
+ return;
+
+ m = Py_InitModule("_" SRE_MODULE, _functions);
+ if (m == NULL)
+ return;
+ d = PyModule_GetDict(m);
+
+ x = PyInt_FromLong(SRE_MAGIC);
+ if (x) {
+ PyDict_SetItemString(d, "MAGIC", x);
+ Py_DECREF(x);
+ }
+
+ x = PyInt_FromLong(sizeof(SRE_CODE));
+ if (x) {
+ PyDict_SetItemString(d, "CODESIZE", x);
+ Py_DECREF(x);
+ }
+
+ x = PyString_FromString(copyright);
+ if (x) {
+ PyDict_SetItemString(d, "copyright", x);
+ Py_DECREF(x);
+ }
+}
+
+#endif /* !defined(SRE_RECURSIVE) */
+
+/* vim:ts=4:sw=4:et
+*/
diff --git a/AppPkg/Applications/Python/PyMod-2.7.2/Modules/zlib/zutil.h b/AppPkg/Applications/Python/PyMod-2.7.2/Modules/zlib/zutil.h new file mode 100644 index 0000000000..4cee6218b8 --- /dev/null +++ b/AppPkg/Applications/Python/PyMod-2.7.2/Modules/zlib/zutil.h @@ -0,0 +1,269 @@ +/* zutil.h -- internal interface and configuration of the compression library
+ * Copyright (C) 1995-2005 Jean-loup Gailly.
+ * For conditions of distribution and use, see copyright notice in zlib.h
+ */
+
+/* WARNING: this file should *not* be used by applications. It is
+ part of the implementation of the compression library and is
+ subject to change. Applications should only use zlib.h.
+ */
+
+/* @(#) $Id$ */
+
+#ifndef ZUTIL_H
+#define ZUTIL_H
+
+#define ZLIB_INTERNAL
+#include "zlib.h"
+
+#ifdef STDC
+# ifndef _WIN32_WCE
+# include <stddef.h>
+# endif
+# include <string.h>
+# include <stdlib.h>
+#endif
+#ifdef NO_ERRNO_H
+# ifdef _WIN32_WCE
+ /* The Microsoft C Run-Time Library for Windows CE doesn't have
+ * errno. We define it as a global variable to simplify porting.
+ * Its value is always 0 and should not be used. We rename it to
+ * avoid conflict with other libraries that use the same workaround.
+ */
+# define errno z_errno
+# endif
+ extern int errno;
+#else
+# ifndef _WIN32_WCE
+# include <errno.h>
+# endif
+#endif
+
+#ifndef local
+# define local static
+#endif
+/* compile with -Dlocal if your debugger can't find static symbols */
+
+typedef unsigned char uch;
+typedef uch FAR uchf;
+typedef unsigned short ush;
+typedef ush FAR ushf;
+typedef unsigned long ulg;
+
+extern const char * const z_errmsg[10]; /* indexed by 2-zlib_error */
+/* (size given to avoid silly warnings with Visual C++) */
+
+#define ERR_MSG(err) z_errmsg[Z_NEED_DICT-(err)]
+
+#define ERR_RETURN(strm,err) \
+ return (strm->msg = (char*)ERR_MSG(err), (err))
+/* To be used only when the state is known to be valid */
+
+ /* common constants */
+
+#ifndef DEF_WBITS
+# define DEF_WBITS MAX_WBITS
+#endif
+/* default windowBits for decompression. MAX_WBITS is for compression only */
+
+#if MAX_MEM_LEVEL >= 8
+# define DEF_MEM_LEVEL 8
+#else
+# define DEF_MEM_LEVEL MAX_MEM_LEVEL
+#endif
+/* default memLevel */
+
+#define STORED_BLOCK 0
+#define STATIC_TREES 1
+#define DYN_TREES 2
+/* The three kinds of block type */
+
+#define MIN_MATCH 3
+#define MAX_MATCH 258
+/* The minimum and maximum match lengths */
+
+#define PRESET_DICT 0x20 /* preset dictionary flag in zlib header */
+
+ /* target dependencies */
+
+#if defined(MSDOS) || (defined(WINDOWS) && !defined(WIN32))
+# define OS_CODE 0x00
+# if defined(__TURBOC__) || defined(__BORLANDC__)
+# if(__STDC__ == 1) && (defined(__LARGE__) || defined(__COMPACT__))
+ /* Allow compilation with ANSI keywords only enabled */
+ void _Cdecl farfree( void *block );
+ void *_Cdecl farmalloc( unsigned long nbytes );
+# else
+# include <alloc.h>
+# endif
+# else /* MSC or DJGPP */
+# include <malloc.h>
+# endif
+#endif
+
+#ifdef AMIGA
+# define OS_CODE 0x01
+#endif
+
+#if defined(VAXC) || defined(VMS)
+# define OS_CODE 0x02
+# define F_OPEN(name, mode) \
+ fopen((name), (mode), "mbc=60", "ctx=stm", "rfm=fix", "mrs=512")
+#endif
+
+#if defined(ATARI) || defined(atarist)
+# define OS_CODE 0x05
+#endif
+
+#ifdef OS2
+# define OS_CODE 0x06
+# ifdef M_I86
+ #include <malloc.h>
+# endif
+#endif
+
+#if defined(MACOS) || defined(TARGET_OS_MAC)
+# define OS_CODE 0x07
+# if defined(__MWERKS__) && __dest_os != __be_os && __dest_os != __win32_os
+# include <unix.h> /* for fdopen */
+# else
+# ifndef fdopen
+# define fdopen(fd,mode) NULL /* No fdopen() */
+# endif
+# endif
+#endif
+
+#ifdef TOPS20
+# define OS_CODE 0x0a
+#endif
+
+#ifdef WIN32
+# ifndef __CYGWIN__ /* Cygwin is Unix, not Win32 */
+# define OS_CODE 0x0b
+# endif
+#endif
+
+#ifdef __50SERIES /* Prime/PRIMOS */
+# define OS_CODE 0x0f
+#endif
+
+#if defined(_BEOS_) || defined(RISCOS)
+# define fdopen(fd,mode) NULL /* No fdopen() */
+#endif
+
+#if (defined(_MSC_VER) && (_MSC_VER > 600))
+# if defined(_WIN32_WCE) || defined(_EFI_STDLIB)
+# define fdopen(fd,mode) NULL /* No fdopen() */
+# ifndef _PTRDIFF_T_DEFINED
+ typedef int ptrdiff_t;
+# define _PTRDIFF_T_DEFINED
+# endif
+# else
+# define fdopen(fd,type) _fdopen(fd,type)
+# endif
+#endif
+
+ /* common defaults */
+
+#ifndef OS_CODE
+# define OS_CODE 0x03 /* assume Unix */
+#endif
+
+#ifndef F_OPEN
+# define F_OPEN(name, mode) fopen((name), (mode))
+#endif
+
+ /* functions */
+
+#if defined(STDC99) || (defined(__TURBOC__) && __TURBOC__ >= 0x550)
+# ifndef HAVE_VSNPRINTF
+# define HAVE_VSNPRINTF
+# endif
+#endif
+#if defined(__CYGWIN__)
+# ifndef HAVE_VSNPRINTF
+# define HAVE_VSNPRINTF
+# endif
+#endif
+#ifndef HAVE_VSNPRINTF
+# ifdef MSDOS
+ /* vsnprintf may exist on some MS-DOS compilers (DJGPP?),
+ but for now we just assume it doesn't. */
+# define NO_vsnprintf
+# endif
+# ifdef __TURBOC__
+# define NO_vsnprintf
+# endif
+# ifdef WIN32
+ /* In Win32, vsnprintf is available as the "non-ANSI" _vsnprintf. */
+# if !defined(vsnprintf) && !defined(NO_vsnprintf)
+# define vsnprintf _vsnprintf
+# endif
+# endif
+# ifdef __SASC
+# define NO_vsnprintf
+# endif
+#endif
+#ifdef VMS
+# define NO_vsnprintf
+#endif
+
+#if defined(pyr)
+# define NO_MEMCPY
+#endif
+#if defined(SMALL_MEDIUM) && !defined(_MSC_VER) && !defined(__SC__)
+ /* Use our own functions for small and medium model with MSC <= 5.0.
+ * You may have to use the same strategy for Borland C (untested).
+ * The __SC__ check is for Symantec.
+ */
+# define NO_MEMCPY
+#endif
+#if defined(STDC) && !defined(HAVE_MEMCPY) && !defined(NO_MEMCPY)
+# define HAVE_MEMCPY
+#endif
+#ifdef HAVE_MEMCPY
+# ifdef SMALL_MEDIUM /* MSDOS small or medium model */
+# define zmemcpy _fmemcpy
+# define zmemcmp _fmemcmp
+# define zmemzero(dest, len) _fmemset(dest, 0, len)
+# else
+# define zmemcpy memcpy
+# define zmemcmp memcmp
+# define zmemzero(dest, len) memset(dest, 0, len)
+# endif
+#else
+ extern void zmemcpy OF((Bytef* dest, const Bytef* source, uInt len));
+ extern int zmemcmp OF((const Bytef* s1, const Bytef* s2, uInt len));
+ extern void zmemzero OF((Bytef* dest, uInt len));
+#endif
+
+/* Diagnostic functions */
+#ifdef DEBUG
+# include <stdio.h>
+ extern int z_verbose;
+ extern void z_error OF((char *m));
+# define Assert(cond,msg) {if(!(cond)) z_error(msg);}
+# define Trace(x) {if (z_verbose>=0) fprintf x ;}
+# define Tracev(x) {if (z_verbose>0) fprintf x ;}
+# define Tracevv(x) {if (z_verbose>1) fprintf x ;}
+# define Tracec(c,x) {if (z_verbose>0 && (c)) fprintf x ;}
+# define Tracecv(c,x) {if (z_verbose>1 && (c)) fprintf x ;}
+#else
+# define Assert(cond,msg)
+# define Trace(x)
+# define Tracev(x)
+# define Tracevv(x)
+# define Tracec(c,x)
+# define Tracecv(c,x)
+#endif
+
+
+voidpf zcalloc OF((voidpf opaque, unsigned items, unsigned size));
+void zcfree OF((voidpf opaque, voidpf ptr));
+
+#define ZALLOC(strm, items, size) \
+ (*((strm)->zalloc))((strm)->opaque, (items), (size))
+#define ZFREE(strm, addr) (*((strm)->zfree))((strm)->opaque, (voidpf)(addr))
+#define TRY_FREE(s, p) {if (p) ZFREE(s, p);}
+
+#endif /* ZUTIL_H */
diff --git a/AppPkg/Applications/Python/PyMod-2.7.2/Objects/longobject.c b/AppPkg/Applications/Python/PyMod-2.7.2/Objects/longobject.c new file mode 100644 index 0000000000..1fbc675f13 --- /dev/null +++ b/AppPkg/Applications/Python/PyMod-2.7.2/Objects/longobject.c @@ -0,0 +1,4370 @@ +/* Long (arbitrary precision) integer object implementation */
+
+/* XXX The functional organization of this file is terrible */
+
+#include "Python.h"
+#include "longintrepr.h"
+#include "structseq.h"
+
+#include <float.h>
+#include <ctype.h>
+#include <stddef.h>
+
+/* For long multiplication, use the O(N**2) school algorithm unless
+ * both operands contain more than KARATSUBA_CUTOFF digits (this
+ * being an internal Python long digit, in base PyLong_BASE).
+ */
+#define KARATSUBA_CUTOFF 70
+#define KARATSUBA_SQUARE_CUTOFF (2 * KARATSUBA_CUTOFF)
+
+/* For exponentiation, use the binary left-to-right algorithm
+ * unless the exponent contains more than FIVEARY_CUTOFF digits.
+ * In that case, do 5 bits at a time. The potential drawback is that
+ * a table of 2**5 intermediate results is computed.
+ */
+#define FIVEARY_CUTOFF 8
+
+#ifndef ABS
+ #define ABS(x) ((x) < 0 ? -(x) : (x))
+#endif
+
+#ifndef MAX
+ #define MAX(x, y) ((x) < (y) ? (y) : (x))
+#endif
+
+#ifndef MIN
+ #define MIN(x, y) ((x) > (y) ? (y) : (x))
+#endif
+
+#define SIGCHECK(PyTryBlock) \
+ do { \
+ if (--_Py_Ticker < 0) { \
+ _Py_Ticker = _Py_CheckInterval; \
+ if (PyErr_CheckSignals()) PyTryBlock \
+ } \
+ } while(0)
+
+/* Normalize (remove leading zeros from) a long int object.
+ Doesn't attempt to free the storage--in most cases, due to the nature
+ of the algorithms used, this could save at most be one word anyway. */
+
+static PyLongObject *
+long_normalize(register PyLongObject *v)
+{
+ Py_ssize_t j = ABS(Py_SIZE(v));
+ Py_ssize_t i = j;
+
+ while (i > 0 && v->ob_digit[i-1] == 0)
+ --i;
+ if (i != j)
+ Py_SIZE(v) = (Py_SIZE(v) < 0) ? -(i) : i;
+ return v;
+}
+
+/* Allocate a new long int object with size digits.
+ Return NULL and set exception if we run out of memory. */
+
+#define MAX_LONG_DIGITS \
+ ((PY_SSIZE_T_MAX - offsetof(PyLongObject, ob_digit))/sizeof(digit))
+
+PyLongObject *
+_PyLong_New(Py_ssize_t size)
+{
+ if (size > (Py_ssize_t)MAX_LONG_DIGITS) {
+ PyErr_SetString(PyExc_OverflowError,
+ "too many digits in integer");
+ return NULL;
+ }
+ /* coverity[ampersand_in_size] */
+ /* XXX(nnorwitz): PyObject_NEW_VAR / _PyObject_VAR_SIZE need to detect
+ overflow */
+ return PyObject_NEW_VAR(PyLongObject, &PyLong_Type, size);
+}
+
+PyObject *
+_PyLong_Copy(PyLongObject *src)
+{
+ PyLongObject *result;
+ Py_ssize_t i;
+
+ assert(src != NULL);
+ i = src->ob_size;
+ if (i < 0)
+ i = -(i);
+ result = _PyLong_New(i);
+ if (result != NULL) {
+ result->ob_size = src->ob_size;
+ while (--i >= 0)
+ result->ob_digit[i] = src->ob_digit[i];
+ }
+ return (PyObject *)result;
+}
+
+/* Create a new long int object from a C long int */
+
+PyObject *
+PyLong_FromLong(long ival)
+{
+ PyLongObject *v;
+ unsigned long abs_ival;
+ unsigned long t; /* unsigned so >> doesn't propagate sign bit */
+ int ndigits = 0;
+ int negative = 0;
+
+ if (ival < 0) {
+ /* if LONG_MIN == -LONG_MAX-1 (true on most platforms) then
+ ANSI C says that the result of -ival is undefined when ival
+ == LONG_MIN. Hence the following workaround. */
+ abs_ival = (unsigned long)(-1-ival) + 1;
+ negative = 1;
+ }
+ else {
+ abs_ival = (unsigned long)ival;
+ }
+
+ /* Count the number of Python digits.
+ We used to pick 5 ("big enough for anything"), but that's a
+ waste of time and space given that 5*15 = 75 bits are rarely
+ needed. */
+ t = abs_ival;
+ while (t) {
+ ++ndigits;
+ t >>= PyLong_SHIFT;
+ }
+ v = _PyLong_New(ndigits);
+ if (v != NULL) {
+ digit *p = v->ob_digit;
+ v->ob_size = negative ? -ndigits : ndigits;
+ t = abs_ival;
+ while (t) {
+ *p++ = (digit)(t & PyLong_MASK);
+ t >>= PyLong_SHIFT;
+ }
+ }
+ return (PyObject *)v;
+}
+
+/* Create a new long int object from a C unsigned long int */
+
+PyObject *
+PyLong_FromUnsignedLong(unsigned long ival)
+{
+ PyLongObject *v;
+ unsigned long t;
+ int ndigits = 0;
+
+ /* Count the number of Python digits. */
+ t = (unsigned long)ival;
+ while (t) {
+ ++ndigits;
+ t >>= PyLong_SHIFT;
+ }
+ v = _PyLong_New(ndigits);
+ if (v != NULL) {
+ digit *p = v->ob_digit;
+ Py_SIZE(v) = ndigits;
+ while (ival) {
+ *p++ = (digit)(ival & PyLong_MASK);
+ ival >>= PyLong_SHIFT;
+ }
+ }
+ return (PyObject *)v;
+}
+
+/* Create a new long int object from a C double */
+
+PyObject *
+PyLong_FromDouble(double dval)
+{
+ PyLongObject *v;
+ double frac;
+ int i, ndig, expo, neg;
+ neg = 0;
+ if (Py_IS_INFINITY(dval)) {
+ PyErr_SetString(PyExc_OverflowError,
+ "cannot convert float infinity to integer");
+ return NULL;
+ }
+ if (Py_IS_NAN(dval)) {
+ PyErr_SetString(PyExc_ValueError,
+ "cannot convert float NaN to integer");
+ return NULL;
+ }
+ if (dval < 0.0) {
+ neg = 1;
+ dval = -dval;
+ }
+ frac = frexp(dval, &expo); /* dval = frac*2**expo; 0.0 <= frac < 1.0 */
+ if (expo <= 0)
+ return PyLong_FromLong(0L);
+ ndig = (expo-1) / PyLong_SHIFT + 1; /* Number of 'digits' in result */
+ v = _PyLong_New(ndig);
+ if (v == NULL)
+ return NULL;
+ frac = ldexp(frac, (expo-1) % PyLong_SHIFT + 1);
+ for (i = ndig; --i >= 0; ) {
+ digit bits = (digit)frac;
+ v->ob_digit[i] = bits;
+ frac = frac - (double)bits;
+ frac = ldexp(frac, PyLong_SHIFT);
+ }
+ if (neg)
+ Py_SIZE(v) = -(Py_SIZE(v));
+ return (PyObject *)v;
+}
+
+/* Checking for overflow in PyLong_AsLong is a PITA since C doesn't define
+ * anything about what happens when a signed integer operation overflows,
+ * and some compilers think they're doing you a favor by being "clever"
+ * then. The bit pattern for the largest postive signed long is
+ * (unsigned long)LONG_MAX, and for the smallest negative signed long
+ * it is abs(LONG_MIN), which we could write -(unsigned long)LONG_MIN.
+ * However, some other compilers warn about applying unary minus to an
+ * unsigned operand. Hence the weird "0-".
+ */
+#define PY_ABS_LONG_MIN (0-(unsigned long)LONG_MIN)
+#define PY_ABS_SSIZE_T_MIN (0-(size_t)PY_SSIZE_T_MIN)
+
+/* Get a C long int from a Python long or Python int object.
+ On overflow, returns -1 and sets *overflow to 1 or -1 depending
+ on the sign of the result. Otherwise *overflow is 0.
+
+ For other errors (e.g., type error), returns -1 and sets an error
+ condition.
+*/
+
+long
+PyLong_AsLongAndOverflow(PyObject *vv, int *overflow)
+{
+ /* This version by Tim Peters */
+ register PyLongObject *v;
+ unsigned long x, prev;
+ long res;
+ Py_ssize_t i;
+ int sign;
+ int do_decref = 0; /* if nb_int was called */
+
+ *overflow = 0;
+ if (vv == NULL) {
+ PyErr_BadInternalCall();
+ return -1;
+ }
+
+ if(PyInt_Check(vv))
+ return PyInt_AsLong(vv);
+
+ if (!PyLong_Check(vv)) {
+ PyNumberMethods *nb;
+ nb = vv->ob_type->tp_as_number;
+ if (nb == NULL || nb->nb_int == NULL) {
+ PyErr_SetString(PyExc_TypeError,
+ "an integer is required");
+ return -1;
+ }
+ vv = (*nb->nb_int) (vv);
+ if (vv == NULL)
+ return -1;
+ do_decref = 1;
+ if(PyInt_Check(vv)) {
+ res = PyInt_AsLong(vv);
+ goto exit;
+ }
+ if (!PyLong_Check(vv)) {
+ Py_DECREF(vv);
+ PyErr_SetString(PyExc_TypeError,
+ "nb_int should return int object");
+ return -1;
+ }
+ }
+
+ res = -1;
+ v = (PyLongObject *)vv;
+ i = Py_SIZE(v);
+
+ switch (i) {
+ case -1:
+ res = -(sdigit)v->ob_digit[0];
+ break;
+ case 0:
+ res = 0;
+ break;
+ case 1:
+ res = v->ob_digit[0];
+ break;
+ default:
+ sign = 1;
+ x = 0;
+ if (i < 0) {
+ sign = -1;
+ i = -(i);
+ }
+ while (--i >= 0) {
+ prev = x;
+ x = (x << PyLong_SHIFT) + v->ob_digit[i];
+ if ((x >> PyLong_SHIFT) != prev) {
+ *overflow = sign;
+ goto exit;
+ }
+ }
+ /* Haven't lost any bits, but casting to long requires extra
+ * care (see comment above).
+ */
+ if (x <= (unsigned long)LONG_MAX) {
+ res = (long)x * sign;
+ }
+ else if (sign < 0 && x == PY_ABS_LONG_MIN) {
+ res = LONG_MIN;
+ }
+ else {
+ *overflow = sign;
+ /* res is already set to -1 */
+ }
+ }
+ exit:
+ if (do_decref) {
+ Py_DECREF(vv);
+ }
+ return res;
+}
+
+/* Get a C long int from a long int object.
+ Returns -1 and sets an error condition if overflow occurs. */
+
+long
+PyLong_AsLong(PyObject *obj)
+{
+ int overflow;
+ long result = PyLong_AsLongAndOverflow(obj, &overflow);
+ if (overflow) {
+ /* XXX: could be cute and give a different
+ message for overflow == -1 */
+ PyErr_SetString(PyExc_OverflowError,
+ "Python int too large to convert to C long");
+ }
+ return result;
+}
+
+/* Get a Py_ssize_t from a long int object.
+ Returns -1 and sets an error condition if overflow occurs. */
+
+Py_ssize_t
+PyLong_AsSsize_t(PyObject *vv) {
+ register PyLongObject *v;
+ size_t x, prev;
+ Py_ssize_t i;
+ int sign;
+
+ if (vv == NULL || !PyLong_Check(vv)) {
+ PyErr_BadInternalCall();
+ return -1;
+ }
+ v = (PyLongObject *)vv;
+ i = v->ob_size;
+ sign = 1;
+ x = 0;
+ if (i < 0) {
+ sign = -1;
+ i = -(i);
+ }
+ while (--i >= 0) {
+ prev = x;
+ x = (x << PyLong_SHIFT) | v->ob_digit[i];
+ if ((x >> PyLong_SHIFT) != prev)
+ goto overflow;
+ }
+ /* Haven't lost any bits, but casting to a signed type requires
+ * extra care (see comment above).
+ */
+ if (x <= (size_t)PY_SSIZE_T_MAX) {
+ return (Py_ssize_t)x * sign;
+ }
+ else if (sign < 0 && x == PY_ABS_SSIZE_T_MIN) {
+ return PY_SSIZE_T_MIN;
+ }
+ /* else overflow */
+
+ overflow:
+ PyErr_SetString(PyExc_OverflowError,
+ "long int too large to convert to int");
+ return -1;
+}
+
+/* Get a C unsigned long int from a long int object.
+ Returns -1 and sets an error condition if overflow occurs. */
+
+unsigned long
+PyLong_AsUnsignedLong(PyObject *vv)
+{
+ register PyLongObject *v;
+ unsigned long x, prev;
+ Py_ssize_t i;
+
+ if (vv == NULL || !PyLong_Check(vv)) {
+ if (vv != NULL && PyInt_Check(vv)) {
+ long val = PyInt_AsLong(vv);
+ if (val < 0) {
+ PyErr_SetString(PyExc_OverflowError,
+ "can't convert negative value "
+ "to unsigned long");
+ return (unsigned long) -1;
+ }
+ return val;
+ }
+ PyErr_BadInternalCall();
+ return (unsigned long) -1;
+ }
+ v = (PyLongObject *)vv;
+ i = Py_SIZE(v);
+ x = 0;
+ if (i < 0) {
+ PyErr_SetString(PyExc_OverflowError,
+ "can't convert negative value to unsigned long");
+ return (unsigned long) -1;
+ }
+ while (--i >= 0) {
+ prev = x;
+ x = (x << PyLong_SHIFT) | v->ob_digit[i];
+ if ((x >> PyLong_SHIFT) != prev) {
+ PyErr_SetString(PyExc_OverflowError,
+ "long int too large to convert");
+ return (unsigned long) -1;
+ }
+ }
+ return x;
+}
+
+/* Get a C unsigned long int from a long int object, ignoring the high bits.
+ Returns -1 and sets an error condition if an error occurs. */
+
+unsigned long
+PyLong_AsUnsignedLongMask(PyObject *vv)
+{
+ register PyLongObject *v;
+ unsigned long x;
+ Py_ssize_t i;
+ int sign;
+
+ if (vv == NULL || !PyLong_Check(vv)) {
+ if (vv != NULL && PyInt_Check(vv))
+ return PyInt_AsUnsignedLongMask(vv);
+ PyErr_BadInternalCall();
+ return (unsigned long) -1;
+ }
+ v = (PyLongObject *)vv;
+ i = v->ob_size;
+ sign = 1;
+ x = 0;
+ if (i < 0) {
+ sign = -1;
+ i = -i;
+ }
+ while (--i >= 0) {
+ x = (x << PyLong_SHIFT) | v->ob_digit[i];
+ }
+ return x * sign;
+}
+
+int
+_PyLong_Sign(PyObject *vv)
+{
+ PyLongObject *v = (PyLongObject *)vv;
+
+ assert(v != NULL);
+ assert(PyLong_Check(v));
+
+ return Py_SIZE(v) == 0 ? 0 : (Py_SIZE(v) < 0 ? -1 : 1);
+}
+
+size_t
+_PyLong_NumBits(PyObject *vv)
+{
+ PyLongObject *v = (PyLongObject *)vv;
+ size_t result = 0;
+ Py_ssize_t ndigits;
+
+ assert(v != NULL);
+ assert(PyLong_Check(v));
+ ndigits = ABS(Py_SIZE(v));
+ assert(ndigits == 0 || v->ob_digit[ndigits - 1] != 0);
+ if (ndigits > 0) {
+ digit msd = v->ob_digit[ndigits - 1];
+
+ result = (ndigits - 1) * PyLong_SHIFT;
+ if (result / PyLong_SHIFT != (size_t)(ndigits - 1))
+ goto Overflow;
+ do {
+ ++result;
+ if (result == 0)
+ goto Overflow;
+ msd >>= 1;
+ } while (msd);
+ }
+ return result;
+
+ Overflow:
+ PyErr_SetString(PyExc_OverflowError, "long has too many bits "
+ "to express in a platform size_t");
+ return (size_t)-1;
+}
+
+PyObject *
+_PyLong_FromByteArray(const unsigned char* bytes, size_t n,
+ int little_endian, int is_signed)
+{
+ const unsigned char* pstartbyte; /* LSB of bytes */
+ int incr; /* direction to move pstartbyte */
+ const unsigned char* pendbyte; /* MSB of bytes */
+ size_t numsignificantbytes; /* number of bytes that matter */
+ Py_ssize_t ndigits; /* number of Python long digits */
+ PyLongObject* v; /* result */
+ Py_ssize_t idigit = 0; /* next free index in v->ob_digit */
+
+ if (n == 0)
+ return PyLong_FromLong(0L);
+
+ if (little_endian) {
+ pstartbyte = bytes;
+ pendbyte = bytes + n - 1;
+ incr = 1;
+ }
+ else {
+ pstartbyte = bytes + n - 1;
+ pendbyte = bytes;
+ incr = -1;
+ }
+
+ if (is_signed)
+ is_signed = *pendbyte >= 0x80;
+
+ /* Compute numsignificantbytes. This consists of finding the most
+ significant byte. Leading 0 bytes are insignificant if the number
+ is positive, and leading 0xff bytes if negative. */
+ {
+ size_t i;
+ const unsigned char* p = pendbyte;
+ const int pincr = -incr; /* search MSB to LSB */
+ const unsigned char insignficant = is_signed ? 0xff : 0x00;
+
+ for (i = 0; i < n; ++i, p += pincr) {
+ if (*p != insignficant)
+ break;
+ }
+ numsignificantbytes = n - i;
+ /* 2's-comp is a bit tricky here, e.g. 0xff00 == -0x0100, so
+ actually has 2 significant bytes. OTOH, 0xff0001 ==
+ -0x00ffff, so we wouldn't *need* to bump it there; but we
+ do for 0xffff = -0x0001. To be safe without bothering to
+ check every case, bump it regardless. */
+ if (is_signed && numsignificantbytes < n)
+ ++numsignificantbytes;
+ }
+
+ /* How many Python long digits do we need? We have
+ 8*numsignificantbytes bits, and each Python long digit has
+ PyLong_SHIFT bits, so it's the ceiling of the quotient. */
+ /* catch overflow before it happens */
+ if (numsignificantbytes > (PY_SSIZE_T_MAX - PyLong_SHIFT) / 8) {
+ PyErr_SetString(PyExc_OverflowError,
+ "byte array too long to convert to int");
+ return NULL;
+ }
+ ndigits = (numsignificantbytes * 8 + PyLong_SHIFT - 1) / PyLong_SHIFT;
+ v = _PyLong_New(ndigits);
+ if (v == NULL)
+ return NULL;
+
+ /* Copy the bits over. The tricky parts are computing 2's-comp on
+ the fly for signed numbers, and dealing with the mismatch between
+ 8-bit bytes and (probably) 15-bit Python digits.*/
+ {
+ size_t i;
+ twodigits carry = 1; /* for 2's-comp calculation */
+ twodigits accum = 0; /* sliding register */
+ unsigned int accumbits = 0; /* number of bits in accum */
+ const unsigned char* p = pstartbyte;
+
+ for (i = 0; i < numsignificantbytes; ++i, p += incr) {
+ twodigits thisbyte = *p;
+ /* Compute correction for 2's comp, if needed. */
+ if (is_signed) {
+ thisbyte = (0xff ^ thisbyte) + carry;
+ carry = thisbyte >> 8;
+ thisbyte &= 0xff;
+ }
+ /* Because we're going LSB to MSB, thisbyte is
+ more significant than what's already in accum,
+ so needs to be prepended to accum. */
+ accum |= (twodigits)thisbyte << accumbits;
+ accumbits += 8;
+ if (accumbits >= PyLong_SHIFT) {
+ /* There's enough to fill a Python digit. */
+ assert(idigit < ndigits);
+ v->ob_digit[idigit] = (digit)(accum & PyLong_MASK);
+ ++idigit;
+ accum >>= PyLong_SHIFT;
+ accumbits -= PyLong_SHIFT;
+ assert(accumbits < PyLong_SHIFT);
+ }
+ }
+ assert(accumbits < PyLong_SHIFT);
+ if (accumbits) {
+ assert(idigit < ndigits);
+ v->ob_digit[idigit] = (digit)accum;
+ ++idigit;
+ }
+ }
+
+ Py_SIZE(v) = is_signed ? -idigit : idigit;
+ return (PyObject *)long_normalize(v);
+}
+
+int
+_PyLong_AsByteArray(PyLongObject* v,
+ unsigned char* bytes, size_t n,
+ int little_endian, int is_signed)
+{
+ Py_ssize_t i; /* index into v->ob_digit */
+ Py_ssize_t ndigits; /* |v->ob_size| */
+ twodigits accum; /* sliding register */
+ unsigned int accumbits; /* # bits in accum */
+ int do_twos_comp; /* store 2's-comp? is_signed and v < 0 */
+ digit carry; /* for computing 2's-comp */
+ size_t j; /* # bytes filled */
+ unsigned char* p; /* pointer to next byte in bytes */
+ int pincr; /* direction to move p */
+
+ assert(v != NULL && PyLong_Check(v));
+
+ if (Py_SIZE(v) < 0) {
+ ndigits = -(Py_SIZE(v));
+ if (!is_signed) {
+ PyErr_SetString(PyExc_OverflowError,
+ "can't convert negative long to unsigned");
+ return -1;
+ }
+ do_twos_comp = 1;
+ }
+ else {
+ ndigits = Py_SIZE(v);
+ do_twos_comp = 0;
+ }
+
+ if (little_endian) {
+ p = bytes;
+ pincr = 1;
+ }
+ else {
+ p = bytes + n - 1;
+ pincr = -1;
+ }
+
+ /* Copy over all the Python digits.
+ It's crucial that every Python digit except for the MSD contribute
+ exactly PyLong_SHIFT bits to the total, so first assert that the long is
+ normalized. */
+ assert(ndigits == 0 || v->ob_digit[ndigits - 1] != 0);
+ j = 0;
+ accum = 0;
+ accumbits = 0;
+ carry = do_twos_comp ? 1 : 0;
+ for (i = 0; i < ndigits; ++i) {
+ digit thisdigit = v->ob_digit[i];
+ if (do_twos_comp) {
+ thisdigit = (thisdigit ^ PyLong_MASK) + carry;
+ carry = thisdigit >> PyLong_SHIFT;
+ thisdigit &= PyLong_MASK;
+ }
+ /* Because we're going LSB to MSB, thisdigit is more
+ significant than what's already in accum, so needs to be
+ prepended to accum. */
+ accum |= (twodigits)thisdigit << accumbits;
+
+ /* The most-significant digit may be (probably is) at least
+ partly empty. */
+ if (i == ndigits - 1) {
+ /* Count # of sign bits -- they needn't be stored,
+ * although for signed conversion we need later to
+ * make sure at least one sign bit gets stored. */
+ digit s = do_twos_comp ? thisdigit ^ PyLong_MASK : thisdigit;
+ while (s != 0) {
+ s >>= 1;
+ accumbits++;
+ }
+ }
+ else
+ accumbits += PyLong_SHIFT;
+
+ /* Store as many bytes as possible. */
+ while (accumbits >= 8) {
+ if (j >= n)
+ goto Overflow;
+ ++j;
+ *p = (unsigned char)(accum & 0xff);
+ p += pincr;
+ accumbits -= 8;
+ accum >>= 8;
+ }
+ }
+
+ /* Store the straggler (if any). */
+ assert(accumbits < 8);
+ assert(carry == 0); /* else do_twos_comp and *every* digit was 0 */
+ if (accumbits > 0) {
+ if (j >= n)
+ goto Overflow;
+ ++j;
+ if (do_twos_comp) {
+ /* Fill leading bits of the byte with sign bits
+ (appropriately pretending that the long had an
+ infinite supply of sign bits). */
+ accum |= (~(twodigits)0) << accumbits;
+ }
+ *p = (unsigned char)(accum & 0xff);
+ p += pincr;
+ }
+ else if (j == n && n > 0 && is_signed) {
+ /* The main loop filled the byte array exactly, so the code
+ just above didn't get to ensure there's a sign bit, and the
+ loop below wouldn't add one either. Make sure a sign bit
+ exists. */
+ unsigned char msb = *(p - pincr);
+ int sign_bit_set = msb >= 0x80;
+ assert(accumbits == 0);
+ if (sign_bit_set == do_twos_comp)
+ return 0;
+ else
+ goto Overflow;
+ }
+
+ /* Fill remaining bytes with copies of the sign bit. */
+ {
+ unsigned char signbyte = do_twos_comp ? 0xffU : 0U;
+ for ( ; j < n; ++j, p += pincr)
+ *p = signbyte;
+ }
+
+ return 0;
+
+ Overflow:
+ PyErr_SetString(PyExc_OverflowError, "long too big to convert");
+ return -1;
+
+}
+
+/* Create a new long (or int) object from a C pointer */
+
+PyObject *
+PyLong_FromVoidPtr(void *p)
+{
+#if SIZEOF_VOID_P <= SIZEOF_LONG
+ if ((long)p < 0)
+ return PyLong_FromUnsignedLong((unsigned long)p);
+ return PyInt_FromLong((long)p);
+#else
+
+#ifndef HAVE_LONG_LONG
+# error "PyLong_FromVoidPtr: sizeof(void*) > sizeof(long), but no long long"
+#endif
+#if SIZEOF_LONG_LONG < SIZEOF_VOID_P
+# error "PyLong_FromVoidPtr: sizeof(PY_LONG_LONG) < sizeof(void*)"
+#endif
+ /* optimize null pointers */
+ if (p == NULL)
+ return PyInt_FromLong(0);
+ return PyLong_FromUnsignedLongLong((unsigned PY_LONG_LONG)p);
+
+#endif /* SIZEOF_VOID_P <= SIZEOF_LONG */
+}
+
+/* Get a C pointer from a long object (or an int object in some cases) */
+
+void *
+PyLong_AsVoidPtr(PyObject *vv)
+{
+ /* This function will allow int or long objects. If vv is neither,
+ then the PyLong_AsLong*() functions will raise the exception:
+ PyExc_SystemError, "bad argument to internal function"
+ */
+#if SIZEOF_VOID_P <= SIZEOF_LONG
+ long x;
+
+ if (PyInt_Check(vv))
+ x = PyInt_AS_LONG(vv);
+ else if (PyLong_Check(vv) && _PyLong_Sign(vv) < 0)
+ x = PyLong_AsLong(vv);
+ else
+ x = PyLong_AsUnsignedLong(vv);
+#else
+
+#ifndef HAVE_LONG_LONG
+# error "PyLong_AsVoidPtr: sizeof(void*) > sizeof(long), but no long long"
+#endif
+#if SIZEOF_LONG_LONG < SIZEOF_VOID_P
+# error "PyLong_AsVoidPtr: sizeof(PY_LONG_LONG) < sizeof(void*)"
+#endif
+ PY_LONG_LONG x;
+
+ if (PyInt_Check(vv))
+ x = PyInt_AS_LONG(vv);
+ else if (PyLong_Check(vv) && _PyLong_Sign(vv) < 0)
+ x = PyLong_AsLongLong(vv);
+ else
+ x = PyLong_AsUnsignedLongLong(vv);
+
+#endif /* SIZEOF_VOID_P <= SIZEOF_LONG */
+
+ if (x == -1 && PyErr_Occurred())
+ return NULL;
+ return (void *)x;
+}
+
+#ifdef HAVE_LONG_LONG
+
+/* Initial PY_LONG_LONG support by Chris Herborth (chrish@qnx.com), later
+ * rewritten to use the newer PyLong_{As,From}ByteArray API.
+ */
+
+#define IS_LITTLE_ENDIAN (int)*(unsigned char*)&one
+#define PY_ABS_LLONG_MIN (0-(unsigned PY_LONG_LONG)PY_LLONG_MIN)
+
+/* Create a new long int object from a C PY_LONG_LONG int. */
+
+PyObject *
+PyLong_FromLongLong(PY_LONG_LONG ival)
+{
+ PyLongObject *v;
+ unsigned PY_LONG_LONG abs_ival;
+ unsigned PY_LONG_LONG t; /* unsigned so >> doesn't propagate sign bit */
+ int ndigits = 0;
+ int negative = 0;
+
+ if (ival < 0) {
+ /* avoid signed overflow on negation; see comments
+ in PyLong_FromLong above. */
+ abs_ival = (unsigned PY_LONG_LONG)(-1-ival) + 1;
+ negative = 1;
+ }
+ else {
+ abs_ival = (unsigned PY_LONG_LONG)ival;
+ }
+
+ /* Count the number of Python digits.
+ We used to pick 5 ("big enough for anything"), but that's a
+ waste of time and space given that 5*15 = 75 bits are rarely
+ needed. */
+ t = abs_ival;
+ while (t) {
+ ++ndigits;
+ t >>= PyLong_SHIFT;
+ }
+ v = _PyLong_New(ndigits);
+ if (v != NULL) {
+ digit *p = v->ob_digit;
+ Py_SIZE(v) = negative ? -ndigits : ndigits;
+ t = abs_ival;
+ while (t) {
+ *p++ = (digit)(t & PyLong_MASK);
+ t >>= PyLong_SHIFT;
+ }
+ }
+ return (PyObject *)v;
+}
+
+/* Create a new long int object from a C unsigned PY_LONG_LONG int. */
+
+PyObject *
+PyLong_FromUnsignedLongLong(unsigned PY_LONG_LONG ival)
+{
+ PyLongObject *v;
+ unsigned PY_LONG_LONG t;
+ int ndigits = 0;
+
+ /* Count the number of Python digits. */
+ t = (unsigned PY_LONG_LONG)ival;
+ while (t) {
+ ++ndigits;
+ t >>= PyLong_SHIFT;
+ }
+ v = _PyLong_New(ndigits);
+ if (v != NULL) {
+ digit *p = v->ob_digit;
+ Py_SIZE(v) = ndigits;
+ while (ival) {
+ *p++ = (digit)(ival & PyLong_MASK);
+ ival >>= PyLong_SHIFT;
+ }
+ }
+ return (PyObject *)v;
+}
+
+/* Create a new long int object from a C Py_ssize_t. */
+
+PyObject *
+PyLong_FromSsize_t(Py_ssize_t ival)
+{
+ Py_ssize_t bytes = ival;
+ int one = 1;
+ return _PyLong_FromByteArray((unsigned char *)&bytes,
+ SIZEOF_SIZE_T, IS_LITTLE_ENDIAN, 1);
+}
+
+/* Create a new long int object from a C size_t. */
+
+PyObject *
+PyLong_FromSize_t(size_t ival)
+{
+ size_t bytes = ival;
+ int one = 1;
+ return _PyLong_FromByteArray((unsigned char *)&bytes,
+ SIZEOF_SIZE_T, IS_LITTLE_ENDIAN, 0);
+}
+
+/* Get a C PY_LONG_LONG int from a long int object.
+ Return -1 and set an error if overflow occurs. */
+
+PY_LONG_LONG
+PyLong_AsLongLong(PyObject *vv)
+{
+ PY_LONG_LONG bytes;
+ int one = 1;
+ int res;
+
+ if (vv == NULL) {
+ PyErr_BadInternalCall();
+ return -1;
+ }
+ if (!PyLong_Check(vv)) {
+ PyNumberMethods *nb;
+ PyObject *io;
+ if (PyInt_Check(vv))
+ return (PY_LONG_LONG)PyInt_AsLong(vv);
+ if ((nb = vv->ob_type->tp_as_number) == NULL ||
+ nb->nb_int == NULL) {
+ PyErr_SetString(PyExc_TypeError, "an integer is required");
+ return -1;
+ }
+ io = (*nb->nb_int) (vv);
+ if (io == NULL)
+ return -1;
+ if (PyInt_Check(io)) {
+ bytes = PyInt_AsLong(io);
+ Py_DECREF(io);
+ return bytes;
+ }
+ if (PyLong_Check(io)) {
+ bytes = PyLong_AsLongLong(io);
+ Py_DECREF(io);
+ return bytes;
+ }
+ Py_DECREF(io);
+ PyErr_SetString(PyExc_TypeError, "integer conversion failed");
+ return -1;
+ }
+
+ res = _PyLong_AsByteArray((PyLongObject *)vv, (unsigned char *)&bytes,
+ SIZEOF_LONG_LONG, IS_LITTLE_ENDIAN, 1);
+
+ /* Plan 9 can't handle PY_LONG_LONG in ? : expressions */
+ if (res < 0)
+ return (PY_LONG_LONG)-1;
+ else
+ return bytes;
+}
+
+/* Get a C unsigned PY_LONG_LONG int from a long int object.
+ Return -1 and set an error if overflow occurs. */
+
+unsigned PY_LONG_LONG
+PyLong_AsUnsignedLongLong(PyObject *vv)
+{
+ unsigned PY_LONG_LONG bytes;
+ int one = 1;
+ int res;
+
+ if (vv == NULL || !PyLong_Check(vv)) {
+ PyErr_BadInternalCall();
+ return (unsigned PY_LONG_LONG)-1;
+ }
+
+ res = _PyLong_AsByteArray((PyLongObject *)vv, (unsigned char *)&bytes,
+ SIZEOF_LONG_LONG, IS_LITTLE_ENDIAN, 0);
+
+ /* Plan 9 can't handle PY_LONG_LONG in ? : expressions */
+ if (res < 0)
+ return (unsigned PY_LONG_LONG)res;
+ else
+ return bytes;
+}
+
+/* Get a C unsigned long int from a long int object, ignoring the high bits.
+ Returns -1 and sets an error condition if an error occurs. */
+
+unsigned PY_LONG_LONG
+PyLong_AsUnsignedLongLongMask(PyObject *vv)
+{
+ register PyLongObject *v;
+ unsigned PY_LONG_LONG x;
+ Py_ssize_t i;
+ int sign;
+
+ if (vv == NULL || !PyLong_Check(vv)) {
+ PyErr_BadInternalCall();
+ return (unsigned long) -1;
+ }
+ v = (PyLongObject *)vv;
+ i = v->ob_size;
+ sign = 1;
+ x = 0;
+ if (i < 0) {
+ sign = -1;
+ i = -i;
+ }
+ while (--i >= 0) {
+ x = (x << PyLong_SHIFT) | v->ob_digit[i];
+ }
+ return x * sign;
+}
+
+/* Get a C long long int from a Python long or Python int object.
+ On overflow, returns -1 and sets *overflow to 1 or -1 depending
+ on the sign of the result. Otherwise *overflow is 0.
+
+ For other errors (e.g., type error), returns -1 and sets an error
+ condition.
+*/
+
+PY_LONG_LONG
+PyLong_AsLongLongAndOverflow(PyObject *vv, int *overflow)
+{
+ /* This version by Tim Peters */
+ register PyLongObject *v;
+ unsigned PY_LONG_LONG x, prev;
+ PY_LONG_LONG res;
+ Py_ssize_t i;
+ int sign;
+ int do_decref = 0; /* if nb_int was called */
+
+ *overflow = 0;
+ if (vv == NULL) {
+ PyErr_BadInternalCall();
+ return -1;
+ }
+
+ if (PyInt_Check(vv))
+ return PyInt_AsLong(vv);
+
+ if (!PyLong_Check(vv)) {
+ PyNumberMethods *nb;
+ nb = vv->ob_type->tp_as_number;
+ if (nb == NULL || nb->nb_int == NULL) {
+ PyErr_SetString(PyExc_TypeError,
+ "an integer is required");
+ return -1;
+ }
+ vv = (*nb->nb_int) (vv);
+ if (vv == NULL)
+ return -1;
+ do_decref = 1;
+ if(PyInt_Check(vv)) {
+ res = PyInt_AsLong(vv);
+ goto exit;
+ }
+ if (!PyLong_Check(vv)) {
+ Py_DECREF(vv);
+ PyErr_SetString(PyExc_TypeError,
+ "nb_int should return int object");
+ return -1;
+ }
+ }
+
+ res = -1;
+ v = (PyLongObject *)vv;
+ i = Py_SIZE(v);
+
+ switch (i) {
+ case -1:
+ res = -(sdigit)v->ob_digit[0];
+ break;
+ case 0:
+ res = 0;
+ break;
+ case 1:
+ res = v->ob_digit[0];
+ break;
+ default:
+ sign = 1;
+ x = 0;
+ if (i < 0) {
+ sign = -1;
+ i = -(i);
+ }
+ while (--i >= 0) {
+ prev = x;
+ x = (x << PyLong_SHIFT) + v->ob_digit[i];
+ if ((x >> PyLong_SHIFT) != prev) {
+ *overflow = sign;
+ goto exit;
+ }
+ }
+ /* Haven't lost any bits, but casting to long requires extra
+ * care (see comment above).
+ */
+ if (x <= (unsigned PY_LONG_LONG)PY_LLONG_MAX) {
+ res = (PY_LONG_LONG)x * sign;
+ }
+ else if (sign < 0 && x == PY_ABS_LLONG_MIN) {
+ res = PY_LLONG_MIN;
+ }
+ else {
+ *overflow = sign;
+ /* res is already set to -1 */
+ }
+ }
+ exit:
+ if (do_decref) {
+ Py_DECREF(vv);
+ }
+ return res;
+}
+
+#undef IS_LITTLE_ENDIAN
+
+#endif /* HAVE_LONG_LONG */
+
+
+static int
+convert_binop(PyObject *v, PyObject *w, PyLongObject **a, PyLongObject **b) {
+ if (PyLong_Check(v)) {
+ *a = (PyLongObject *) v;
+ Py_INCREF(v);
+ }
+ else if (PyInt_Check(v)) {
+ *a = (PyLongObject *) PyLong_FromLong(PyInt_AS_LONG(v));
+ }
+ else {
+ return 0;
+ }
+ if (PyLong_Check(w)) {
+ *b = (PyLongObject *) w;
+ Py_INCREF(w);
+ }
+ else if (PyInt_Check(w)) {
+ *b = (PyLongObject *) PyLong_FromLong(PyInt_AS_LONG(w));
+ }
+ else {
+ Py_DECREF(*a);
+ return 0;
+ }
+ return 1;
+}
+
+#define CONVERT_BINOP(v, w, a, b) \
+ do { \
+ if (!convert_binop(v, w, a, b)) { \
+ Py_INCREF(Py_NotImplemented); \
+ return Py_NotImplemented; \
+ } \
+ } while(0) \
+
+/* bits_in_digit(d) returns the unique integer k such that 2**(k-1) <= d <
+ 2**k if d is nonzero, else 0. */
+
+static const unsigned char BitLengthTable[32] = {
+ 0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4,
+ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5
+};
+
+static int
+bits_in_digit(digit d)
+{
+ int d_bits = 0;
+ while (d >= 32) {
+ d_bits += 6;
+ d >>= 6;
+ }
+ d_bits += (int)BitLengthTable[d];
+ return d_bits;
+}
+
+/* x[0:m] and y[0:n] are digit vectors, LSD first, m >= n required. x[0:n]
+ * is modified in place, by adding y to it. Carries are propagated as far as
+ * x[m-1], and the remaining carry (0 or 1) is returned.
+ */
+static digit
+v_iadd(digit *x, Py_ssize_t m, digit *y, Py_ssize_t n)
+{
+ Py_ssize_t i;
+ digit carry = 0;
+
+ assert(m >= n);
+ for (i = 0; i < n; ++i) {
+ carry += x[i] + y[i];
+ x[i] = carry & PyLong_MASK;
+ carry >>= PyLong_SHIFT;
+ assert((carry & 1) == carry);
+ }
+ for (; carry && i < m; ++i) {
+ carry += x[i];
+ x[i] = carry & PyLong_MASK;
+ carry >>= PyLong_SHIFT;
+ assert((carry & 1) == carry);
+ }
+ return carry;
+}
+
+/* x[0:m] and y[0:n] are digit vectors, LSD first, m >= n required. x[0:n]
+ * is modified in place, by subtracting y from it. Borrows are propagated as
+ * far as x[m-1], and the remaining borrow (0 or 1) is returned.
+ */
+static digit
+v_isub(digit *x, Py_ssize_t m, digit *y, Py_ssize_t n)
+{
+ Py_ssize_t i;
+ digit borrow = 0;
+
+ assert(m >= n);
+ for (i = 0; i < n; ++i) {
+ borrow = x[i] - y[i] - borrow;
+ x[i] = borrow & PyLong_MASK;
+ borrow >>= PyLong_SHIFT;
+ borrow &= 1; /* keep only 1 sign bit */
+ }
+ for (; borrow && i < m; ++i) {
+ borrow = x[i] - borrow;
+ x[i] = borrow & PyLong_MASK;
+ borrow >>= PyLong_SHIFT;
+ borrow &= 1;
+ }
+ return borrow;
+}
+
+/* Shift digit vector a[0:m] d bits left, with 0 <= d < PyLong_SHIFT. Put
+ * result in z[0:m], and return the d bits shifted out of the top.
+ */
+static digit
+v_lshift(digit *z, digit *a, Py_ssize_t m, int d)
+{
+ Py_ssize_t i;
+ digit carry = 0;
+
+ assert(0 <= d && d < PyLong_SHIFT);
+ for (i=0; i < m; i++) {
+ twodigits acc = (twodigits)a[i] << d | carry;
+ z[i] = (digit)acc & PyLong_MASK;
+ carry = (digit)(acc >> PyLong_SHIFT);
+ }
+ return carry;
+}
+
+/* Shift digit vector a[0:m] d bits right, with 0 <= d < PyLong_SHIFT. Put
+ * result in z[0:m], and return the d bits shifted out of the bottom.
+ */
+static digit
+v_rshift(digit *z, digit *a, Py_ssize_t m, int d)
+{
+ Py_ssize_t i;
+ digit carry = 0;
+ digit mask = ((digit)1 << d) - 1U;
+
+ assert(0 <= d && d < PyLong_SHIFT);
+ for (i=m; i-- > 0;) {
+ twodigits acc = (twodigits)carry << PyLong_SHIFT | a[i];
+ carry = (digit)acc & mask;
+ z[i] = (digit)(acc >> d);
+ }
+ return carry;
+}
+
+/* Divide long pin, w/ size digits, by non-zero digit n, storing quotient
+ in pout, and returning the remainder. pin and pout point at the LSD.
+ It's OK for pin == pout on entry, which saves oodles of mallocs/frees in
+ _PyLong_Format, but that should be done with great care since longs are
+ immutable. */
+
+static digit
+inplace_divrem1(digit *pout, digit *pin, Py_ssize_t size, digit n)
+{
+ twodigits rem = 0;
+
+ assert(n > 0 && n <= PyLong_MASK);
+ pin += size;
+ pout += size;
+ while (--size >= 0) {
+ digit hi;
+ rem = (rem << PyLong_SHIFT) | *--pin;
+ *--pout = hi = (digit)(rem / n);
+ rem -= (twodigits)hi * n;
+ }
+ return (digit)rem;
+}
+
+/* Divide a long integer by a digit, returning both the quotient
+ (as function result) and the remainder (through *prem).
+ The sign of a is ignored; n should not be zero. */
+
+static PyLongObject *
+divrem1(PyLongObject *a, digit n, digit *prem)
+{
+ const Py_ssize_t size = ABS(Py_SIZE(a));
+ PyLongObject *z;
+
+ assert(n > 0 && n <= PyLong_MASK);
+ z = _PyLong_New(size);
+ if (z == NULL)
+ return NULL;
+ *prem = inplace_divrem1(z->ob_digit, a->ob_digit, size, n);
+ return long_normalize(z);
+}
+
+/* Convert a long integer to a base 10 string. Returns a new non-shared
+ string. (Return value is non-shared so that callers can modify the
+ returned value if necessary.) */
+
+static PyObject *
+long_to_decimal_string(PyObject *aa, int addL)
+{
+ PyLongObject *scratch, *a;
+ PyObject *str;
+ Py_ssize_t size, strlen, size_a, i, j;
+ digit *pout, *pin, rem, tenpow;
+ char *p;
+ int negative;
+
+ a = (PyLongObject *)aa;
+ if (a == NULL || !PyLong_Check(a)) {
+ PyErr_BadInternalCall();
+ return NULL;
+ }
+ size_a = ABS(Py_SIZE(a));
+ negative = Py_SIZE(a) < 0;
+
+ /* quick and dirty upper bound for the number of digits
+ required to express a in base _PyLong_DECIMAL_BASE:
+
+ #digits = 1 + floor(log2(a) / log2(_PyLong_DECIMAL_BASE))
+
+ But log2(a) < size_a * PyLong_SHIFT, and
+ log2(_PyLong_DECIMAL_BASE) = log2(10) * _PyLong_DECIMAL_SHIFT
+ > 3 * _PyLong_DECIMAL_SHIFT
+ */
+ if (size_a > PY_SSIZE_T_MAX / PyLong_SHIFT) {
+ PyErr_SetString(PyExc_OverflowError,
+ "long is too large to format");
+ return NULL;
+ }
+ /* the expression size_a * PyLong_SHIFT is now safe from overflow */
+ size = 1 + size_a * PyLong_SHIFT / (3 * _PyLong_DECIMAL_SHIFT);
+ scratch = _PyLong_New(size);
+ if (scratch == NULL)
+ return NULL;
+
+ /* convert array of base _PyLong_BASE digits in pin to an array of
+ base _PyLong_DECIMAL_BASE digits in pout, following Knuth (TAOCP,
+ Volume 2 (3rd edn), section 4.4, Method 1b). */
+ pin = a->ob_digit;
+ pout = scratch->ob_digit;
+ size = 0;
+ for (i = size_a; --i >= 0; ) {
+ digit hi = pin[i];
+ for (j = 0; j < size; j++) {
+ twodigits z = (twodigits)pout[j] << PyLong_SHIFT | hi;
+ hi = (digit)(z / _PyLong_DECIMAL_BASE);
+ pout[j] = (digit)(z - (twodigits)hi *
+ _PyLong_DECIMAL_BASE);
+ }
+ while (hi) {
+ pout[size++] = hi % _PyLong_DECIMAL_BASE;
+ hi /= _PyLong_DECIMAL_BASE;
+ }
+ /* check for keyboard interrupt */
+ SIGCHECK({
+ Py_DECREF(scratch);
+ return NULL;
+ });
+ }
+ /* pout should have at least one digit, so that the case when a = 0
+ works correctly */
+ if (size == 0)
+ pout[size++] = 0;
+
+ /* calculate exact length of output string, and allocate */
+ strlen = (addL != 0) + negative +
+ 1 + (size - 1) * _PyLong_DECIMAL_SHIFT;
+ tenpow = 10;
+ rem = pout[size-1];
+ while (rem >= tenpow) {
+ tenpow *= 10;
+ strlen++;
+ }
+ str = PyString_FromStringAndSize(NULL, strlen);
+ if (str == NULL) {
+ Py_DECREF(scratch);
+ return NULL;
+ }
+
+ /* fill the string right-to-left */
+ p = PyString_AS_STRING(str) + strlen;
+ *p = '\0';
+ if (addL)
+ *--p = 'L';
+ /* pout[0] through pout[size-2] contribute exactly
+ _PyLong_DECIMAL_SHIFT digits each */
+ for (i=0; i < size - 1; i++) {
+ rem = pout[i];
+ for (j = 0; j < _PyLong_DECIMAL_SHIFT; j++) {
+ *--p = '0' + rem % 10;
+ rem /= 10;
+ }
+ }
+ /* pout[size-1]: always produce at least one decimal digit */
+ rem = pout[i];
+ do {
+ *--p = '0' + rem % 10;
+ rem /= 10;
+ } while (rem != 0);
+
+ /* and sign */
+ if (negative)
+ *--p = '-';
+
+ /* check we've counted correctly */
+ assert(p == PyString_AS_STRING(str));
+ Py_DECREF(scratch);
+ return (PyObject *)str;
+}
+
+/* Convert the long to a string object with given base,
+ appending a base prefix of 0[box] if base is 2, 8 or 16.
+ Add a trailing "L" if addL is non-zero.
+ If newstyle is zero, then use the pre-2.6 behavior of octal having
+ a leading "0", instead of the prefix "0o" */
+PyAPI_FUNC(PyObject *)
+_PyLong_Format(PyObject *aa, int base, int addL, int newstyle)
+{
+ register PyLongObject *a = (PyLongObject *)aa;
+ PyStringObject *str;
+ Py_ssize_t i, sz;
+ Py_ssize_t size_a;
+ char *p;
+ int bits;
+ char sign = '\0';
+
+ if (base == 10)
+ return long_to_decimal_string((PyObject *)a, addL);
+
+ if (a == NULL || !PyLong_Check(a)) {
+ PyErr_BadInternalCall();
+ return NULL;
+ }
+ assert(base >= 2 && base <= 36);
+ size_a = ABS(Py_SIZE(a));
+
+ /* Compute a rough upper bound for the length of the string */
+ i = base;
+ bits = 0;
+ while (i > 1) {
+ ++bits;
+ i >>= 1;
+ }
+ i = 5 + (addL ? 1 : 0);
+ /* ensure we don't get signed overflow in sz calculation */
+ if (size_a > (PY_SSIZE_T_MAX - i) / PyLong_SHIFT) {
+ PyErr_SetString(PyExc_OverflowError,
+ "long is too large to format");
+ return NULL;
+ }
+ sz = i + 1 + (size_a * PyLong_SHIFT - 1) / bits;
+ assert(sz >= 0);
+ str = (PyStringObject *) PyString_FromStringAndSize((char *)0, sz);
+ if (str == NULL)
+ return NULL;
+ p = PyString_AS_STRING(str) + sz;
+ *p = '\0';
+ if (addL)
+ *--p = 'L';
+ if (a->ob_size < 0)
+ sign = '-';
+
+ if (a->ob_size == 0) {
+ *--p = '0';
+ }
+ else if ((base & (base - 1)) == 0) {
+ /* JRH: special case for power-of-2 bases */
+ twodigits accum = 0;
+ int accumbits = 0; /* # of bits in accum */
+ int basebits = 1; /* # of bits in base-1 */
+ i = base;
+ while ((i >>= 1) > 1)
+ ++basebits;
+
+ for (i = 0; i < size_a; ++i) {
+ accum |= (twodigits)a->ob_digit[i] << accumbits;
+ accumbits += PyLong_SHIFT;
+ assert(accumbits >= basebits);
+ do {
+ char cdigit = (char)(accum & (base - 1));
+ cdigit += (cdigit < 10) ? '0' : 'a'-10;
+ assert(p > PyString_AS_STRING(str));
+ *--p = cdigit;
+ accumbits -= basebits;
+ accum >>= basebits;
+ } while (i < size_a-1 ? accumbits >= basebits : accum > 0);
+ }
+ }
+ else {
+ /* Not 0, and base not a power of 2. Divide repeatedly by
+ base, but for speed use the highest power of base that
+ fits in a digit. */
+ Py_ssize_t size = size_a;
+ digit *pin = a->ob_digit;
+ PyLongObject *scratch;
+ /* powbasw <- largest power of base that fits in a digit. */
+ digit powbase = base; /* powbase == base ** power */
+ int power = 1;
+ for (;;) {
+ twodigits newpow = powbase * (twodigits)base;
+ if (newpow >> PyLong_SHIFT)
+ /* doesn't fit in a digit */
+ break;
+ powbase = (digit)newpow;
+ ++power;
+ }
+
+ /* Get a scratch area for repeated division. */
+ scratch = _PyLong_New(size);
+ if (scratch == NULL) {
+ Py_DECREF(str);
+ return NULL;
+ }
+
+ /* Repeatedly divide by powbase. */
+ do {
+ int ntostore = power;
+ digit rem = inplace_divrem1(scratch->ob_digit,
+ pin, size, powbase);
+ pin = scratch->ob_digit; /* no need to use a again */
+ if (pin[size - 1] == 0)
+ --size;
+ SIGCHECK({
+ Py_DECREF(scratch);
+ Py_DECREF(str);
+ return NULL;
+ });
+
+ /* Break rem into digits. */
+ assert(ntostore > 0);
+ do {
+ digit nextrem = (digit)(rem / base);
+ char c = (char)(rem - nextrem * base);
+ assert(p > PyString_AS_STRING(str));
+ c += (c < 10) ? '0' : 'a'-10;
+ *--p = c;
+ rem = nextrem;
+ --ntostore;
+ /* Termination is a bit delicate: must not
+ store leading zeroes, so must get out if
+ remaining quotient and rem are both 0. */
+ } while (ntostore && (size || rem));
+ } while (size != 0);
+ Py_DECREF(scratch);
+ }
+
+ if (base == 2) {
+ *--p = 'b';
+ *--p = '0';
+ }
+ else if (base == 8) {
+ if (newstyle) {
+ *--p = 'o';
+ *--p = '0';
+ }
+ else
+ if (size_a != 0)
+ *--p = '0';
+ }
+ else if (base == 16) {
+ *--p = 'x';
+ *--p = '0';
+ }
+ else if (base != 10) {
+ *--p = '#';
+ *--p = '0' + base%10;
+ if (base > 10)
+ *--p = '0' + base/10;
+ }
+ if (sign)
+ *--p = sign;
+ if (p != PyString_AS_STRING(str)) {
+ char *q = PyString_AS_STRING(str);
+ assert(p > q);
+ do {
+ } while ((*q++ = *p++) != '\0');
+ q--;
+ _PyString_Resize((PyObject **)&str,
+ (Py_ssize_t) (q - PyString_AS_STRING(str)));
+ }
+ return (PyObject *)str;
+}
+
+/* Table of digit values for 8-bit string -> integer conversion.
+ * '0' maps to 0, ..., '9' maps to 9.
+ * 'a' and 'A' map to 10, ..., 'z' and 'Z' map to 35.
+ * All other indices map to 37.
+ * Note that when converting a base B string, a char c is a legitimate
+ * base B digit iff _PyLong_DigitValue[Py_CHARMASK(c)] < B.
+ */
+int _PyLong_DigitValue[256] = {
+ 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
+ 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
+ 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 37, 37, 37, 37, 37, 37,
+ 37, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
+ 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 37, 37, 37, 37,
+ 37, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
+ 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 37, 37, 37, 37,
+ 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
+ 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
+ 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
+ 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
+ 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
+ 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
+ 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
+ 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
+};
+
+/* *str points to the first digit in a string of base `base` digits. base
+ * is a power of 2 (2, 4, 8, 16, or 32). *str is set to point to the first
+ * non-digit (which may be *str!). A normalized long is returned.
+ * The point to this routine is that it takes time linear in the number of
+ * string characters.
+ */
+static PyLongObject *
+long_from_binary_base(char **str, int base)
+{
+ char *p = *str;
+ char *start = p;
+ int bits_per_char;
+ Py_ssize_t n;
+ PyLongObject *z;
+ twodigits accum;
+ int bits_in_accum;
+ digit *pdigit;
+
+ assert(base >= 2 && base <= 32 && (base & (base - 1)) == 0);
+ n = base;
+ for (bits_per_char = -1; n; ++bits_per_char)
+ n >>= 1;
+ /* n <- total # of bits needed, while setting p to end-of-string */
+ while (_PyLong_DigitValue[Py_CHARMASK(*p)] < base)
+ ++p;
+ *str = p;
+ /* n <- # of Python digits needed, = ceiling(n/PyLong_SHIFT). */
+ n = (p - start) * bits_per_char + PyLong_SHIFT - 1;
+ if (n / bits_per_char < p - start) {
+ PyErr_SetString(PyExc_ValueError,
+ "long string too large to convert");
+ return NULL;
+ }
+ n = n / PyLong_SHIFT;
+ z = _PyLong_New(n);
+ if (z == NULL)
+ return NULL;
+ /* Read string from right, and fill in long from left; i.e.,
+ * from least to most significant in both.
+ */
+ accum = 0;
+ bits_in_accum = 0;
+ pdigit = z->ob_digit;
+ while (--p >= start) {
+ int k = _PyLong_DigitValue[Py_CHARMASK(*p)];
+ assert(k >= 0 && k < base);
+ accum |= (twodigits)k << bits_in_accum;
+ bits_in_accum += bits_per_char;
+ if (bits_in_accum >= PyLong_SHIFT) {
+ *pdigit++ = (digit)(accum & PyLong_MASK);
+ assert(pdigit - z->ob_digit <= n);
+ accum >>= PyLong_SHIFT;
+ bits_in_accum -= PyLong_SHIFT;
+ assert(bits_in_accum < PyLong_SHIFT);
+ }
+ }
+ if (bits_in_accum) {
+ assert(bits_in_accum <= PyLong_SHIFT);
+ *pdigit++ = (digit)accum;
+ assert(pdigit - z->ob_digit <= n);
+ }
+ while (pdigit - z->ob_digit < n)
+ *pdigit++ = 0;
+ return long_normalize(z);
+}
+
+PyObject *
+PyLong_FromString(char *str, char **pend, int base)
+{
+ int sign = 1;
+ char *start, *orig_str = str;
+ PyLongObject *z;
+ PyObject *strobj, *strrepr;
+ Py_ssize_t slen;
+
+ if ((base != 0 && base < 2) || base > 36) {
+ PyErr_SetString(PyExc_ValueError,
+ "long() arg 2 must be >= 2 and <= 36");
+ return NULL;
+ }
+ while (*str != '\0' && isspace(Py_CHARMASK(*str)))
+ str++;
+ if (*str == '+')
+ ++str;
+ else if (*str == '-') {
+ ++str;
+ sign = -1;
+ }
+ while (*str != '\0' && isspace(Py_CHARMASK(*str)))
+ str++;
+ if (base == 0) {
+ /* No base given. Deduce the base from the contents
+ of the string */
+ if (str[0] != '0')
+ base = 10;
+ else if (str[1] == 'x' || str[1] == 'X')
+ base = 16;
+ else if (str[1] == 'o' || str[1] == 'O')
+ base = 8;
+ else if (str[1] == 'b' || str[1] == 'B')
+ base = 2;
+ else
+ /* "old" (C-style) octal literal, still valid in
+ 2.x, although illegal in 3.x */
+ base = 8;
+ }
+ /* Whether or not we were deducing the base, skip leading chars
+ as needed */
+ if (str[0] == '0' &&
+ ((base == 16 && (str[1] == 'x' || str[1] == 'X')) ||
+ (base == 8 && (str[1] == 'o' || str[1] == 'O')) ||
+ (base == 2 && (str[1] == 'b' || str[1] == 'B'))))
+ str += 2;
+
+ start = str;
+ if ((base & (base - 1)) == 0)
+ z = long_from_binary_base(&str, base);
+ else {
+/***
+Binary bases can be converted in time linear in the number of digits, because
+Python's representation base is binary. Other bases (including decimal!) use
+the simple quadratic-time algorithm below, complicated by some speed tricks.
+
+First some math: the largest integer that can be expressed in N base-B digits
+is B**N-1. Consequently, if we have an N-digit input in base B, the worst-
+case number of Python digits needed to hold it is the smallest integer n s.t.
+
+ PyLong_BASE**n-1 >= B**N-1 [or, adding 1 to both sides]
+ PyLong_BASE**n >= B**N [taking logs to base PyLong_BASE]
+ n >= log(B**N)/log(PyLong_BASE) = N * log(B)/log(PyLong_BASE)
+
+The static array log_base_PyLong_BASE[base] == log(base)/log(PyLong_BASE) so
+we can compute this quickly. A Python long with that much space is reserved
+near the start, and the result is computed into it.
+
+The input string is actually treated as being in base base**i (i.e., i digits
+are processed at a time), where two more static arrays hold:
+
+ convwidth_base[base] = the largest integer i such that
+ base**i <= PyLong_BASE
+ convmultmax_base[base] = base ** convwidth_base[base]
+
+The first of these is the largest i such that i consecutive input digits
+must fit in a single Python digit. The second is effectively the input
+base we're really using.
+
+Viewing the input as a sequence <c0, c1, ..., c_n-1> of digits in base
+convmultmax_base[base], the result is "simply"
+
+ (((c0*B + c1)*B + c2)*B + c3)*B + ... ))) + c_n-1
+
+where B = convmultmax_base[base].
+
+Error analysis: as above, the number of Python digits `n` needed is worst-
+case
+
+ n >= N * log(B)/log(PyLong_BASE)
+
+where `N` is the number of input digits in base `B`. This is computed via
+
+ size_z = (Py_ssize_t)((scan - str) * log_base_PyLong_BASE[base]) + 1;
+
+below. Two numeric concerns are how much space this can waste, and whether
+the computed result can be too small. To be concrete, assume PyLong_BASE =
+2**15, which is the default (and it's unlikely anyone changes that).
+
+Waste isn't a problem: provided the first input digit isn't 0, the difference
+between the worst-case input with N digits and the smallest input with N
+digits is about a factor of B, but B is small compared to PyLong_BASE so at
+most one allocated Python digit can remain unused on that count. If
+N*log(B)/log(PyLong_BASE) is mathematically an exact integer, then truncating
+that and adding 1 returns a result 1 larger than necessary. However, that
+can't happen: whenever B is a power of 2, long_from_binary_base() is called
+instead, and it's impossible for B**i to be an integer power of 2**15 when B
+is not a power of 2 (i.e., it's impossible for N*log(B)/log(PyLong_BASE) to be
+an exact integer when B is not a power of 2, since B**i has a prime factor
+other than 2 in that case, but (2**15)**j's only prime factor is 2).
+
+The computed result can be too small if the true value of
+N*log(B)/log(PyLong_BASE) is a little bit larger than an exact integer, but
+due to roundoff errors (in computing log(B), log(PyLong_BASE), their quotient,
+and/or multiplying that by N) yields a numeric result a little less than that
+integer. Unfortunately, "how close can a transcendental function get to an
+integer over some range?" questions are generally theoretically intractable.
+Computer analysis via continued fractions is practical: expand
+log(B)/log(PyLong_BASE) via continued fractions, giving a sequence i/j of "the
+best" rational approximations. Then j*log(B)/log(PyLong_BASE) is
+approximately equal to (the integer) i. This shows that we can get very close
+to being in trouble, but very rarely. For example, 76573 is a denominator in
+one of the continued-fraction approximations to log(10)/log(2**15), and
+indeed:
+
+ >>> log(10)/log(2**15)*76573
+ 16958.000000654003
+
+is very close to an integer. If we were working with IEEE single-precision,
+rounding errors could kill us. Finding worst cases in IEEE double-precision
+requires better-than-double-precision log() functions, and Tim didn't bother.
+Instead the code checks to see whether the allocated space is enough as each
+new Python digit is added, and copies the whole thing to a larger long if not.
+This should happen extremely rarely, and in fact I don't have a test case
+that triggers it(!). Instead the code was tested by artificially allocating
+just 1 digit at the start, so that the copying code was exercised for every
+digit beyond the first.
+***/
+ register twodigits c; /* current input character */
+ Py_ssize_t size_z;
+ int i;
+ int convwidth;
+ twodigits convmultmax, convmult;
+ digit *pz, *pzstop;
+ char* scan;
+
+ static double log_base_PyLong_BASE[37] = {0.0e0,};
+ static int convwidth_base[37] = {0,};
+ static twodigits convmultmax_base[37] = {0,};
+
+ if (log_base_PyLong_BASE[base] == 0.0) {
+ twodigits convmax = base;
+ int i = 1;
+
+ log_base_PyLong_BASE[base] = (log((double)base) /
+ log((double)PyLong_BASE));
+ for (;;) {
+ twodigits next = convmax * base;
+ if (next > PyLong_BASE)
+ break;
+ convmax = next;
+ ++i;
+ }
+ convmultmax_base[base] = convmax;
+ assert(i > 0);
+ convwidth_base[base] = i;
+ }
+
+ /* Find length of the string of numeric characters. */
+ scan = str;
+ while (_PyLong_DigitValue[Py_CHARMASK(*scan)] < base)
+ ++scan;
+
+ /* Create a long object that can contain the largest possible
+ * integer with this base and length. Note that there's no
+ * need to initialize z->ob_digit -- no slot is read up before
+ * being stored into.
+ */
+ size_z = (Py_ssize_t)((scan - str) * log_base_PyLong_BASE[base]) + 1;
+ /* Uncomment next line to test exceedingly rare copy code */
+ /* size_z = 1; */
+ assert(size_z > 0);
+ z = _PyLong_New(size_z);
+ if (z == NULL)
+ return NULL;
+ Py_SIZE(z) = 0;
+
+ /* `convwidth` consecutive input digits are treated as a single
+ * digit in base `convmultmax`.
+ */
+ convwidth = convwidth_base[base];
+ convmultmax = convmultmax_base[base];
+
+ /* Work ;-) */
+ while (str < scan) {
+ /* grab up to convwidth digits from the input string */
+ c = (digit)_PyLong_DigitValue[Py_CHARMASK(*str++)];
+ for (i = 1; i < convwidth && str != scan; ++i, ++str) {
+ c = (twodigits)(c * base +
+ _PyLong_DigitValue[Py_CHARMASK(*str)]);
+ assert(c < PyLong_BASE);
+ }
+
+ convmult = convmultmax;
+ /* Calculate the shift only if we couldn't get
+ * convwidth digits.
+ */
+ if (i != convwidth) {
+ convmult = base;
+ for ( ; i > 1; --i)
+ convmult *= base;
+ }
+
+ /* Multiply z by convmult, and add c. */
+ pz = z->ob_digit;
+ pzstop = pz + Py_SIZE(z);
+ for (; pz < pzstop; ++pz) {
+ c += (twodigits)*pz * convmult;
+ *pz = (digit)(c & PyLong_MASK);
+ c >>= PyLong_SHIFT;
+ }
+ /* carry off the current end? */
+ if (c) {
+ assert(c < PyLong_BASE);
+ if (Py_SIZE(z) < size_z) {
+ *pz = (digit)c;
+ ++Py_SIZE(z);
+ }
+ else {
+ PyLongObject *tmp;
+ /* Extremely rare. Get more space. */
+ assert(Py_SIZE(z) == size_z);
+ tmp = _PyLong_New(size_z + 1);
+ if (tmp == NULL) {
+ Py_DECREF(z);
+ return NULL;
+ }
+ memcpy(tmp->ob_digit,
+ z->ob_digit,
+ sizeof(digit) * size_z);
+ Py_DECREF(z);
+ z = tmp;
+ z->ob_digit[size_z] = (digit)c;
+ ++size_z;
+ }
+ }
+ }
+ }
+ if (z == NULL)
+ return NULL;
+ if (str == start)
+ goto onError;
+ if (sign < 0)
+ Py_SIZE(z) = -(Py_SIZE(z));
+ if (*str == 'L' || *str == 'l')
+ str++;
+ while (*str && isspace(Py_CHARMASK(*str)))
+ str++;
+ if (*str != '\0')
+ goto onError;
+ if (pend)
+ *pend = str;
+ return (PyObject *) z;
+
+ onError:
+ Py_XDECREF(z);
+ slen = strlen(orig_str) < 200 ? strlen(orig_str) : 200;
+ strobj = PyString_FromStringAndSize(orig_str, slen);
+ if (strobj == NULL)
+ return NULL;
+ strrepr = PyObject_Repr(strobj);
+ Py_DECREF(strobj);
+ if (strrepr == NULL)
+ return NULL;
+ PyErr_Format(PyExc_ValueError,
+ "invalid literal for long() with base %d: %s",
+ base, PyString_AS_STRING(strrepr));
+ Py_DECREF(strrepr);
+ return NULL;
+}
+
+#ifdef Py_USING_UNICODE
+PyObject *
+PyLong_FromUnicode(Py_UNICODE *u, Py_ssize_t length, int base)
+{
+ PyObject *result;
+ char *buffer = (char *)PyMem_MALLOC(length+1);
+
+ if (buffer == NULL)
+ return NULL;
+
+ if (PyUnicode_EncodeDecimal(u, length, buffer, NULL)) {
+ PyMem_FREE(buffer);
+ return NULL;
+ }
+ result = PyLong_FromString(buffer, NULL, base);
+ PyMem_FREE(buffer);
+ return result;
+}
+#endif
+
+/* forward */
+static PyLongObject *x_divrem
+ (PyLongObject *, PyLongObject *, PyLongObject **);
+static PyObject *long_long(PyObject *v);
+
+/* Long division with remainder, top-level routine */
+
+static int
+long_divrem(PyLongObject *a, PyLongObject *b,
+ PyLongObject **pdiv, PyLongObject **prem)
+{
+ Py_ssize_t size_a = ABS(Py_SIZE(a)), size_b = ABS(Py_SIZE(b));
+ PyLongObject *z;
+
+ if (size_b == 0) {
+ PyErr_SetString(PyExc_ZeroDivisionError,
+ "long division or modulo by zero");
+ return -1;
+ }
+ if (size_a < size_b ||
+ (size_a == size_b &&
+ a->ob_digit[size_a-1] < b->ob_digit[size_b-1])) {
+ /* |a| < |b|. */
+ *pdiv = _PyLong_New(0);
+ if (*pdiv == NULL)
+ return -1;
+ Py_INCREF(a);
+ *prem = (PyLongObject *) a;
+ return 0;
+ }
+ if (size_b == 1) {
+ digit rem = 0;
+ z = divrem1(a, b->ob_digit[0], &rem);
+ if (z == NULL)
+ return -1;
+ *prem = (PyLongObject *) PyLong_FromLong((long)rem);
+ if (*prem == NULL) {
+ Py_DECREF(z);
+ return -1;
+ }
+ }
+ else {
+ z = x_divrem(a, b, prem);
+ if (z == NULL)
+ return -1;
+ }
+ /* Set the signs.
+ The quotient z has the sign of a*b;
+ the remainder r has the sign of a,
+ so a = b*z + r. */
+ if ((a->ob_size < 0) != (b->ob_size < 0))
+ z->ob_size = -(z->ob_size);
+ if (a->ob_size < 0 && (*prem)->ob_size != 0)
+ (*prem)->ob_size = -((*prem)->ob_size);
+ *pdiv = z;
+ return 0;
+}
+
+/* Unsigned long division with remainder -- the algorithm. The arguments v1
+ and w1 should satisfy 2 <= ABS(Py_SIZE(w1)) <= ABS(Py_SIZE(v1)). */
+
+static PyLongObject *
+x_divrem(PyLongObject *v1, PyLongObject *w1, PyLongObject **prem)
+{
+ PyLongObject *v, *w, *a;
+ Py_ssize_t i, k, size_v, size_w;
+ int d;
+ digit wm1, wm2, carry, q, r, vtop, *v0, *vk, *w0, *ak;
+ twodigits vv;
+ sdigit zhi;
+ stwodigits z;
+
+ /* We follow Knuth [The Art of Computer Programming, Vol. 2 (3rd
+ edn.), section 4.3.1, Algorithm D], except that we don't explicitly
+ handle the special case when the initial estimate q for a quotient
+ digit is >= PyLong_BASE: the max value for q is PyLong_BASE+1, and
+ that won't overflow a digit. */
+
+ /* allocate space; w will also be used to hold the final remainder */
+ size_v = ABS(Py_SIZE(v1));
+ size_w = ABS(Py_SIZE(w1));
+ assert(size_v >= size_w && size_w >= 2); /* Assert checks by div() */
+ v = _PyLong_New(size_v+1);
+ if (v == NULL) {
+ *prem = NULL;
+ return NULL;
+ }
+ w = _PyLong_New(size_w);
+ if (w == NULL) {
+ Py_DECREF(v);
+ *prem = NULL;
+ return NULL;
+ }
+
+ /* normalize: shift w1 left so that its top digit is >= PyLong_BASE/2.
+ shift v1 left by the same amount. Results go into w and v. */
+ d = PyLong_SHIFT - bits_in_digit(w1->ob_digit[size_w-1]);
+ carry = v_lshift(w->ob_digit, w1->ob_digit, size_w, d);
+ assert(carry == 0);
+ carry = v_lshift(v->ob_digit, v1->ob_digit, size_v, d);
+ if (carry != 0 || v->ob_digit[size_v-1] >= w->ob_digit[size_w-1]) {
+ v->ob_digit[size_v] = carry;
+ size_v++;
+ }
+
+ /* Now v->ob_digit[size_v-1] < w->ob_digit[size_w-1], so quotient has
+ at most (and usually exactly) k = size_v - size_w digits. */
+ k = size_v - size_w;
+ assert(k >= 0);
+ a = _PyLong_New(k);
+ if (a == NULL) {
+ Py_DECREF(w);
+ Py_DECREF(v);
+ *prem = NULL;
+ return NULL;
+ }
+ v0 = v->ob_digit;
+ w0 = w->ob_digit;
+ wm1 = w0[size_w-1];
+ wm2 = w0[size_w-2];
+ for (vk = v0+k, ak = a->ob_digit + k; vk-- > v0;) {
+ /* inner loop: divide vk[0:size_w+1] by w0[0:size_w], giving
+ single-digit quotient q, remainder in vk[0:size_w]. */
+
+ SIGCHECK({
+ Py_DECREF(a);
+ Py_DECREF(w);
+ Py_DECREF(v);
+ *prem = NULL;
+ return NULL;
+ });
+
+ /* estimate quotient digit q; may overestimate by 1 (rare) */
+ vtop = vk[size_w];
+ assert(vtop <= wm1);
+ vv = ((twodigits)vtop << PyLong_SHIFT) | vk[size_w-1];
+ q = (digit)(vv / wm1);
+ r = (digit)(vv - (twodigits)wm1 * q); /* r = vv % wm1 */
+ while ((twodigits)wm2 * q > (((twodigits)r << PyLong_SHIFT)
+ | vk[size_w-2])) {
+ --q;
+ r += wm1;
+ if (r >= PyLong_BASE)
+ break;
+ }
+ assert(q <= PyLong_BASE);
+
+ /* subtract q*w0[0:size_w] from vk[0:size_w+1] */
+ zhi = 0;
+ for (i = 0; i < size_w; ++i) {
+ /* invariants: -PyLong_BASE <= -q <= zhi <= 0;
+ -PyLong_BASE * q <= z < PyLong_BASE */
+ z = (sdigit)vk[i] + zhi -
+ (stwodigits)q * (stwodigits)w0[i];
+ vk[i] = (digit)z & PyLong_MASK;
+ zhi = (sdigit)Py_ARITHMETIC_RIGHT_SHIFT(stwodigits,
+ z, PyLong_SHIFT);
+ }
+
+ /* add w back if q was too large (this branch taken rarely) */
+ assert((sdigit)vtop + zhi == -1 || (sdigit)vtop + zhi == 0);
+ if ((sdigit)vtop + zhi < 0) {
+ carry = 0;
+ for (i = 0; i < size_w; ++i) {
+ carry += vk[i] + w0[i];
+ vk[i] = carry & PyLong_MASK;
+ carry >>= PyLong_SHIFT;
+ }
+ --q;
+ }
+
+ /* store quotient digit */
+ assert(q < PyLong_BASE);
+ *--ak = q;
+ }
+
+ /* unshift remainder; we reuse w to store the result */
+ carry = v_rshift(w0, v0, size_w, d);
+ assert(carry==0);
+ Py_DECREF(v);
+
+ *prem = long_normalize(w);
+ return long_normalize(a);
+}
+
+/* For a nonzero PyLong a, express a in the form x * 2**e, with 0.5 <=
+ abs(x) < 1.0 and e >= 0; return x and put e in *e. Here x is
+ rounded to DBL_MANT_DIG significant bits using round-half-to-even.
+ If a == 0, return 0.0 and set *e = 0. If the resulting exponent
+ e is larger than PY_SSIZE_T_MAX, raise OverflowError and return
+ -1.0. */
+
+/* attempt to define 2.0**DBL_MANT_DIG as a compile-time constant */
+#if DBL_MANT_DIG == 53
+#define EXP2_DBL_MANT_DIG 9007199254740992.0
+#else
+#define EXP2_DBL_MANT_DIG (ldexp(1.0, DBL_MANT_DIG))
+#endif
+
+double
+_PyLong_Frexp(PyLongObject *a, Py_ssize_t *e)
+{
+ Py_ssize_t a_size, a_bits, shift_digits, shift_bits, x_size;
+ /* See below for why x_digits is always large enough. */
+ digit rem, x_digits[2 + (DBL_MANT_DIG + 1) / PyLong_SHIFT];
+ double dx;
+ /* Correction term for round-half-to-even rounding. For a digit x,
+ "x + half_even_correction[x & 7]" gives x rounded to the nearest
+ multiple of 4, rounding ties to a multiple of 8. */
+ static const int half_even_correction[8] = {0, -1, -2, 1, 0, -1, 2, 1};
+
+ a_size = ABS(Py_SIZE(a));
+ if (a_size == 0) {
+ /* Special case for 0: significand 0.0, exponent 0. */
+ *e = 0;
+ return 0.0;
+ }
+ a_bits = bits_in_digit(a->ob_digit[a_size-1]);
+ /* The following is an overflow-free version of the check
+ "if ((a_size - 1) * PyLong_SHIFT + a_bits > PY_SSIZE_T_MAX) ..." */
+ if (a_size >= (PY_SSIZE_T_MAX - 1) / PyLong_SHIFT + 1 &&
+ (a_size > (PY_SSIZE_T_MAX - 1) / PyLong_SHIFT + 1 ||
+ a_bits > (PY_SSIZE_T_MAX - 1) % PyLong_SHIFT + 1))
+ goto overflow;
+ a_bits = (a_size - 1) * PyLong_SHIFT + a_bits;
+
+ /* Shift the first DBL_MANT_DIG + 2 bits of a into x_digits[0:x_size]
+ (shifting left if a_bits <= DBL_MANT_DIG + 2).
+
+ Number of digits needed for result: write // for floor division.
+ Then if shifting left, we end up using
+
+ 1 + a_size + (DBL_MANT_DIG + 2 - a_bits) // PyLong_SHIFT
+
+ digits. If shifting right, we use
+
+ a_size - (a_bits - DBL_MANT_DIG - 2) // PyLong_SHIFT
+
+ digits. Using a_size = 1 + (a_bits - 1) // PyLong_SHIFT along with
+ the inequalities
+
+ m // PyLong_SHIFT + n // PyLong_SHIFT <= (m + n) // PyLong_SHIFT
+ m // PyLong_SHIFT - n // PyLong_SHIFT <=
+ 1 + (m - n - 1) // PyLong_SHIFT,
+
+ valid for any integers m and n, we find that x_size satisfies
+
+ x_size <= 2 + (DBL_MANT_DIG + 1) // PyLong_SHIFT
+
+ in both cases.
+ */
+ if (a_bits <= DBL_MANT_DIG + 2) {
+ shift_digits = (DBL_MANT_DIG + 2 - a_bits) / PyLong_SHIFT;
+ shift_bits = (DBL_MANT_DIG + 2 - a_bits) % PyLong_SHIFT;
+ x_size = 0;
+ while (x_size < shift_digits)
+ x_digits[x_size++] = 0;
+ rem = v_lshift(x_digits + x_size, a->ob_digit, a_size,
+ (int)shift_bits);
+ x_size += a_size;
+ x_digits[x_size++] = rem;
+ }
+ else {
+ shift_digits = (a_bits - DBL_MANT_DIG - 2) / PyLong_SHIFT;
+ shift_bits = (a_bits - DBL_MANT_DIG - 2) % PyLong_SHIFT;
+ rem = v_rshift(x_digits, a->ob_digit + shift_digits,
+ a_size - shift_digits, (int)shift_bits);
+ x_size = a_size - shift_digits;
+ /* For correct rounding below, we need the least significant
+ bit of x to be 'sticky' for this shift: if any of the bits
+ shifted out was nonzero, we set the least significant bit
+ of x. */
+ if (rem)
+ x_digits[0] |= 1;
+ else
+ while (shift_digits > 0)
+ if (a->ob_digit[--shift_digits]) {
+ x_digits[0] |= 1;
+ break;
+ }
+ }
+ assert(1 <= x_size &&
+ x_size <= (Py_ssize_t)(sizeof(x_digits)/sizeof(digit)));
+
+ /* Round, and convert to double. */
+ x_digits[0] += half_even_correction[x_digits[0] & 7];
+ dx = x_digits[--x_size];
+ while (x_size > 0)
+ dx = dx * PyLong_BASE + x_digits[--x_size];
+
+ /* Rescale; make correction if result is 1.0. */
+ dx /= 4.0 * EXP2_DBL_MANT_DIG;
+ if (dx == 1.0) {
+ if (a_bits == PY_SSIZE_T_MAX)
+ goto overflow;
+ dx = 0.5;
+ a_bits += 1;
+ }
+
+ *e = a_bits;
+ return Py_SIZE(a) < 0 ? -dx : dx;
+
+ overflow:
+ /* exponent > PY_SSIZE_T_MAX */
+ PyErr_SetString(PyExc_OverflowError,
+ "huge integer: number of bits overflows a Py_ssize_t");
+ *e = 0;
+ return -1.0;
+}
+
+/* Get a C double from a long int object. Rounds to the nearest double,
+ using the round-half-to-even rule in the case of a tie. */
+
+double
+PyLong_AsDouble(PyObject *v)
+{
+ Py_ssize_t exponent;
+ double x;
+
+ if (v == NULL || !PyLong_Check(v)) {
+ PyErr_BadInternalCall();
+ return -1.0;
+ }
+ x = _PyLong_Frexp((PyLongObject *)v, &exponent);
+ if ((x == -1.0 && PyErr_Occurred()) || exponent > DBL_MAX_EXP) {
+ PyErr_SetString(PyExc_OverflowError,
+ "long int too large to convert to float");
+ return -1.0;
+ }
+ return ldexp(x, (int)exponent);
+}
+
+/* Methods */
+
+static void
+long_dealloc(PyObject *v)
+{
+ Py_TYPE(v)->tp_free(v);
+}
+
+static PyObject *
+long_repr(PyObject *v)
+{
+ return _PyLong_Format(v, 10, 1, 0);
+}
+
+static PyObject *
+long_str(PyObject *v)
+{
+ return _PyLong_Format(v, 10, 0, 0);
+}
+
+static int
+long_compare(PyLongObject *a, PyLongObject *b)
+{
+ Py_ssize_t sign;
+
+ if (Py_SIZE(a) != Py_SIZE(b)) {
+ sign = Py_SIZE(a) - Py_SIZE(b);
+ }
+ else {
+ Py_ssize_t i = ABS(Py_SIZE(a));
+ while (--i >= 0 && a->ob_digit[i] == b->ob_digit[i])
+ ;
+ if (i < 0)
+ sign = 0;
+ else {
+ sign = (sdigit)a->ob_digit[i] - (sdigit)b->ob_digit[i];
+ if (Py_SIZE(a) < 0)
+ sign = -sign;
+ }
+ }
+ return sign < 0 ? -1 : sign > 0 ? 1 : 0;
+}
+
+static long
+long_hash(PyLongObject *v)
+{
+ unsigned long x;
+ Py_ssize_t i;
+ int sign;
+
+ /* This is designed so that Python ints and longs with the
+ same value hash to the same value, otherwise comparisons
+ of mapping keys will turn out weird */
+ i = v->ob_size;
+ sign = 1;
+ x = 0;
+ if (i < 0) {
+ sign = -1;
+ i = -(i);
+ }
+ /* The following loop produces a C unsigned long x such that x is
+ congruent to the absolute value of v modulo ULONG_MAX. The
+ resulting x is nonzero if and only if v is. */
+ while (--i >= 0) {
+ /* Force a native long #-bits (32 or 64) circular shift */
+ x = (x >> (8*SIZEOF_LONG-PyLong_SHIFT)) | (x << PyLong_SHIFT);
+ x += v->ob_digit[i];
+ /* If the addition above overflowed we compensate by
+ incrementing. This preserves the value modulo
+ ULONG_MAX. */
+ if (x < v->ob_digit[i])
+ x++;
+ }
+ x = x * sign;
+ if (x == (unsigned long)-1)
+ x = (unsigned long)-2;
+ return (long)x;
+}
+
+
+/* Add the absolute values of two long integers. */
+
+static PyLongObject *
+x_add(PyLongObject *a, PyLongObject *b)
+{
+ Py_ssize_t size_a = ABS(Py_SIZE(a)), size_b = ABS(Py_SIZE(b));
+ PyLongObject *z;
+ Py_ssize_t i;
+ digit carry = 0;
+
+ /* Ensure a is the larger of the two: */
+ if (size_a < size_b) {
+ { PyLongObject *temp = a; a = b; b = temp; }
+ { Py_ssize_t size_temp = size_a;
+ size_a = size_b;
+ size_b = size_temp; }
+ }
+ z = _PyLong_New(size_a+1);
+ if (z == NULL)
+ return NULL;
+ for (i = 0; i < size_b; ++i) {
+ carry += a->ob_digit[i] + b->ob_digit[i];
+ z->ob_digit[i] = carry & PyLong_MASK;
+ carry >>= PyLong_SHIFT;
+ }
+ for (; i < size_a; ++i) {
+ carry += a->ob_digit[i];
+ z->ob_digit[i] = carry & PyLong_MASK;
+ carry >>= PyLong_SHIFT;
+ }
+ z->ob_digit[i] = carry;
+ return long_normalize(z);
+}
+
+/* Subtract the absolute values of two integers. */
+
+static PyLongObject *
+x_sub(PyLongObject *a, PyLongObject *b)
+{
+ Py_ssize_t size_a = ABS(Py_SIZE(a)), size_b = ABS(Py_SIZE(b));
+ PyLongObject *z;
+ Py_ssize_t i;
+ int sign = 1;
+ digit borrow = 0;
+
+ /* Ensure a is the larger of the two: */
+ if (size_a < size_b) {
+ sign = -1;
+ { PyLongObject *temp = a; a = b; b = temp; }
+ { Py_ssize_t size_temp = size_a;
+ size_a = size_b;
+ size_b = size_temp; }
+ }
+ else if (size_a == size_b) {
+ /* Find highest digit where a and b differ: */
+ i = size_a;
+ while (--i >= 0 && a->ob_digit[i] == b->ob_digit[i])
+ ;
+ if (i < 0)
+ return _PyLong_New(0);
+ if (a->ob_digit[i] < b->ob_digit[i]) {
+ sign = -1;
+ { PyLongObject *temp = a; a = b; b = temp; }
+ }
+ size_a = size_b = i+1;
+ }
+ z = _PyLong_New(size_a);
+ if (z == NULL)
+ return NULL;
+ for (i = 0; i < size_b; ++i) {
+ /* The following assumes unsigned arithmetic
+ works module 2**N for some N>PyLong_SHIFT. */
+ borrow = a->ob_digit[i] - b->ob_digit[i] - borrow;
+ z->ob_digit[i] = borrow & PyLong_MASK;
+ borrow >>= PyLong_SHIFT;
+ borrow &= 1; /* Keep only one sign bit */
+ }
+ for (; i < size_a; ++i) {
+ borrow = a->ob_digit[i] - borrow;
+ z->ob_digit[i] = borrow & PyLong_MASK;
+ borrow >>= PyLong_SHIFT;
+ borrow &= 1; /* Keep only one sign bit */
+ }
+ assert(borrow == 0);
+ if (sign < 0)
+ z->ob_size = -(z->ob_size);
+ return long_normalize(z);
+}
+
+static PyObject *
+long_add(PyLongObject *v, PyLongObject *w)
+{
+ PyLongObject *a, *b, *z;
+
+ CONVERT_BINOP((PyObject *)v, (PyObject *)w, &a, &b);
+
+ if (a->ob_size < 0) {
+ if (b->ob_size < 0) {
+ z = x_add(a, b);
+ if (z != NULL && z->ob_size != 0)
+ z->ob_size = -(z->ob_size);
+ }
+ else
+ z = x_sub(b, a);
+ }
+ else {
+ if (b->ob_size < 0)
+ z = x_sub(a, b);
+ else
+ z = x_add(a, b);
+ }
+ Py_DECREF(a);
+ Py_DECREF(b);
+ return (PyObject *)z;
+}
+
+static PyObject *
+long_sub(PyLongObject *v, PyLongObject *w)
+{
+ PyLongObject *a, *b, *z;
+
+ CONVERT_BINOP((PyObject *)v, (PyObject *)w, &a, &b);
+
+ if (a->ob_size < 0) {
+ if (b->ob_size < 0)
+ z = x_sub(a, b);
+ else
+ z = x_add(a, b);
+ if (z != NULL && z->ob_size != 0)
+ z->ob_size = -(z->ob_size);
+ }
+ else {
+ if (b->ob_size < 0)
+ z = x_add(a, b);
+ else
+ z = x_sub(a, b);
+ }
+ Py_DECREF(a);
+ Py_DECREF(b);
+ return (PyObject *)z;
+}
+
+/* Grade school multiplication, ignoring the signs.
+ * Returns the absolute value of the product, or NULL if error.
+ */
+static PyLongObject *
+x_mul(PyLongObject *a, PyLongObject *b)
+{
+ PyLongObject *z;
+ Py_ssize_t size_a = ABS(Py_SIZE(a));
+ Py_ssize_t size_b = ABS(Py_SIZE(b));
+ Py_ssize_t i;
+
+ z = _PyLong_New(size_a + size_b);
+ if (z == NULL)
+ return NULL;
+
+ memset(z->ob_digit, 0, Py_SIZE(z) * sizeof(digit));
+ if (a == b) {
+ /* Efficient squaring per HAC, Algorithm 14.16:
+ * http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf
+ * Gives slightly less than a 2x speedup when a == b,
+ * via exploiting that each entry in the multiplication
+ * pyramid appears twice (except for the size_a squares).
+ */
+ for (i = 0; i < size_a; ++i) {
+ twodigits carry;
+ twodigits f = a->ob_digit[i];
+ digit *pz = z->ob_digit + (i << 1);
+ digit *pa = a->ob_digit + i + 1;
+ digit *paend = a->ob_digit + size_a;
+
+ SIGCHECK({
+ Py_DECREF(z);
+ return NULL;
+ });
+
+ carry = *pz + f * f;
+ *pz++ = (digit)(carry & PyLong_MASK);
+ carry >>= PyLong_SHIFT;
+ assert(carry <= PyLong_MASK);
+
+ /* Now f is added in twice in each column of the
+ * pyramid it appears. Same as adding f<<1 once.
+ */
+ f <<= 1;
+ while (pa < paend) {
+ carry += *pz + *pa++ * f;
+ *pz++ = (digit)(carry & PyLong_MASK);
+ carry >>= PyLong_SHIFT;
+ assert(carry <= (PyLong_MASK << 1));
+ }
+ if (carry) {
+ carry += *pz;
+ *pz++ = (digit)(carry & PyLong_MASK);
+ carry >>= PyLong_SHIFT;
+ }
+ if (carry)
+ *pz += (digit)(carry & PyLong_MASK);
+ assert((carry >> PyLong_SHIFT) == 0);
+ }
+ }
+ else { /* a is not the same as b -- gradeschool long mult */
+ for (i = 0; i < size_a; ++i) {
+ twodigits carry = 0;
+ twodigits f = a->ob_digit[i];
+ digit *pz = z->ob_digit + i;
+ digit *pb = b->ob_digit;
+ digit *pbend = b->ob_digit + size_b;
+
+ SIGCHECK({
+ Py_DECREF(z);
+ return NULL;
+ });
+
+ while (pb < pbend) {
+ carry += *pz + *pb++ * f;
+ *pz++ = (digit)(carry & PyLong_MASK);
+ carry >>= PyLong_SHIFT;
+ assert(carry <= PyLong_MASK);
+ }
+ if (carry)
+ *pz += (digit)(carry & PyLong_MASK);
+ assert((carry >> PyLong_SHIFT) == 0);
+ }
+ }
+ return long_normalize(z);
+}
+
+/* A helper for Karatsuba multiplication (k_mul).
+ Takes a long "n" and an integer "size" representing the place to
+ split, and sets low and high such that abs(n) == (high << size) + low,
+ viewing the shift as being by digits. The sign bit is ignored, and
+ the return values are >= 0.
+ Returns 0 on success, -1 on failure.
+*/
+static int
+kmul_split(PyLongObject *n,
+ Py_ssize_t size,
+ PyLongObject **high,
+ PyLongObject **low)
+{
+ PyLongObject *hi, *lo;
+ Py_ssize_t size_lo, size_hi;
+ const Py_ssize_t size_n = ABS(Py_SIZE(n));
+
+ size_lo = MIN(size_n, size);
+ size_hi = size_n - size_lo;
+
+ if ((hi = _PyLong_New(size_hi)) == NULL)
+ return -1;
+ if ((lo = _PyLong_New(size_lo)) == NULL) {
+ Py_DECREF(hi);
+ return -1;
+ }
+
+ memcpy(lo->ob_digit, n->ob_digit, size_lo * sizeof(digit));
+ memcpy(hi->ob_digit, n->ob_digit + size_lo, size_hi * sizeof(digit));
+
+ *high = long_normalize(hi);
+ *low = long_normalize(lo);
+ return 0;
+}
+
+static PyLongObject *k_lopsided_mul(PyLongObject *a, PyLongObject *b);
+
+/* Karatsuba multiplication. Ignores the input signs, and returns the
+ * absolute value of the product (or NULL if error).
+ * See Knuth Vol. 2 Chapter 4.3.3 (Pp. 294-295).
+ */
+static PyLongObject *
+k_mul(PyLongObject *a, PyLongObject *b)
+{
+ Py_ssize_t asize = ABS(Py_SIZE(a));
+ Py_ssize_t bsize = ABS(Py_SIZE(b));
+ PyLongObject *ah = NULL;
+ PyLongObject *al = NULL;
+ PyLongObject *bh = NULL;
+ PyLongObject *bl = NULL;
+ PyLongObject *ret = NULL;
+ PyLongObject *t1, *t2, *t3;
+ Py_ssize_t shift; /* the number of digits we split off */
+ Py_ssize_t i;
+
+ /* (ah*X+al)(bh*X+bl) = ah*bh*X*X + (ah*bl + al*bh)*X + al*bl
+ * Let k = (ah+al)*(bh+bl) = ah*bl + al*bh + ah*bh + al*bl
+ * Then the original product is
+ * ah*bh*X*X + (k - ah*bh - al*bl)*X + al*bl
+ * By picking X to be a power of 2, "*X" is just shifting, and it's
+ * been reduced to 3 multiplies on numbers half the size.
+ */
+
+ /* We want to split based on the larger number; fiddle so that b
+ * is largest.
+ */
+ if (asize > bsize) {
+ t1 = a;
+ a = b;
+ b = t1;
+
+ i = asize;
+ asize = bsize;
+ bsize = i;
+ }
+
+ /* Use gradeschool math when either number is too small. */
+ i = a == b ? KARATSUBA_SQUARE_CUTOFF : KARATSUBA_CUTOFF;
+ if (asize <= i) {
+ if (asize == 0)
+ return _PyLong_New(0);
+ else
+ return x_mul(a, b);
+ }
+
+ /* If a is small compared to b, splitting on b gives a degenerate
+ * case with ah==0, and Karatsuba may be (even much) less efficient
+ * than "grade school" then. However, we can still win, by viewing
+ * b as a string of "big digits", each of width a->ob_size. That
+ * leads to a sequence of balanced calls to k_mul.
+ */
+ if (2 * asize <= bsize)
+ return k_lopsided_mul(a, b);
+
+ /* Split a & b into hi & lo pieces. */
+ shift = bsize >> 1;
+ if (kmul_split(a, shift, &ah, &al) < 0) goto fail;
+ assert(Py_SIZE(ah) > 0); /* the split isn't degenerate */
+
+ if (a == b) {
+ bh = ah;
+ bl = al;
+ Py_INCREF(bh);
+ Py_INCREF(bl);
+ }
+ else if (kmul_split(b, shift, &bh, &bl) < 0) goto fail;
+
+ /* The plan:
+ * 1. Allocate result space (asize + bsize digits: that's always
+ * enough).
+ * 2. Compute ah*bh, and copy into result at 2*shift.
+ * 3. Compute al*bl, and copy into result at 0. Note that this
+ * can't overlap with #2.
+ * 4. Subtract al*bl from the result, starting at shift. This may
+ * underflow (borrow out of the high digit), but we don't care:
+ * we're effectively doing unsigned arithmetic mod
+ * PyLong_BASE**(sizea + sizeb), and so long as the *final* result fits,
+ * borrows and carries out of the high digit can be ignored.
+ * 5. Subtract ah*bh from the result, starting at shift.
+ * 6. Compute (ah+al)*(bh+bl), and add it into the result starting
+ * at shift.
+ */
+
+ /* 1. Allocate result space. */
+ ret = _PyLong_New(asize + bsize);
+ if (ret == NULL) goto fail;
+#ifdef Py_DEBUG
+ /* Fill with trash, to catch reference to uninitialized digits. */
+ memset(ret->ob_digit, 0xDF, Py_SIZE(ret) * sizeof(digit));
+#endif
+
+ /* 2. t1 <- ah*bh, and copy into high digits of result. */
+ if ((t1 = k_mul(ah, bh)) == NULL) goto fail;
+ assert(Py_SIZE(t1) >= 0);
+ assert(2*shift + Py_SIZE(t1) <= Py_SIZE(ret));
+ memcpy(ret->ob_digit + 2*shift, t1->ob_digit,
+ Py_SIZE(t1) * sizeof(digit));
+
+ /* Zero-out the digits higher than the ah*bh copy. */
+ i = Py_SIZE(ret) - 2*shift - Py_SIZE(t1);
+ if (i)
+ memset(ret->ob_digit + 2*shift + Py_SIZE(t1), 0,
+ i * sizeof(digit));
+
+ /* 3. t2 <- al*bl, and copy into the low digits. */
+ if ((t2 = k_mul(al, bl)) == NULL) {
+ Py_DECREF(t1);
+ goto fail;
+ }
+ assert(Py_SIZE(t2) >= 0);
+ assert(Py_SIZE(t2) <= 2*shift); /* no overlap with high digits */
+ memcpy(ret->ob_digit, t2->ob_digit, Py_SIZE(t2) * sizeof(digit));
+
+ /* Zero out remaining digits. */
+ i = 2*shift - Py_SIZE(t2); /* number of uninitialized digits */
+ if (i)
+ memset(ret->ob_digit + Py_SIZE(t2), 0, i * sizeof(digit));
+
+ /* 4 & 5. Subtract ah*bh (t1) and al*bl (t2). We do al*bl first
+ * because it's fresher in cache.
+ */
+ i = Py_SIZE(ret) - shift; /* # digits after shift */
+ (void)v_isub(ret->ob_digit + shift, i, t2->ob_digit, Py_SIZE(t2));
+ Py_DECREF(t2);
+
+ (void)v_isub(ret->ob_digit + shift, i, t1->ob_digit, Py_SIZE(t1));
+ Py_DECREF(t1);
+
+ /* 6. t3 <- (ah+al)(bh+bl), and add into result. */
+ if ((t1 = x_add(ah, al)) == NULL) goto fail;
+ Py_DECREF(ah);
+ Py_DECREF(al);
+ ah = al = NULL;
+
+ if (a == b) {
+ t2 = t1;
+ Py_INCREF(t2);
+ }
+ else if ((t2 = x_add(bh, bl)) == NULL) {
+ Py_DECREF(t1);
+ goto fail;
+ }
+ Py_DECREF(bh);
+ Py_DECREF(bl);
+ bh = bl = NULL;
+
+ t3 = k_mul(t1, t2);
+ Py_DECREF(t1);
+ Py_DECREF(t2);
+ if (t3 == NULL) goto fail;
+ assert(Py_SIZE(t3) >= 0);
+
+ /* Add t3. It's not obvious why we can't run out of room here.
+ * See the (*) comment after this function.
+ */
+ (void)v_iadd(ret->ob_digit + shift, i, t3->ob_digit, Py_SIZE(t3));
+ Py_DECREF(t3);
+
+ return long_normalize(ret);
+
+ fail:
+ Py_XDECREF(ret);
+ Py_XDECREF(ah);
+ Py_XDECREF(al);
+ Py_XDECREF(bh);
+ Py_XDECREF(bl);
+ return NULL;
+}
+
+/* (*) Why adding t3 can't "run out of room" above.
+
+Let f(x) mean the floor of x and c(x) mean the ceiling of x. Some facts
+to start with:
+
+1. For any integer i, i = c(i/2) + f(i/2). In particular,
+ bsize = c(bsize/2) + f(bsize/2).
+2. shift = f(bsize/2)
+3. asize <= bsize
+4. Since we call k_lopsided_mul if asize*2 <= bsize, asize*2 > bsize in this
+ routine, so asize > bsize/2 >= f(bsize/2) in this routine.
+
+We allocated asize + bsize result digits, and add t3 into them at an offset
+of shift. This leaves asize+bsize-shift allocated digit positions for t3
+to fit into, = (by #1 and #2) asize + f(bsize/2) + c(bsize/2) - f(bsize/2) =
+asize + c(bsize/2) available digit positions.
+
+bh has c(bsize/2) digits, and bl at most f(size/2) digits. So bh+hl has
+at most c(bsize/2) digits + 1 bit.
+
+If asize == bsize, ah has c(bsize/2) digits, else ah has at most f(bsize/2)
+digits, and al has at most f(bsize/2) digits in any case. So ah+al has at
+most (asize == bsize ? c(bsize/2) : f(bsize/2)) digits + 1 bit.
+
+The product (ah+al)*(bh+bl) therefore has at most
+
+ c(bsize/2) + (asize == bsize ? c(bsize/2) : f(bsize/2)) digits + 2 bits
+
+and we have asize + c(bsize/2) available digit positions. We need to show
+this is always enough. An instance of c(bsize/2) cancels out in both, so
+the question reduces to whether asize digits is enough to hold
+(asize == bsize ? c(bsize/2) : f(bsize/2)) digits + 2 bits. If asize < bsize,
+then we're asking whether asize digits >= f(bsize/2) digits + 2 bits. By #4,
+asize is at least f(bsize/2)+1 digits, so this in turn reduces to whether 1
+digit is enough to hold 2 bits. This is so since PyLong_SHIFT=15 >= 2. If
+asize == bsize, then we're asking whether bsize digits is enough to hold
+c(bsize/2) digits + 2 bits, or equivalently (by #1) whether f(bsize/2) digits
+is enough to hold 2 bits. This is so if bsize >= 2, which holds because
+bsize >= KARATSUBA_CUTOFF >= 2.
+
+Note that since there's always enough room for (ah+al)*(bh+bl), and that's
+clearly >= each of ah*bh and al*bl, there's always enough room to subtract
+ah*bh and al*bl too.
+*/
+
+/* b has at least twice the digits of a, and a is big enough that Karatsuba
+ * would pay off *if* the inputs had balanced sizes. View b as a sequence
+ * of slices, each with a->ob_size digits, and multiply the slices by a,
+ * one at a time. This gives k_mul balanced inputs to work with, and is
+ * also cache-friendly (we compute one double-width slice of the result
+ * at a time, then move on, never backtracking except for the helpful
+ * single-width slice overlap between successive partial sums).
+ */
+static PyLongObject *
+k_lopsided_mul(PyLongObject *a, PyLongObject *b)
+{
+ const Py_ssize_t asize = ABS(Py_SIZE(a));
+ Py_ssize_t bsize = ABS(Py_SIZE(b));
+ Py_ssize_t nbdone; /* # of b digits already multiplied */
+ PyLongObject *ret;
+ PyLongObject *bslice = NULL;
+
+ assert(asize > KARATSUBA_CUTOFF);
+ assert(2 * asize <= bsize);
+
+ /* Allocate result space, and zero it out. */
+ ret = _PyLong_New(asize + bsize);
+ if (ret == NULL)
+ return NULL;
+ memset(ret->ob_digit, 0, Py_SIZE(ret) * sizeof(digit));
+
+ /* Successive slices of b are copied into bslice. */
+ bslice = _PyLong_New(asize);
+ if (bslice == NULL)
+ goto fail;
+
+ nbdone = 0;
+ while (bsize > 0) {
+ PyLongObject *product;
+ const Py_ssize_t nbtouse = MIN(bsize, asize);
+
+ /* Multiply the next slice of b by a. */
+ memcpy(bslice->ob_digit, b->ob_digit + nbdone,
+ nbtouse * sizeof(digit));
+ Py_SIZE(bslice) = nbtouse;
+ product = k_mul(a, bslice);
+ if (product == NULL)
+ goto fail;
+
+ /* Add into result. */
+ (void)v_iadd(ret->ob_digit + nbdone, Py_SIZE(ret) - nbdone,
+ product->ob_digit, Py_SIZE(product));
+ Py_DECREF(product);
+
+ bsize -= nbtouse;
+ nbdone += nbtouse;
+ }
+
+ Py_DECREF(bslice);
+ return long_normalize(ret);
+
+ fail:
+ Py_DECREF(ret);
+ Py_XDECREF(bslice);
+ return NULL;
+}
+
+static PyObject *
+long_mul(PyLongObject *v, PyLongObject *w)
+{
+ PyLongObject *a, *b, *z;
+
+ if (!convert_binop((PyObject *)v, (PyObject *)w, &a, &b)) {
+ Py_INCREF(Py_NotImplemented);
+ return Py_NotImplemented;
+ }
+
+ z = k_mul(a, b);
+ /* Negate if exactly one of the inputs is negative. */
+ if (((a->ob_size ^ b->ob_size) < 0) && z)
+ z->ob_size = -(z->ob_size);
+ Py_DECREF(a);
+ Py_DECREF(b);
+ return (PyObject *)z;
+}
+
+/* The / and % operators are now defined in terms of divmod().
+ The expression a mod b has the value a - b*floor(a/b).
+ The long_divrem function gives the remainder after division of
+ |a| by |b|, with the sign of a. This is also expressed
+ as a - b*trunc(a/b), if trunc truncates towards zero.
+ Some examples:
+ a b a rem b a mod b
+ 13 10 3 3
+ -13 10 -3 7
+ 13 -10 3 -7
+ -13 -10 -3 -3
+ So, to get from rem to mod, we have to add b if a and b
+ have different signs. We then subtract one from the 'div'
+ part of the outcome to keep the invariant intact. */
+
+/* Compute
+ * *pdiv, *pmod = divmod(v, w)
+ * NULL can be passed for pdiv or pmod, in which case that part of
+ * the result is simply thrown away. The caller owns a reference to
+ * each of these it requests (does not pass NULL for).
+ */
+static int
+l_divmod(PyLongObject *v, PyLongObject *w,
+ PyLongObject **pdiv, PyLongObject **pmod)
+{
+ PyLongObject *div, *mod;
+
+ if (long_divrem(v, w, &div, &mod) < 0)
+ return -1;
+ if ((Py_SIZE(mod) < 0 && Py_SIZE(w) > 0) ||
+ (Py_SIZE(mod) > 0 && Py_SIZE(w) < 0)) {
+ PyLongObject *temp;
+ PyLongObject *one;
+ temp = (PyLongObject *) long_add(mod, w);
+ Py_DECREF(mod);
+ mod = temp;
+ if (mod == NULL) {
+ Py_DECREF(div);
+ return -1;
+ }
+ one = (PyLongObject *) PyLong_FromLong(1L);
+ if (one == NULL ||
+ (temp = (PyLongObject *) long_sub(div, one)) == NULL) {
+ Py_DECREF(mod);
+ Py_DECREF(div);
+ Py_XDECREF(one);
+ return -1;
+ }
+ Py_DECREF(one);
+ Py_DECREF(div);
+ div = temp;
+ }
+ if (pdiv != NULL)
+ *pdiv = div;
+ else
+ Py_DECREF(div);
+
+ if (pmod != NULL)
+ *pmod = mod;
+ else
+ Py_DECREF(mod);
+
+ return 0;
+}
+
+static PyObject *
+long_div(PyObject *v, PyObject *w)
+{
+ PyLongObject *a, *b, *div;
+
+ CONVERT_BINOP(v, w, &a, &b);
+ if (l_divmod(a, b, &div, NULL) < 0)
+ div = NULL;
+ Py_DECREF(a);
+ Py_DECREF(b);
+ return (PyObject *)div;
+}
+
+static PyObject *
+long_classic_div(PyObject *v, PyObject *w)
+{
+ PyLongObject *a, *b, *div;
+
+ CONVERT_BINOP(v, w, &a, &b);
+ if (Py_DivisionWarningFlag &&
+ PyErr_Warn(PyExc_DeprecationWarning, "classic long division") < 0)
+ div = NULL;
+ else if (l_divmod(a, b, &div, NULL) < 0)
+ div = NULL;
+ Py_DECREF(a);
+ Py_DECREF(b);
+ return (PyObject *)div;
+}
+
+/* PyLong/PyLong -> float, with correctly rounded result. */
+
+#define MANT_DIG_DIGITS (DBL_MANT_DIG / PyLong_SHIFT)
+#define MANT_DIG_BITS (DBL_MANT_DIG % PyLong_SHIFT)
+
+static PyObject *
+long_true_divide(PyObject *v, PyObject *w)
+{
+ PyLongObject *a, *b, *x;
+ Py_ssize_t a_size, b_size, shift, extra_bits, diff, x_size, x_bits;
+ digit mask, low;
+ int inexact, negate, a_is_small, b_is_small;
+ double dx, result;
+
+ CONVERT_BINOP(v, w, &a, &b);
+
+ /*
+ Method in a nutshell:
+
+ 0. reduce to case a, b > 0; filter out obvious underflow/overflow
+ 1. choose a suitable integer 'shift'
+ 2. use integer arithmetic to compute x = floor(2**-shift*a/b)
+ 3. adjust x for correct rounding
+ 4. convert x to a double dx with the same value
+ 5. return ldexp(dx, shift).
+
+ In more detail:
+
+ 0. For any a, a/0 raises ZeroDivisionError; for nonzero b, 0/b
+ returns either 0.0 or -0.0, depending on the sign of b. For a and
+ b both nonzero, ignore signs of a and b, and add the sign back in
+ at the end. Now write a_bits and b_bits for the bit lengths of a
+ and b respectively (that is, a_bits = 1 + floor(log_2(a)); likewise
+ for b). Then
+
+ 2**(a_bits - b_bits - 1) < a/b < 2**(a_bits - b_bits + 1).
+
+ So if a_bits - b_bits > DBL_MAX_EXP then a/b > 2**DBL_MAX_EXP and
+ so overflows. Similarly, if a_bits - b_bits < DBL_MIN_EXP -
+ DBL_MANT_DIG - 1 then a/b underflows to 0. With these cases out of
+ the way, we can assume that
+
+ DBL_MIN_EXP - DBL_MANT_DIG - 1 <= a_bits - b_bits <= DBL_MAX_EXP.
+
+ 1. The integer 'shift' is chosen so that x has the right number of
+ bits for a double, plus two or three extra bits that will be used
+ in the rounding decisions. Writing a_bits and b_bits for the
+ number of significant bits in a and b respectively, a
+ straightforward formula for shift is:
+
+ shift = a_bits - b_bits - DBL_MANT_DIG - 2
+
+ This is fine in the usual case, but if a/b is smaller than the
+ smallest normal float then it can lead to double rounding on an
+ IEEE 754 platform, giving incorrectly rounded results. So we
+ adjust the formula slightly. The actual formula used is:
+
+ shift = MAX(a_bits - b_bits, DBL_MIN_EXP) - DBL_MANT_DIG - 2
+
+ 2. The quantity x is computed by first shifting a (left -shift bits
+ if shift <= 0, right shift bits if shift > 0) and then dividing by
+ b. For both the shift and the division, we keep track of whether
+ the result is inexact, in a flag 'inexact'; this information is
+ needed at the rounding stage.
+
+ With the choice of shift above, together with our assumption that
+ a_bits - b_bits >= DBL_MIN_EXP - DBL_MANT_DIG - 1, it follows
+ that x >= 1.
+
+ 3. Now x * 2**shift <= a/b < (x+1) * 2**shift. We want to replace
+ this with an exactly representable float of the form
+
+ round(x/2**extra_bits) * 2**(extra_bits+shift).
+
+ For float representability, we need x/2**extra_bits <
+ 2**DBL_MANT_DIG and extra_bits + shift >= DBL_MIN_EXP -
+ DBL_MANT_DIG. This translates to the condition:
+
+ extra_bits >= MAX(x_bits, DBL_MIN_EXP - shift) - DBL_MANT_DIG
+
+ To round, we just modify the bottom digit of x in-place; this can
+ end up giving a digit with value > PyLONG_MASK, but that's not a
+ problem since digits can hold values up to 2*PyLONG_MASK+1.
+
+ With the original choices for shift above, extra_bits will always
+ be 2 or 3. Then rounding under the round-half-to-even rule, we
+ round up iff the most significant of the extra bits is 1, and
+ either: (a) the computation of x in step 2 had an inexact result,
+ or (b) at least one other of the extra bits is 1, or (c) the least
+ significant bit of x (above those to be rounded) is 1.
+
+ 4. Conversion to a double is straightforward; all floating-point
+ operations involved in the conversion are exact, so there's no
+ danger of rounding errors.
+
+ 5. Use ldexp(x, shift) to compute x*2**shift, the final result.
+ The result will always be exactly representable as a double, except
+ in the case that it overflows. To avoid dependence on the exact
+ behaviour of ldexp on overflow, we check for overflow before
+ applying ldexp. The result of ldexp is adjusted for sign before
+ returning.
+ */
+
+ /* Reduce to case where a and b are both positive. */
+ a_size = ABS(Py_SIZE(a));
+ b_size = ABS(Py_SIZE(b));
+ negate = (Py_SIZE(a) < 0) ^ (Py_SIZE(b) < 0);
+ if (b_size == 0) {
+ PyErr_SetString(PyExc_ZeroDivisionError,
+ "division by zero");
+ goto error;
+ }
+ if (a_size == 0)
+ goto underflow_or_zero;
+
+ /* Fast path for a and b small (exactly representable in a double).
+ Relies on floating-point division being correctly rounded; results
+ may be subject to double rounding on x86 machines that operate with
+ the x87 FPU set to 64-bit precision. */
+ a_is_small = a_size <= MANT_DIG_DIGITS ||
+ (a_size == MANT_DIG_DIGITS+1 &&
+ a->ob_digit[MANT_DIG_DIGITS] >> MANT_DIG_BITS == 0);
+ b_is_small = b_size <= MANT_DIG_DIGITS ||
+ (b_size == MANT_DIG_DIGITS+1 &&
+ b->ob_digit[MANT_DIG_DIGITS] >> MANT_DIG_BITS == 0);
+ if (a_is_small && b_is_small) {
+ double da, db;
+ da = a->ob_digit[--a_size];
+ while (a_size > 0)
+ da = da * PyLong_BASE + a->ob_digit[--a_size];
+ db = b->ob_digit[--b_size];
+ while (b_size > 0)
+ db = db * PyLong_BASE + b->ob_digit[--b_size];
+ result = da / db;
+ goto success;
+ }
+
+ /* Catch obvious cases of underflow and overflow */
+ diff = a_size - b_size;
+ if (diff > PY_SSIZE_T_MAX/PyLong_SHIFT - 1)
+ /* Extreme overflow */
+ goto overflow;
+ else if (diff < 1 - PY_SSIZE_T_MAX/PyLong_SHIFT)
+ /* Extreme underflow */
+ goto underflow_or_zero;
+ /* Next line is now safe from overflowing a Py_ssize_t */
+ diff = diff * PyLong_SHIFT + bits_in_digit(a->ob_digit[a_size - 1]) -
+ bits_in_digit(b->ob_digit[b_size - 1]);
+ /* Now diff = a_bits - b_bits. */
+ if (diff > DBL_MAX_EXP)
+ goto overflow;
+ else if (diff < DBL_MIN_EXP - DBL_MANT_DIG - 1)
+ goto underflow_or_zero;
+
+ /* Choose value for shift; see comments for step 1 above. */
+ shift = MAX(diff, DBL_MIN_EXP) - DBL_MANT_DIG - 2;
+
+ inexact = 0;
+
+ /* x = abs(a * 2**-shift) */
+ if (shift <= 0) {
+ Py_ssize_t i, shift_digits = -shift / PyLong_SHIFT;
+ digit rem;
+ /* x = a << -shift */
+ if (a_size >= PY_SSIZE_T_MAX - 1 - shift_digits) {
+ /* In practice, it's probably impossible to end up
+ here. Both a and b would have to be enormous,
+ using close to SIZE_T_MAX bytes of memory each. */
+ PyErr_SetString(PyExc_OverflowError,
+ "intermediate overflow during division");
+ goto error;
+ }
+ x = _PyLong_New(a_size + shift_digits + 1);
+ if (x == NULL)
+ goto error;
+ for (i = 0; i < shift_digits; i++)
+ x->ob_digit[i] = 0;
+ rem = v_lshift(x->ob_digit + shift_digits, a->ob_digit,
+ a_size, -shift % PyLong_SHIFT);
+ x->ob_digit[a_size + shift_digits] = rem;
+ }
+ else {
+ Py_ssize_t shift_digits = shift / PyLong_SHIFT;
+ digit rem;
+ /* x = a >> shift */
+ assert(a_size >= shift_digits);
+ x = _PyLong_New(a_size - shift_digits);
+ if (x == NULL)
+ goto error;
+ rem = v_rshift(x->ob_digit, a->ob_digit + shift_digits,
+ a_size - shift_digits, shift % PyLong_SHIFT);
+ /* set inexact if any of the bits shifted out is nonzero */
+ if (rem)
+ inexact = 1;
+ while (!inexact && shift_digits > 0)
+ if (a->ob_digit[--shift_digits])
+ inexact = 1;
+ }
+ long_normalize(x);
+ x_size = Py_SIZE(x);
+
+ /* x //= b. If the remainder is nonzero, set inexact. We own the only
+ reference to x, so it's safe to modify it in-place. */
+ if (b_size == 1) {
+ digit rem = inplace_divrem1(x->ob_digit, x->ob_digit, x_size,
+ b->ob_digit[0]);
+ long_normalize(x);
+ if (rem)
+ inexact = 1;
+ }
+ else {
+ PyLongObject *div, *rem;
+ div = x_divrem(x, b, &rem);
+ Py_DECREF(x);
+ x = div;
+ if (x == NULL)
+ goto error;
+ if (Py_SIZE(rem))
+ inexact = 1;
+ Py_DECREF(rem);
+ }
+ x_size = ABS(Py_SIZE(x));
+ assert(x_size > 0); /* result of division is never zero */
+ x_bits = (x_size-1)*PyLong_SHIFT+bits_in_digit(x->ob_digit[x_size-1]);
+
+ /* The number of extra bits that have to be rounded away. */
+ extra_bits = MAX(x_bits, DBL_MIN_EXP - shift) - DBL_MANT_DIG;
+ assert(extra_bits == 2 || extra_bits == 3);
+
+ /* Round by directly modifying the low digit of x. */
+ mask = (digit)1 << (extra_bits - 1);
+ low = x->ob_digit[0] | inexact;
+ if (low & mask && low & (3*mask-1))
+ low += mask;
+ x->ob_digit[0] = low & ~(mask-1U);
+
+ /* Convert x to a double dx; the conversion is exact. */
+ dx = x->ob_digit[--x_size];
+ while (x_size > 0)
+ dx = dx * PyLong_BASE + x->ob_digit[--x_size];
+ Py_DECREF(x);
+
+ /* Check whether ldexp result will overflow a double. */
+ if (shift + x_bits >= DBL_MAX_EXP &&
+ (shift + x_bits > DBL_MAX_EXP || dx == ldexp(1.0, (int)x_bits)))
+ goto overflow;
+ result = ldexp(dx, (int)shift);
+
+ success:
+ Py_DECREF(a);
+ Py_DECREF(b);
+ return PyFloat_FromDouble(negate ? -result : result);
+
+ underflow_or_zero:
+ Py_DECREF(a);
+ Py_DECREF(b);
+ return PyFloat_FromDouble(negate ? -0.0 : 0.0);
+
+ overflow:
+ PyErr_SetString(PyExc_OverflowError,
+ "integer division result too large for a float");
+ error:
+ Py_DECREF(a);
+ Py_DECREF(b);
+ return NULL;
+}
+
+static PyObject *
+long_mod(PyObject *v, PyObject *w)
+{
+ PyLongObject *a, *b, *mod;
+
+ CONVERT_BINOP(v, w, &a, &b);
+
+ if (l_divmod(a, b, NULL, &mod) < 0)
+ mod = NULL;
+ Py_DECREF(a);
+ Py_DECREF(b);
+ return (PyObject *)mod;
+}
+
+static PyObject *
+long_divmod(PyObject *v, PyObject *w)
+{
+ PyLongObject *a, *b, *div, *mod;
+ PyObject *z;
+
+ CONVERT_BINOP(v, w, &a, &b);
+
+ if (l_divmod(a, b, &div, &mod) < 0) {
+ Py_DECREF(a);
+ Py_DECREF(b);
+ return NULL;
+ }
+ z = PyTuple_New(2);
+ if (z != NULL) {
+ PyTuple_SetItem(z, 0, (PyObject *) div);
+ PyTuple_SetItem(z, 1, (PyObject *) mod);
+ }
+ else {
+ Py_DECREF(div);
+ Py_DECREF(mod);
+ }
+ Py_DECREF(a);
+ Py_DECREF(b);
+ return z;
+}
+
+/* pow(v, w, x) */
+static PyObject *
+long_pow(PyObject *v, PyObject *w, PyObject *x)
+{
+ PyLongObject *a, *b, *c; /* a,b,c = v,w,x */
+ int negativeOutput = 0; /* if x<0 return negative output */
+
+ PyLongObject *z = NULL; /* accumulated result */
+ Py_ssize_t i, j, k; /* counters */
+ PyLongObject *temp = NULL;
+
+ /* 5-ary values. If the exponent is large enough, table is
+ * precomputed so that table[i] == a**i % c for i in range(32).
+ */
+ PyLongObject *table[32] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
+
+ /* a, b, c = v, w, x */
+ CONVERT_BINOP(v, w, &a, &b);
+ if (PyLong_Check(x)) {
+ c = (PyLongObject *)x;
+ Py_INCREF(x);
+ }
+ else if (PyInt_Check(x)) {
+ c = (PyLongObject *)PyLong_FromLong(PyInt_AS_LONG(x));
+ if (c == NULL)
+ goto Error;
+ }
+ else if (x == Py_None)
+ c = NULL;
+ else {
+ Py_DECREF(a);
+ Py_DECREF(b);
+ Py_INCREF(Py_NotImplemented);
+ return Py_NotImplemented;
+ }
+
+ if (Py_SIZE(b) < 0) { /* if exponent is negative */
+ if (c) {
+ PyErr_SetString(PyExc_TypeError, "pow() 2nd argument "
+ "cannot be negative when 3rd argument specified");
+ goto Error;
+ }
+ else {
+ /* else return a float. This works because we know
+ that this calls float_pow() which converts its
+ arguments to double. */
+ Py_DECREF(a);
+ Py_DECREF(b);
+ return PyFloat_Type.tp_as_number->nb_power(v, w, x);
+ }
+ }
+
+ if (c) {
+ /* if modulus == 0:
+ raise ValueError() */
+ if (Py_SIZE(c) == 0) {
+ PyErr_SetString(PyExc_ValueError,
+ "pow() 3rd argument cannot be 0");
+ goto Error;
+ }
+
+ /* if modulus < 0:
+ negativeOutput = True
+ modulus = -modulus */
+ if (Py_SIZE(c) < 0) {
+ negativeOutput = 1;
+ temp = (PyLongObject *)_PyLong_Copy(c);
+ if (temp == NULL)
+ goto Error;
+ Py_DECREF(c);
+ c = temp;
+ temp = NULL;
+ c->ob_size = - c->ob_size;
+ }
+
+ /* if modulus == 1:
+ return 0 */
+ if ((Py_SIZE(c) == 1) && (c->ob_digit[0] == 1)) {
+ z = (PyLongObject *)PyLong_FromLong(0L);
+ goto Done;
+ }
+
+ /* if base < 0:
+ base = base % modulus
+ Having the base positive just makes things easier. */
+ if (Py_SIZE(a) < 0) {
+ if (l_divmod(a, c, NULL, &temp) < 0)
+ goto Error;
+ Py_DECREF(a);
+ a = temp;
+ temp = NULL;
+ }
+ }
+
+ /* At this point a, b, and c are guaranteed non-negative UNLESS
+ c is NULL, in which case a may be negative. */
+
+ z = (PyLongObject *)PyLong_FromLong(1L);
+ if (z == NULL)
+ goto Error;
+
+ /* Perform a modular reduction, X = X % c, but leave X alone if c
+ * is NULL.
+ */
+#define REDUCE(X) \
+ do { \
+ if (c != NULL) { \
+ if (l_divmod(X, c, NULL, &temp) < 0) \
+ goto Error; \
+ Py_XDECREF(X); \
+ X = temp; \
+ temp = NULL; \
+ } \
+ } while(0)
+
+ /* Multiply two values, then reduce the result:
+ result = X*Y % c. If c is NULL, skip the mod. */
+#define MULT(X, Y, result) \
+ do { \
+ temp = (PyLongObject *)long_mul(X, Y); \
+ if (temp == NULL) \
+ goto Error; \
+ Py_XDECREF(result); \
+ result = temp; \
+ temp = NULL; \
+ REDUCE(result); \
+ } while(0)
+
+ if (Py_SIZE(b) <= FIVEARY_CUTOFF) {
+ /* Left-to-right binary exponentiation (HAC Algorithm 14.79) */
+ /* http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf */
+ for (i = Py_SIZE(b) - 1; i >= 0; --i) {
+ digit bi = b->ob_digit[i];
+
+ for (j = (digit)1 << (PyLong_SHIFT-1); j != 0; j >>= 1) {
+ MULT(z, z, z);
+ if (bi & j)
+ MULT(z, a, z);
+ }
+ }
+ }
+ else {
+ /* Left-to-right 5-ary exponentiation (HAC Algorithm 14.82) */
+ Py_INCREF(z); /* still holds 1L */
+ table[0] = z;
+ for (i = 1; i < 32; ++i)
+ MULT(table[i-1], a, table[i]);
+
+ for (i = Py_SIZE(b) - 1; i >= 0; --i) {
+ const digit bi = b->ob_digit[i];
+
+ for (j = PyLong_SHIFT - 5; j >= 0; j -= 5) {
+ const int index = (bi >> j) & 0x1f;
+ for (k = 0; k < 5; ++k)
+ MULT(z, z, z);
+ if (index)
+ MULT(z, table[index], z);
+ }
+ }
+ }
+
+ if (negativeOutput && (Py_SIZE(z) != 0)) {
+ temp = (PyLongObject *)long_sub(z, c);
+ if (temp == NULL)
+ goto Error;
+ Py_DECREF(z);
+ z = temp;
+ temp = NULL;
+ }
+ goto Done;
+
+ Error:
+ if (z != NULL) {
+ Py_DECREF(z);
+ z = NULL;
+ }
+ /* fall through */
+ Done:
+ if (Py_SIZE(b) > FIVEARY_CUTOFF) {
+ for (i = 0; i < 32; ++i)
+ Py_XDECREF(table[i]);
+ }
+ Py_DECREF(a);
+ Py_DECREF(b);
+ Py_XDECREF(c);
+ Py_XDECREF(temp);
+ return (PyObject *)z;
+}
+
+static PyObject *
+long_invert(PyLongObject *v)
+{
+ /* Implement ~x as -(x+1) */
+ PyLongObject *x;
+ PyLongObject *w;
+ w = (PyLongObject *)PyLong_FromLong(1L);
+ if (w == NULL)
+ return NULL;
+ x = (PyLongObject *) long_add(v, w);
+ Py_DECREF(w);
+ if (x == NULL)
+ return NULL;
+ Py_SIZE(x) = -(Py_SIZE(x));
+ return (PyObject *)x;
+}
+
+static PyObject *
+long_neg(PyLongObject *v)
+{
+ PyLongObject *z;
+ if (v->ob_size == 0 && PyLong_CheckExact(v)) {
+ /* -0 == 0 */
+ Py_INCREF(v);
+ return (PyObject *) v;
+ }
+ z = (PyLongObject *)_PyLong_Copy(v);
+ if (z != NULL)
+ z->ob_size = -(v->ob_size);
+ return (PyObject *)z;
+}
+
+static PyObject *
+long_abs(PyLongObject *v)
+{
+ if (v->ob_size < 0)
+ return long_neg(v);
+ else
+ return long_long((PyObject *)v);
+}
+
+static int
+long_nonzero(PyLongObject *v)
+{
+ return Py_SIZE(v) != 0;
+}
+
+static PyObject *
+long_rshift(PyLongObject *v, PyLongObject *w)
+{
+ PyLongObject *a, *b;
+ PyLongObject *z = NULL;
+ Py_ssize_t shiftby, newsize, wordshift, loshift, hishift, i, j;
+ digit lomask, himask;
+
+ CONVERT_BINOP((PyObject *)v, (PyObject *)w, &a, &b);
+
+ if (Py_SIZE(a) < 0) {
+ /* Right shifting negative numbers is harder */
+ PyLongObject *a1, *a2;
+ a1 = (PyLongObject *) long_invert(a);
+ if (a1 == NULL)
+ goto rshift_error;
+ a2 = (PyLongObject *) long_rshift(a1, b);
+ Py_DECREF(a1);
+ if (a2 == NULL)
+ goto rshift_error;
+ z = (PyLongObject *) long_invert(a2);
+ Py_DECREF(a2);
+ }
+ else {
+ shiftby = PyLong_AsSsize_t((PyObject *)b);
+ if (shiftby == -1L && PyErr_Occurred())
+ goto rshift_error;
+ if (shiftby < 0) {
+ PyErr_SetString(PyExc_ValueError,
+ "negative shift count");
+ goto rshift_error;
+ }
+ wordshift = shiftby / PyLong_SHIFT;
+ newsize = ABS(Py_SIZE(a)) - wordshift;
+ if (newsize <= 0) {
+ z = _PyLong_New(0);
+ Py_DECREF(a);
+ Py_DECREF(b);
+ return (PyObject *)z;
+ }
+ loshift = shiftby % PyLong_SHIFT;
+ hishift = PyLong_SHIFT - loshift;
+ lomask = ((digit)1 << hishift) - 1;
+ himask = PyLong_MASK ^ lomask;
+ z = _PyLong_New(newsize);
+ if (z == NULL)
+ goto rshift_error;
+ if (Py_SIZE(a) < 0)
+ Py_SIZE(z) = -(Py_SIZE(z));
+ for (i = 0, j = wordshift; i < newsize; i++, j++) {
+ z->ob_digit[i] = (a->ob_digit[j] >> loshift) & lomask;
+ if (i+1 < newsize)
+ z->ob_digit[i] |= (a->ob_digit[j+1] << hishift) & himask;
+ }
+ z = long_normalize(z);
+ }
+ rshift_error:
+ Py_DECREF(a);
+ Py_DECREF(b);
+ return (PyObject *) z;
+
+}
+
+static PyObject *
+long_lshift(PyObject *v, PyObject *w)
+{
+ /* This version due to Tim Peters */
+ PyLongObject *a, *b;
+ PyLongObject *z = NULL;
+ Py_ssize_t shiftby, oldsize, newsize, wordshift, remshift, i, j;
+ twodigits accum;
+
+ CONVERT_BINOP(v, w, &a, &b);
+
+ shiftby = PyLong_AsSsize_t((PyObject *)b);
+ if (shiftby == -1L && PyErr_Occurred())
+ goto lshift_error;
+ if (shiftby < 0) {
+ PyErr_SetString(PyExc_ValueError, "negative shift count");
+ goto lshift_error;
+ }
+ /* wordshift, remshift = divmod(shiftby, PyLong_SHIFT) */
+ wordshift = shiftby / PyLong_SHIFT;
+ remshift = shiftby - wordshift * PyLong_SHIFT;
+
+ oldsize = ABS(a->ob_size);
+ newsize = oldsize + wordshift;
+ if (remshift)
+ ++newsize;
+ z = _PyLong_New(newsize);
+ if (z == NULL)
+ goto lshift_error;
+ if (a->ob_size < 0)
+ z->ob_size = -(z->ob_size);
+ for (i = 0; i < wordshift; i++)
+ z->ob_digit[i] = 0;
+ accum = 0;
+ for (i = wordshift, j = 0; j < oldsize; i++, j++) {
+ accum |= (twodigits)a->ob_digit[j] << remshift;
+ z->ob_digit[i] = (digit)(accum & PyLong_MASK);
+ accum >>= PyLong_SHIFT;
+ }
+ if (remshift)
+ z->ob_digit[newsize-1] = (digit)accum;
+ else
+ assert(!accum);
+ z = long_normalize(z);
+ lshift_error:
+ Py_DECREF(a);
+ Py_DECREF(b);
+ return (PyObject *) z;
+}
+
+/* Compute two's complement of digit vector a[0:m], writing result to
+ z[0:m]. The digit vector a need not be normalized, but should not
+ be entirely zero. a and z may point to the same digit vector. */
+
+static void
+v_complement(digit *z, digit *a, Py_ssize_t m)
+{
+ Py_ssize_t i;
+ digit carry = 1;
+ for (i = 0; i < m; ++i) {
+ carry += a[i] ^ PyLong_MASK;
+ z[i] = carry & PyLong_MASK;
+ carry >>= PyLong_SHIFT;
+ }
+ assert(carry == 0);
+}
+
+/* Bitwise and/xor/or operations */
+
+static PyObject *
+long_bitwise(PyLongObject *a,
+ int op, /* '&', '|', '^' */
+ PyLongObject *b)
+{
+ int nega, negb, negz;
+ Py_ssize_t size_a, size_b, size_z, i;
+ PyLongObject *z;
+
+ /* Bitwise operations for negative numbers operate as though
+ on a two's complement representation. So convert arguments
+ from sign-magnitude to two's complement, and convert the
+ result back to sign-magnitude at the end. */
+
+ /* If a is negative, replace it by its two's complement. */
+ size_a = ABS(Py_SIZE(a));
+ nega = Py_SIZE(a) < 0;
+ if (nega) {
+ z = _PyLong_New(size_a);
+ if (z == NULL)
+ return NULL;
+ v_complement(z->ob_digit, a->ob_digit, size_a);
+ a = z;
+ }
+ else
+ /* Keep reference count consistent. */
+ Py_INCREF(a);
+
+ /* Same for b. */
+ size_b = ABS(Py_SIZE(b));
+ negb = Py_SIZE(b) < 0;
+ if (negb) {
+ z = _PyLong_New(size_b);
+ if (z == NULL) {
+ Py_DECREF(a);
+ return NULL;
+ }
+ v_complement(z->ob_digit, b->ob_digit, size_b);
+ b = z;
+ }
+ else
+ Py_INCREF(b);
+
+ /* Swap a and b if necessary to ensure size_a >= size_b. */
+ if (size_a < size_b) {
+ z = a; a = b; b = z;
+ size_z = size_a; size_a = size_b; size_b = size_z;
+ negz = nega; nega = negb; negb = negz;
+ }
+
+ /* JRH: The original logic here was to allocate the result value (z)
+ as the longer of the two operands. However, there are some cases
+ where the result is guaranteed to be shorter than that: AND of two
+ positives, OR of two negatives: use the shorter number. AND with
+ mixed signs: use the positive number. OR with mixed signs: use the
+ negative number.
+ */
+ switch (op) {
+ case '^':
+ negz = nega ^ negb;
+ size_z = size_a;
+ break;
+ case '&':
+ negz = nega & negb;
+ size_z = negb ? size_a : size_b;
+ break;
+ case '|':
+ negz = nega | negb;
+ size_z = negb ? size_b : size_a;
+ break;
+ default:
+ PyErr_BadArgument();
+ return NULL;
+ }
+
+ /* We allow an extra digit if z is negative, to make sure that
+ the final two's complement of z doesn't overflow. */
+ z = _PyLong_New(size_z + negz);
+ if (z == NULL) {
+ Py_DECREF(a);
+ Py_DECREF(b);
+ return NULL;
+ }
+
+ /* Compute digits for overlap of a and b. */
+ switch(op) {
+ case '&':
+ for (i = 0; i < size_b; ++i)
+ z->ob_digit[i] = a->ob_digit[i] & b->ob_digit[i];
+ break;
+ case '|':
+ for (i = 0; i < size_b; ++i)
+ z->ob_digit[i] = a->ob_digit[i] | b->ob_digit[i];
+ break;
+ case '^':
+ for (i = 0; i < size_b; ++i)
+ z->ob_digit[i] = a->ob_digit[i] ^ b->ob_digit[i];
+ break;
+ default:
+ PyErr_BadArgument();
+ return NULL;
+ }
+
+ /* Copy any remaining digits of a, inverting if necessary. */
+ if (op == '^' && negb)
+ for (; i < size_z; ++i)
+ z->ob_digit[i] = a->ob_digit[i] ^ PyLong_MASK;
+ else if (i < size_z)
+ memcpy(&z->ob_digit[i], &a->ob_digit[i],
+ (size_z-i)*sizeof(digit));
+
+ /* Complement result if negative. */
+ if (negz) {
+ Py_SIZE(z) = -(Py_SIZE(z));
+ z->ob_digit[size_z] = PyLong_MASK;
+ v_complement(z->ob_digit, z->ob_digit, size_z+1);
+ }
+
+ Py_DECREF(a);
+ Py_DECREF(b);
+ return (PyObject *)long_normalize(z);
+}
+
+static PyObject *
+long_and(PyObject *v, PyObject *w)
+{
+ PyLongObject *a, *b;
+ PyObject *c;
+ CONVERT_BINOP(v, w, &a, &b);
+ c = long_bitwise(a, '&', b);
+ Py_DECREF(a);
+ Py_DECREF(b);
+ return c;
+}
+
+static PyObject *
+long_xor(PyObject *v, PyObject *w)
+{
+ PyLongObject *a, *b;
+ PyObject *c;
+ CONVERT_BINOP(v, w, &a, &b);
+ c = long_bitwise(a, '^', b);
+ Py_DECREF(a);
+ Py_DECREF(b);
+ return c;
+}
+
+static PyObject *
+long_or(PyObject *v, PyObject *w)
+{
+ PyLongObject *a, *b;
+ PyObject *c;
+ CONVERT_BINOP(v, w, &a, &b);
+ c = long_bitwise(a, '|', b);
+ Py_DECREF(a);
+ Py_DECREF(b);
+ return c;
+}
+
+static int
+long_coerce(PyObject **pv, PyObject **pw)
+{
+ if (PyInt_Check(*pw)) {
+ *pw = PyLong_FromLong(PyInt_AS_LONG(*pw));
+ if (*pw == NULL)
+ return -1;
+ Py_INCREF(*pv);
+ return 0;
+ }
+ else if (PyLong_Check(*pw)) {
+ Py_INCREF(*pv);
+ Py_INCREF(*pw);
+ return 0;
+ }
+ return 1; /* Can't do it */
+}
+
+static PyObject *
+long_long(PyObject *v)
+{
+ if (PyLong_CheckExact(v))
+ Py_INCREF(v);
+ else
+ v = _PyLong_Copy((PyLongObject *)v);
+ return v;
+}
+
+static PyObject *
+long_int(PyObject *v)
+{
+ long x;
+ x = PyLong_AsLong(v);
+ if (PyErr_Occurred()) {
+ if (PyErr_ExceptionMatches(PyExc_OverflowError)) {
+ PyErr_Clear();
+ if (PyLong_CheckExact(v)) {
+ Py_INCREF(v);
+ return v;
+ }
+ else
+ return _PyLong_Copy((PyLongObject *)v);
+ }
+ else
+ return NULL;
+ }
+ return PyInt_FromLong(x);
+}
+
+static PyObject *
+long_float(PyObject *v)
+{
+ double result;
+ result = PyLong_AsDouble(v);
+ if (result == -1.0 && PyErr_Occurred())
+ return NULL;
+ return PyFloat_FromDouble(result);
+}
+
+static PyObject *
+long_oct(PyObject *v)
+{
+ return _PyLong_Format(v, 8, 1, 0);
+}
+
+static PyObject *
+long_hex(PyObject *v)
+{
+ return _PyLong_Format(v, 16, 1, 0);
+}
+
+static PyObject *
+long_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds);
+
+static PyObject *
+long_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
+{
+ PyObject *x = NULL;
+ int base = -909; /* unlikely! */
+ static char *kwlist[] = {"x", "base", 0};
+
+ if (type != &PyLong_Type)
+ return long_subtype_new(type, args, kwds); /* Wimp out */
+ if (!PyArg_ParseTupleAndKeywords(args, kwds, "|Oi:long", kwlist,
+ &x, &base))
+ return NULL;
+ if (x == NULL)
+ return PyLong_FromLong(0L);
+ if (base == -909)
+ return PyNumber_Long(x);
+ else if (PyString_Check(x)) {
+ /* Since PyLong_FromString doesn't have a length parameter,
+ * check here for possible NULs in the string. */
+ char *string = PyString_AS_STRING(x);
+ if (strlen(string) != (size_t)PyString_Size(x)) {
+ /* create a repr() of the input string,
+ * just like PyLong_FromString does. */
+ PyObject *srepr;
+ srepr = PyObject_Repr(x);
+ if (srepr == NULL)
+ return NULL;
+ PyErr_Format(PyExc_ValueError,
+ "invalid literal for long() with base %d: %s",
+ base, PyString_AS_STRING(srepr));
+ Py_DECREF(srepr);
+ return NULL;
+ }
+ return PyLong_FromString(PyString_AS_STRING(x), NULL, base);
+ }
+#ifdef Py_USING_UNICODE
+ else if (PyUnicode_Check(x))
+ return PyLong_FromUnicode(PyUnicode_AS_UNICODE(x),
+ PyUnicode_GET_SIZE(x),
+ base);
+#endif
+ else {
+ PyErr_SetString(PyExc_TypeError,
+ "long() can't convert non-string with explicit base");
+ return NULL;
+ }
+}
+
+/* Wimpy, slow approach to tp_new calls for subtypes of long:
+ first create a regular long from whatever arguments we got,
+ then allocate a subtype instance and initialize it from
+ the regular long. The regular long is then thrown away.
+*/
+static PyObject *
+long_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
+{
+ PyLongObject *tmp, *newobj;
+ Py_ssize_t i, n;
+
+ assert(PyType_IsSubtype(type, &PyLong_Type));
+ tmp = (PyLongObject *)long_new(&PyLong_Type, args, kwds);
+ if (tmp == NULL)
+ return NULL;
+ assert(PyLong_CheckExact(tmp));
+ n = Py_SIZE(tmp);
+ if (n < 0)
+ n = -n;
+ newobj = (PyLongObject *)type->tp_alloc(type, n);
+ if (newobj == NULL) {
+ Py_DECREF(tmp);
+ return NULL;
+ }
+ assert(PyLong_Check(newobj));
+ Py_SIZE(newobj) = Py_SIZE(tmp);
+ for (i = 0; i < n; i++)
+ newobj->ob_digit[i] = tmp->ob_digit[i];
+ Py_DECREF(tmp);
+ return (PyObject *)newobj;
+}
+
+static PyObject *
+long_getnewargs(PyLongObject *v)
+{
+ return Py_BuildValue("(N)", _PyLong_Copy(v));
+}
+
+static PyObject *
+long_get0(PyLongObject *v, void *context) {
+ return PyLong_FromLong(0L);
+}
+
+static PyObject *
+long_get1(PyLongObject *v, void *context) {
+ return PyLong_FromLong(1L);
+}
+
+static PyObject *
+long__format__(PyObject *self, PyObject *args)
+{
+ PyObject *format_spec;
+
+ if (!PyArg_ParseTuple(args, "O:__format__", &format_spec))
+ return NULL;
+ if (PyBytes_Check(format_spec))
+ return _PyLong_FormatAdvanced(self,
+ PyBytes_AS_STRING(format_spec),
+ PyBytes_GET_SIZE(format_spec));
+ if (PyUnicode_Check(format_spec)) {
+ /* Convert format_spec to a str */
+ PyObject *result;
+ PyObject *str_spec = PyObject_Str(format_spec);
+
+ if (str_spec == NULL)
+ return NULL;
+
+ result = _PyLong_FormatAdvanced(self,
+ PyBytes_AS_STRING(str_spec),
+ PyBytes_GET_SIZE(str_spec));
+
+ Py_DECREF(str_spec);
+ return result;
+ }
+ PyErr_SetString(PyExc_TypeError, "__format__ requires str or unicode");
+ return NULL;
+}
+
+static PyObject *
+long_sizeof(PyLongObject *v)
+{
+ Py_ssize_t res;
+
+ res = v->ob_type->tp_basicsize + ABS(Py_SIZE(v))*sizeof(digit);
+ return PyInt_FromSsize_t(res);
+}
+
+static PyObject *
+long_bit_length(PyLongObject *v)
+{
+ PyLongObject *result, *x, *y;
+ Py_ssize_t ndigits, msd_bits = 0;
+ digit msd;
+
+ assert(v != NULL);
+ assert(PyLong_Check(v));
+
+ ndigits = ABS(Py_SIZE(v));
+ if (ndigits == 0)
+ return PyInt_FromLong(0);
+
+ msd = v->ob_digit[ndigits-1];
+ while (msd >= 32) {
+ msd_bits += 6;
+ msd >>= 6;
+ }
+ msd_bits += (long)(BitLengthTable[msd]);
+
+ if (ndigits <= PY_SSIZE_T_MAX/PyLong_SHIFT)
+ return PyInt_FromSsize_t((ndigits-1)*PyLong_SHIFT + msd_bits);
+
+ /* expression above may overflow; use Python integers instead */
+ result = (PyLongObject *)PyLong_FromSsize_t(ndigits - 1);
+ if (result == NULL)
+ return NULL;
+ x = (PyLongObject *)PyLong_FromLong(PyLong_SHIFT);
+ if (x == NULL)
+ goto error;
+ y = (PyLongObject *)long_mul(result, x);
+ Py_DECREF(x);
+ if (y == NULL)
+ goto error;
+ Py_DECREF(result);
+ result = y;
+
+ x = (PyLongObject *)PyLong_FromLong((long)msd_bits);
+ if (x == NULL)
+ goto error;
+ y = (PyLongObject *)long_add(result, x);
+ Py_DECREF(x);
+ if (y == NULL)
+ goto error;
+ Py_DECREF(result);
+ result = y;
+
+ return (PyObject *)result;
+
+ error:
+ Py_DECREF(result);
+ return NULL;
+}
+
+PyDoc_STRVAR(long_bit_length_doc,
+"long.bit_length() -> int or long\n\
+\n\
+Number of bits necessary to represent self in binary.\n\
+>>> bin(37L)\n\
+'0b100101'\n\
+>>> (37L).bit_length()\n\
+6");
+
+#if 0
+static PyObject *
+long_is_finite(PyObject *v)
+{
+ Py_RETURN_TRUE;
+}
+#endif
+
+static PyMethodDef long_methods[] = {
+ {"conjugate", (PyCFunction)long_long, METH_NOARGS,
+ "Returns self, the complex conjugate of any long."},
+ {"bit_length", (PyCFunction)long_bit_length, METH_NOARGS,
+ long_bit_length_doc},
+#if 0
+ {"is_finite", (PyCFunction)long_is_finite, METH_NOARGS,
+ "Returns always True."},
+#endif
+ {"__trunc__", (PyCFunction)long_long, METH_NOARGS,
+ "Truncating an Integral returns itself."},
+ {"__getnewargs__", (PyCFunction)long_getnewargs, METH_NOARGS},
+ {"__format__", (PyCFunction)long__format__, METH_VARARGS},
+ {"__sizeof__", (PyCFunction)long_sizeof, METH_NOARGS,
+ "Returns size in memory, in bytes"},
+ {NULL, NULL} /* sentinel */
+};
+
+static PyGetSetDef long_getset[] = {
+ {"real",
+ (getter)long_long, (setter)NULL,
+ "the real part of a complex number",
+ NULL},
+ {"imag",
+ (getter)long_get0, (setter)NULL,
+ "the imaginary part of a complex number",
+ NULL},
+ {"numerator",
+ (getter)long_long, (setter)NULL,
+ "the numerator of a rational number in lowest terms",
+ NULL},
+ {"denominator",
+ (getter)long_get1, (setter)NULL,
+ "the denominator of a rational number in lowest terms",
+ NULL},
+ {NULL} /* Sentinel */
+};
+
+PyDoc_STRVAR(long_doc,
+"long(x[, base]) -> integer\n\
+\n\
+Convert a string or number to a long integer, if possible. A floating\n\
+point argument will be truncated towards zero (this does not include a\n\
+string representation of a floating point number!) When converting a\n\
+string, use the optional base. It is an error to supply a base when\n\
+converting a non-string.");
+
+static PyNumberMethods long_as_number = {
+ (binaryfunc)long_add, /*nb_add*/
+ (binaryfunc)long_sub, /*nb_subtract*/
+ (binaryfunc)long_mul, /*nb_multiply*/
+ long_classic_div, /*nb_divide*/
+ long_mod, /*nb_remainder*/
+ long_divmod, /*nb_divmod*/
+ long_pow, /*nb_power*/
+ (unaryfunc)long_neg, /*nb_negative*/
+ (unaryfunc)long_long, /*tp_positive*/
+ (unaryfunc)long_abs, /*tp_absolute*/
+ (inquiry)long_nonzero, /*tp_nonzero*/
+ (unaryfunc)long_invert, /*nb_invert*/
+ long_lshift, /*nb_lshift*/
+ (binaryfunc)long_rshift, /*nb_rshift*/
+ long_and, /*nb_and*/
+ long_xor, /*nb_xor*/
+ long_or, /*nb_or*/
+ long_coerce, /*nb_coerce*/
+ long_int, /*nb_int*/
+ long_long, /*nb_long*/
+ long_float, /*nb_float*/
+ long_oct, /*nb_oct*/
+ long_hex, /*nb_hex*/
+ 0, /* nb_inplace_add */
+ 0, /* nb_inplace_subtract */
+ 0, /* nb_inplace_multiply */
+ 0, /* nb_inplace_divide */
+ 0, /* nb_inplace_remainder */
+ 0, /* nb_inplace_power */
+ 0, /* nb_inplace_lshift */
+ 0, /* nb_inplace_rshift */
+ 0, /* nb_inplace_and */
+ 0, /* nb_inplace_xor */
+ 0, /* nb_inplace_or */
+ long_div, /* nb_floor_divide */
+ long_true_divide, /* nb_true_divide */
+ 0, /* nb_inplace_floor_divide */
+ 0, /* nb_inplace_true_divide */
+ long_long, /* nb_index */
+};
+
+PyTypeObject PyLong_Type = {
+ PyObject_HEAD_INIT(&PyType_Type)
+ 0, /* ob_size */
+ "long", /* tp_name */
+ offsetof(PyLongObject, ob_digit), /* tp_basicsize */
+ sizeof(digit), /* tp_itemsize */
+ long_dealloc, /* tp_dealloc */
+ 0, /* tp_print */
+ 0, /* tp_getattr */
+ 0, /* tp_setattr */
+ (cmpfunc)long_compare, /* tp_compare */
+ long_repr, /* tp_repr */
+ &long_as_number, /* tp_as_number */
+ 0, /* tp_as_sequence */
+ 0, /* tp_as_mapping */
+ (hashfunc)long_hash, /* tp_hash */
+ 0, /* tp_call */
+ long_str, /* tp_str */
+ PyObject_GenericGetAttr, /* tp_getattro */
+ 0, /* tp_setattro */
+ 0, /* tp_as_buffer */
+ Py_TPFLAGS_DEFAULT | Py_TPFLAGS_CHECKTYPES |
+ Py_TPFLAGS_BASETYPE | Py_TPFLAGS_LONG_SUBCLASS, /* tp_flags */
+ long_doc, /* tp_doc */
+ 0, /* tp_traverse */
+ 0, /* tp_clear */
+ 0, /* tp_richcompare */
+ 0, /* tp_weaklistoffset */
+ 0, /* tp_iter */
+ 0, /* tp_iternext */
+ long_methods, /* tp_methods */
+ 0, /* tp_members */
+ long_getset, /* tp_getset */
+ 0, /* tp_base */
+ 0, /* tp_dict */
+ 0, /* tp_descr_get */
+ 0, /* tp_descr_set */
+ 0, /* tp_dictoffset */
+ 0, /* tp_init */
+ 0, /* tp_alloc */
+ long_new, /* tp_new */
+ PyObject_Del, /* tp_free */
+};
+
+static PyTypeObject Long_InfoType;
+
+PyDoc_STRVAR(long_info__doc__,
+"sys.long_info\n\
+\n\
+A struct sequence that holds information about Python's\n\
+internal representation of integers. The attributes are read only.");
+
+static PyStructSequence_Field long_info_fields[] = {
+ {"bits_per_digit", "size of a digit in bits"},
+ {"sizeof_digit", "size in bytes of the C type used to represent a digit"},
+ {NULL, NULL}
+};
+
+static PyStructSequence_Desc long_info_desc = {
+ "sys.long_info", /* name */
+ long_info__doc__, /* doc */
+ long_info_fields, /* fields */
+ 2 /* number of fields */
+};
+
+PyObject *
+PyLong_GetInfo(void)
+{
+ PyObject* long_info;
+ int field = 0;
+ long_info = PyStructSequence_New(&Long_InfoType);
+ if (long_info == NULL)
+ return NULL;
+ PyStructSequence_SET_ITEM(long_info, field++,
+ PyInt_FromLong(PyLong_SHIFT));
+ PyStructSequence_SET_ITEM(long_info, field++,
+ PyInt_FromLong(sizeof(digit)));
+ if (PyErr_Occurred()) {
+ Py_CLEAR(long_info);
+ return NULL;
+ }
+ return long_info;
+}
+
+int
+_PyLong_Init(void)
+{
+ /* initialize long_info */
+ if (Long_InfoType.tp_name == 0)
+ PyStructSequence_InitType(&Long_InfoType, &long_info_desc);
+ return 1;
+}
diff --git a/AppPkg/Applications/Python/PyMod-2.7.2/Objects/stringlib/localeutil.h b/AppPkg/Applications/Python/PyMod-2.7.2/Objects/stringlib/localeutil.h new file mode 100644 index 0000000000..25b7f6fbd7 --- /dev/null +++ b/AppPkg/Applications/Python/PyMod-2.7.2/Objects/stringlib/localeutil.h @@ -0,0 +1,216 @@ +/* stringlib: locale related helpers implementation */
+
+#ifndef STRINGLIB_LOCALEUTIL_H
+#define STRINGLIB_LOCALEUTIL_H
+
+#include <locale.h>
+
+// Prevent conflicts with EFI
+#undef MAX
+#undef MIN
+
+#define MAX(x, y) ((x) < (y) ? (y) : (x))
+#define MIN(x, y) ((x) < (y) ? (x) : (y))
+
+typedef struct {
+ const char *grouping;
+ char previous;
+ Py_ssize_t i; /* Where we're currently pointing in grouping. */
+} GroupGenerator;
+
+static void
+_GroupGenerator_init(GroupGenerator *self, const char *grouping)
+{
+ self->grouping = grouping;
+ self->i = 0;
+ self->previous = 0;
+}
+
+/* Returns the next grouping, or 0 to signify end. */
+static Py_ssize_t
+_GroupGenerator_next(GroupGenerator *self)
+{
+ /* Note that we don't really do much error checking here. If a
+ grouping string contains just CHAR_MAX, for example, then just
+ terminate the generator. That shouldn't happen, but at least we
+ fail gracefully. */
+ switch (self->grouping[self->i]) {
+ case 0:
+ return self->previous;
+ case CHAR_MAX:
+ /* Stop the generator. */
+ return 0;
+ default: {
+ char ch = self->grouping[self->i];
+ self->previous = ch;
+ self->i++;
+ return (Py_ssize_t)ch;
+ }
+ }
+}
+
+/* Fill in some digits, leading zeros, and thousands separator. All
+ are optional, depending on when we're called. */
+static void
+fill(STRINGLIB_CHAR **digits_end, STRINGLIB_CHAR **buffer_end,
+ Py_ssize_t n_chars, Py_ssize_t n_zeros, const char* thousands_sep,
+ Py_ssize_t thousands_sep_len)
+{
+#if STRINGLIB_IS_UNICODE
+ Py_ssize_t i;
+#endif
+
+ if (thousands_sep) {
+ *buffer_end -= thousands_sep_len;
+
+ /* Copy the thousands_sep chars into the buffer. */
+#if STRINGLIB_IS_UNICODE
+ /* Convert from the char's of the thousands_sep from
+ the locale into unicode. */
+ for (i = 0; i < thousands_sep_len; ++i)
+ (*buffer_end)[i] = thousands_sep[i];
+#else
+ /* No conversion, just memcpy the thousands_sep. */
+ memcpy(*buffer_end, thousands_sep, thousands_sep_len);
+#endif
+ }
+
+ *buffer_end -= n_chars;
+ *digits_end -= n_chars;
+ memcpy(*buffer_end, *digits_end, n_chars * sizeof(STRINGLIB_CHAR));
+
+ *buffer_end -= n_zeros;
+ STRINGLIB_FILL(*buffer_end, '0', n_zeros);
+}
+
+/**
+ * _Py_InsertThousandsGrouping:
+ * @buffer: A pointer to the start of a string.
+ * @n_buffer: Number of characters in @buffer.
+ * @digits: A pointer to the digits we're reading from. If count
+ * is non-NULL, this is unused.
+ * @n_digits: The number of digits in the string, in which we want
+ * to put the grouping chars.
+ * @min_width: The minimum width of the digits in the output string.
+ * Output will be zero-padded on the left to fill.
+ * @grouping: see definition in localeconv().
+ * @thousands_sep: see definition in localeconv().
+ *
+ * There are 2 modes: counting and filling. If @buffer is NULL,
+ * we are in counting mode, else filling mode.
+ * If counting, the required buffer size is returned.
+ * If filling, we know the buffer will be large enough, so we don't
+ * need to pass in the buffer size.
+ * Inserts thousand grouping characters (as defined by grouping and
+ * thousands_sep) into the string between buffer and buffer+n_digits.
+ *
+ * Return value: 0 on error, else 1. Note that no error can occur if
+ * count is non-NULL.
+ *
+ * This name won't be used, the includer of this file should define
+ * it to be the actual function name, based on unicode or string.
+ *
+ * As closely as possible, this code mimics the logic in decimal.py's
+ _insert_thousands_sep().
+ **/
+Py_ssize_t
+_Py_InsertThousandsGrouping(STRINGLIB_CHAR *buffer,
+ Py_ssize_t n_buffer,
+ STRINGLIB_CHAR *digits,
+ Py_ssize_t n_digits,
+ Py_ssize_t min_width,
+ const char *grouping,
+ const char *thousands_sep)
+{
+ Py_ssize_t count = 0;
+ Py_ssize_t n_zeros;
+ int loop_broken = 0;
+ int use_separator = 0; /* First time through, don't append the
+ separator. They only go between
+ groups. */
+ STRINGLIB_CHAR *buffer_end = NULL;
+ STRINGLIB_CHAR *digits_end = NULL;
+ Py_ssize_t l;
+ Py_ssize_t n_chars;
+ Py_ssize_t thousands_sep_len = strlen(thousands_sep);
+ Py_ssize_t remaining = n_digits; /* Number of chars remaining to
+ be looked at */
+ /* A generator that returns all of the grouping widths, until it
+ returns 0. */
+ GroupGenerator groupgen;
+ _GroupGenerator_init(&groupgen, grouping);
+
+ if (buffer) {
+ buffer_end = buffer + n_buffer;
+ digits_end = digits + n_digits;
+ }
+
+ while ((l = _GroupGenerator_next(&groupgen)) > 0) {
+ l = MIN(l, MAX(MAX(remaining, min_width), 1));
+ n_zeros = MAX(0, l - remaining);
+ n_chars = MAX(0, MIN(remaining, l));
+
+ /* Use n_zero zero's and n_chars chars */
+
+ /* Count only, don't do anything. */
+ count += (use_separator ? thousands_sep_len : 0) + n_zeros + n_chars;
+
+ if (buffer) {
+ /* Copy into the output buffer. */
+ fill(&digits_end, &buffer_end, n_chars, n_zeros,
+ use_separator ? thousands_sep : NULL, thousands_sep_len);
+ }
+
+ /* Use a separator next time. */
+ use_separator = 1;
+
+ remaining -= n_chars;
+ min_width -= l;
+
+ if (remaining <= 0 && min_width <= 0) {
+ loop_broken = 1;
+ break;
+ }
+ min_width -= thousands_sep_len;
+ }
+ if (!loop_broken) {
+ /* We left the loop without using a break statement. */
+
+ l = MAX(MAX(remaining, min_width), 1);
+ n_zeros = MAX(0, l - remaining);
+ n_chars = MAX(0, MIN(remaining, l));
+
+ /* Use n_zero zero's and n_chars chars */
+ count += (use_separator ? thousands_sep_len : 0) + n_zeros + n_chars;
+ if (buffer) {
+ /* Copy into the output buffer. */
+ fill(&digits_end, &buffer_end, n_chars, n_zeros,
+ use_separator ? thousands_sep : NULL, thousands_sep_len);
+ }
+ }
+ return count;
+}
+
+/**
+ * _Py_InsertThousandsGroupingLocale:
+ * @buffer: A pointer to the start of a string.
+ * @n_digits: The number of digits in the string, in which we want
+ * to put the grouping chars.
+ *
+ * Reads thee current locale and calls _Py_InsertThousandsGrouping().
+ **/
+Py_ssize_t
+_Py_InsertThousandsGroupingLocale(STRINGLIB_CHAR *buffer,
+ Py_ssize_t n_buffer,
+ STRINGLIB_CHAR *digits,
+ Py_ssize_t n_digits,
+ Py_ssize_t min_width)
+{
+ struct lconv *locale_data = localeconv();
+ const char *grouping = locale_data->grouping;
+ const char *thousands_sep = locale_data->thousands_sep;
+
+ return _Py_InsertThousandsGrouping(buffer, n_buffer, digits, n_digits,
+ min_width, grouping, thousands_sep);
+}
+#endif /* STRINGLIB_LOCALEUTIL_H */
diff --git a/AppPkg/Applications/Python/PyMod-2.7.2/Python/marshal.c b/AppPkg/Applications/Python/PyMod-2.7.2/Python/marshal.c new file mode 100644 index 0000000000..785f4389ba --- /dev/null +++ b/AppPkg/Applications/Python/PyMod-2.7.2/Python/marshal.c @@ -0,0 +1,1412 @@ +
+/* Write Python objects to files and read them back.
+ This is intended for writing and reading compiled Python code only;
+ a true persistent storage facility would be much harder, since
+ it would have to take circular links and sharing into account. */
+
+#define PY_SSIZE_T_CLEAN
+
+#include "Python.h"
+#include "longintrepr.h"
+#include "code.h"
+#include "marshal.h"
+
+#ifndef ABS
+ #define ABS(x) ((x) < 0 ? -(x) : (x))
+#endif
+
+/* High water mark to determine when the marshalled object is dangerously deep
+ * and risks coring the interpreter. When the object stack gets this deep,
+ * raise an exception instead of continuing.
+ */
+#define MAX_MARSHAL_STACK_DEPTH 2000
+
+#define TYPE_NULL '0'
+#define TYPE_NONE 'N'
+#define TYPE_FALSE 'F'
+#define TYPE_TRUE 'T'
+#define TYPE_STOPITER 'S'
+#define TYPE_ELLIPSIS '.'
+#define TYPE_INT 'i'
+#define TYPE_INT64 'I'
+#define TYPE_FLOAT 'f'
+#define TYPE_BINARY_FLOAT 'g'
+#define TYPE_COMPLEX 'x'
+#define TYPE_BINARY_COMPLEX 'y'
+#define TYPE_LONG 'l'
+#define TYPE_STRING 's'
+#define TYPE_INTERNED 't'
+#define TYPE_STRINGREF 'R'
+#define TYPE_TUPLE '('
+#define TYPE_LIST '['
+#define TYPE_DICT '{'
+#define TYPE_CODE 'c'
+#define TYPE_UNICODE 'u'
+#define TYPE_UNKNOWN '?'
+#define TYPE_SET '<'
+#define TYPE_FROZENSET '>'
+
+#define WFERR_OK 0
+#define WFERR_UNMARSHALLABLE 1
+#define WFERR_NESTEDTOODEEP 2
+#define WFERR_NOMEMORY 3
+
+typedef struct {
+ FILE *fp;
+ int error; /* see WFERR_* values */
+ int depth;
+ /* If fp == NULL, the following are valid: */
+ PyObject *str;
+ char *ptr;
+ char *end;
+ PyObject *strings; /* dict on marshal, list on unmarshal */
+ int version;
+} WFILE;
+
+#define w_byte(c, p) if (((p)->fp)) putc((c), (p)->fp); \
+ else if ((p)->ptr != (p)->end) *(p)->ptr++ = (c); \
+ else w_more(c, p)
+
+static void
+w_more(int c, WFILE *p)
+{
+ Py_ssize_t size, newsize;
+ if (p->str == NULL)
+ return; /* An error already occurred */
+ size = PyString_Size(p->str);
+ newsize = size + size + 1024;
+ if (newsize > 32*1024*1024) {
+ newsize = size + (size >> 3); /* 12.5% overallocation */
+ }
+ if (_PyString_Resize(&p->str, newsize) != 0) {
+ p->ptr = p->end = NULL;
+ }
+ else {
+ p->ptr = PyString_AS_STRING((PyStringObject *)p->str) + size;
+ p->end =
+ PyString_AS_STRING((PyStringObject *)p->str) + newsize;
+ *p->ptr++ = Py_SAFE_DOWNCAST(c, int, char);
+ }
+}
+
+static void
+w_string(char *s, int n, WFILE *p)
+{
+ if (p->fp != NULL) {
+ fwrite(s, 1, n, p->fp);
+ }
+ else {
+ while (--n >= 0) {
+ w_byte(*s, p);
+ s++;
+ }
+ }
+}
+
+static void
+w_short(int x, WFILE *p)
+{
+ w_byte((char)( x & 0xff), p);
+ w_byte((char)((x>> 8) & 0xff), p);
+}
+
+static void
+w_long(long x, WFILE *p)
+{
+ w_byte((char)( x & 0xff), p);
+ w_byte((char)((x>> 8) & 0xff), p);
+ w_byte((char)((x>>16) & 0xff), p);
+ w_byte((char)((x>>24) & 0xff), p);
+}
+
+#if SIZEOF_LONG > 4
+static void
+w_long64(long x, WFILE *p)
+{
+ w_long(x, p);
+ w_long(x>>32, p);
+}
+#endif
+
+/* We assume that Python longs are stored internally in base some power of
+ 2**15; for the sake of portability we'll always read and write them in base
+ exactly 2**15. */
+
+#define PyLong_MARSHAL_SHIFT 15
+#define PyLong_MARSHAL_BASE ((short)1 << PyLong_MARSHAL_SHIFT)
+#define PyLong_MARSHAL_MASK (PyLong_MARSHAL_BASE - 1)
+#if PyLong_SHIFT % PyLong_MARSHAL_SHIFT != 0
+#error "PyLong_SHIFT must be a multiple of PyLong_MARSHAL_SHIFT"
+#endif
+#define PyLong_MARSHAL_RATIO (PyLong_SHIFT / PyLong_MARSHAL_SHIFT)
+
+static void
+w_PyLong(const PyLongObject *ob, WFILE *p)
+{
+ Py_ssize_t i, j, n, l;
+ digit d;
+
+ w_byte(TYPE_LONG, p);
+ if (Py_SIZE(ob) == 0) {
+ w_long((long)0, p);
+ return;
+ }
+
+ /* set l to number of base PyLong_MARSHAL_BASE digits */
+ n = ABS(Py_SIZE(ob));
+ l = (n-1) * PyLong_MARSHAL_RATIO;
+ d = ob->ob_digit[n-1];
+ assert(d != 0); /* a PyLong is always normalized */
+ do {
+ d >>= PyLong_MARSHAL_SHIFT;
+ l++;
+ } while (d != 0);
+ w_long((long)(Py_SIZE(ob) > 0 ? l : -l), p);
+
+ for (i=0; i < n-1; i++) {
+ d = ob->ob_digit[i];
+ for (j=0; j < PyLong_MARSHAL_RATIO; j++) {
+ w_short(d & PyLong_MARSHAL_MASK, p);
+ d >>= PyLong_MARSHAL_SHIFT;
+ }
+ assert (d == 0);
+ }
+ d = ob->ob_digit[n-1];
+ do {
+ w_short(d & PyLong_MARSHAL_MASK, p);
+ d >>= PyLong_MARSHAL_SHIFT;
+ } while (d != 0);
+}
+
+static void
+w_object(PyObject *v, WFILE *p)
+{
+ Py_ssize_t i, n;
+
+ p->depth++;
+
+ if (p->depth > MAX_MARSHAL_STACK_DEPTH) {
+ p->error = WFERR_NESTEDTOODEEP;
+ }
+ else if (v == NULL) {
+ w_byte(TYPE_NULL, p);
+ }
+ else if (v == Py_None) {
+ w_byte(TYPE_NONE, p);
+ }
+ else if (v == PyExc_StopIteration) {
+ w_byte(TYPE_STOPITER, p);
+ }
+ else if (v == Py_Ellipsis) {
+ w_byte(TYPE_ELLIPSIS, p);
+ }
+ else if (v == Py_False) {
+ w_byte(TYPE_FALSE, p);
+ }
+ else if (v == Py_True) {
+ w_byte(TYPE_TRUE, p);
+ }
+ else if (PyInt_CheckExact(v)) {
+ long x = PyInt_AS_LONG((PyIntObject *)v);
+#if SIZEOF_LONG > 4
+ long y = Py_ARITHMETIC_RIGHT_SHIFT(long, x, 31);
+ if (y && y != -1) {
+ w_byte(TYPE_INT64, p);
+ w_long64(x, p);
+ }
+ else
+#endif
+ {
+ w_byte(TYPE_INT, p);
+ w_long(x, p);
+ }
+ }
+ else if (PyLong_CheckExact(v)) {
+ PyLongObject *ob = (PyLongObject *)v;
+ w_PyLong(ob, p);
+ }
+ else if (PyFloat_CheckExact(v)) {
+ if (p->version > 1) {
+ unsigned char buf[8];
+ if (_PyFloat_Pack8(PyFloat_AsDouble(v),
+ buf, 1) < 0) {
+ p->error = WFERR_UNMARSHALLABLE;
+ return;
+ }
+ w_byte(TYPE_BINARY_FLOAT, p);
+ w_string((char*)buf, 8, p);
+ }
+ else {
+ char *buf = PyOS_double_to_string(PyFloat_AS_DOUBLE(v),
+ 'g', 17, 0, NULL);
+ if (!buf) {
+ p->error = WFERR_NOMEMORY;
+ return;
+ }
+ n = strlen(buf);
+ w_byte(TYPE_FLOAT, p);
+ w_byte((int)n, p);
+ w_string(buf, (int)n, p);
+ PyMem_Free(buf);
+ }
+ }
+#ifndef WITHOUT_COMPLEX
+ else if (PyComplex_CheckExact(v)) {
+ if (p->version > 1) {
+ unsigned char buf[8];
+ if (_PyFloat_Pack8(PyComplex_RealAsDouble(v),
+ buf, 1) < 0) {
+ p->error = WFERR_UNMARSHALLABLE;
+ return;
+ }
+ w_byte(TYPE_BINARY_COMPLEX, p);
+ w_string((char*)buf, 8, p);
+ if (_PyFloat_Pack8(PyComplex_ImagAsDouble(v),
+ buf, 1) < 0) {
+ p->error = WFERR_UNMARSHALLABLE;
+ return;
+ }
+ w_string((char*)buf, 8, p);
+ }
+ else {
+ char *buf;
+ w_byte(TYPE_COMPLEX, p);
+ buf = PyOS_double_to_string(PyComplex_RealAsDouble(v),
+ 'g', 17, 0, NULL);
+ if (!buf) {
+ p->error = WFERR_NOMEMORY;
+ return;
+ }
+ n = strlen(buf);
+ w_byte((int)n, p);
+ w_string(buf, (int)n, p);
+ PyMem_Free(buf);
+ buf = PyOS_double_to_string(PyComplex_ImagAsDouble(v),
+ 'g', 17, 0, NULL);
+ if (!buf) {
+ p->error = WFERR_NOMEMORY;
+ return;
+ }
+ n = strlen(buf);
+ w_byte((int)n, p);
+ w_string(buf, (int)n, p);
+ PyMem_Free(buf);
+ }
+ }
+#endif
+ else if (PyString_CheckExact(v)) {
+ if (p->strings && PyString_CHECK_INTERNED(v)) {
+ PyObject *o = PyDict_GetItem(p->strings, v);
+ if (o) {
+ long w = PyInt_AsLong(o);
+ w_byte(TYPE_STRINGREF, p);
+ w_long(w, p);
+ goto exit;
+ }
+ else {
+ int ok;
+ o = PyInt_FromSsize_t(PyDict_Size(p->strings));
+ ok = o &&
+ PyDict_SetItem(p->strings, v, o) >= 0;
+ Py_XDECREF(o);
+ if (!ok) {
+ p->depth--;
+ p->error = WFERR_UNMARSHALLABLE;
+ return;
+ }
+ w_byte(TYPE_INTERNED, p);
+ }
+ }
+ else {
+ w_byte(TYPE_STRING, p);
+ }
+ n = PyString_GET_SIZE(v);
+ if (n > INT_MAX) {
+ /* huge strings are not supported */
+ p->depth--;
+ p->error = WFERR_UNMARSHALLABLE;
+ return;
+ }
+ w_long((long)n, p);
+ w_string(PyString_AS_STRING(v), (int)n, p);
+ }
+#ifdef Py_USING_UNICODE
+ else if (PyUnicode_CheckExact(v)) {
+ PyObject *utf8;
+ utf8 = PyUnicode_AsUTF8String(v);
+ if (utf8 == NULL) {
+ p->depth--;
+ p->error = WFERR_UNMARSHALLABLE;
+ return;
+ }
+ w_byte(TYPE_UNICODE, p);
+ n = PyString_GET_SIZE(utf8);
+ if (n > INT_MAX) {
+ p->depth--;
+ p->error = WFERR_UNMARSHALLABLE;
+ return;
+ }
+ w_long((long)n, p);
+ w_string(PyString_AS_STRING(utf8), (int)n, p);
+ Py_DECREF(utf8);
+ }
+#endif
+ else if (PyTuple_CheckExact(v)) {
+ w_byte(TYPE_TUPLE, p);
+ n = PyTuple_Size(v);
+ w_long((long)n, p);
+ for (i = 0; i < n; i++) {
+ w_object(PyTuple_GET_ITEM(v, i), p);
+ }
+ }
+ else if (PyList_CheckExact(v)) {
+ w_byte(TYPE_LIST, p);
+ n = PyList_GET_SIZE(v);
+ w_long((long)n, p);
+ for (i = 0; i < n; i++) {
+ w_object(PyList_GET_ITEM(v, i), p);
+ }
+ }
+ else if (PyDict_CheckExact(v)) {
+ Py_ssize_t pos;
+ PyObject *key, *value;
+ w_byte(TYPE_DICT, p);
+ /* This one is NULL object terminated! */
+ pos = 0;
+ while (PyDict_Next(v, &pos, &key, &value)) {
+ w_object(key, p);
+ w_object(value, p);
+ }
+ w_object((PyObject *)NULL, p);
+ }
+ else if (PyAnySet_CheckExact(v)) {
+ PyObject *value, *it;
+
+ if (PyObject_TypeCheck(v, &PySet_Type))
+ w_byte(TYPE_SET, p);
+ else
+ w_byte(TYPE_FROZENSET, p);
+ n = PyObject_Size(v);
+ if (n == -1) {
+ p->depth--;
+ p->error = WFERR_UNMARSHALLABLE;
+ return;
+ }
+ w_long((long)n, p);
+ it = PyObject_GetIter(v);
+ if (it == NULL) {
+ p->depth--;
+ p->error = WFERR_UNMARSHALLABLE;
+ return;
+ }
+ while ((value = PyIter_Next(it)) != NULL) {
+ w_object(value, p);
+ Py_DECREF(value);
+ }
+ Py_DECREF(it);
+ if (PyErr_Occurred()) {
+ p->depth--;
+ p->error = WFERR_UNMARSHALLABLE;
+ return;
+ }
+ }
+ else if (PyCode_Check(v)) {
+ PyCodeObject *co = (PyCodeObject *)v;
+ w_byte(TYPE_CODE, p);
+ w_long(co->co_argcount, p);
+ w_long(co->co_nlocals, p);
+ w_long(co->co_stacksize, p);
+ w_long(co->co_flags, p);
+ w_object(co->co_code, p);
+ w_object(co->co_consts, p);
+ w_object(co->co_names, p);
+ w_object(co->co_varnames, p);
+ w_object(co->co_freevars, p);
+ w_object(co->co_cellvars, p);
+ w_object(co->co_filename, p);
+ w_object(co->co_name, p);
+ w_long(co->co_firstlineno, p);
+ w_object(co->co_lnotab, p);
+ }
+ else if (PyObject_CheckReadBuffer(v)) {
+ /* Write unknown buffer-style objects as a string */
+ char *s;
+ PyBufferProcs *pb = v->ob_type->tp_as_buffer;
+ w_byte(TYPE_STRING, p);
+ n = (*pb->bf_getreadbuffer)(v, 0, (void **)&s);
+ if (n > INT_MAX) {
+ p->depth--;
+ p->error = WFERR_UNMARSHALLABLE;
+ return;
+ }
+ w_long((long)n, p);
+ w_string(s, (int)n, p);
+ }
+ else {
+ w_byte(TYPE_UNKNOWN, p);
+ p->error = WFERR_UNMARSHALLABLE;
+ }
+ exit:
+ p->depth--;
+}
+
+/* version currently has no effect for writing longs. */
+void
+PyMarshal_WriteLongToFile(long x, FILE *fp, int version)
+{
+ WFILE wf;
+ wf.fp = fp;
+ wf.error = WFERR_OK;
+ wf.depth = 0;
+ wf.strings = NULL;
+ wf.version = version;
+ w_long(x, &wf);
+}
+
+void
+PyMarshal_WriteObjectToFile(PyObject *x, FILE *fp, int version)
+{
+ WFILE wf;
+ wf.fp = fp;
+ wf.error = WFERR_OK;
+ wf.depth = 0;
+ wf.strings = (version > 0) ? PyDict_New() : NULL;
+ wf.version = version;
+ w_object(x, &wf);
+ Py_XDECREF(wf.strings);
+}
+
+typedef WFILE RFILE; /* Same struct with different invariants */
+
+#define rs_byte(p) (((p)->ptr < (p)->end) ? (unsigned char)*(p)->ptr++ : EOF)
+
+#define r_byte(p) ((p)->fp ? getc((p)->fp) : rs_byte(p))
+
+static int
+r_string(char *s, int n, RFILE *p)
+{
+ if (p->fp != NULL)
+ /* The result fits into int because it must be <=n. */
+ return (int)fread(s, 1, n, p->fp);
+ if (p->end - p->ptr < n)
+ n = (int)(p->end - p->ptr);
+ memcpy(s, p->ptr, n);
+ p->ptr += n;
+ return n;
+}
+
+static int
+r_short(RFILE *p)
+{
+ register short x;
+ x = r_byte(p);
+ x |= r_byte(p) << 8;
+ /* Sign-extension, in case short greater than 16 bits */
+ x |= -(x & 0x8000);
+ return x;
+}
+
+static long
+r_long(RFILE *p)
+{
+ register long x;
+ register FILE *fp = p->fp;
+ if (fp) {
+ x = getc(fp);
+ x |= (long)getc(fp) << 8;
+ x |= (long)getc(fp) << 16;
+ x |= (long)getc(fp) << 24;
+ }
+ else {
+ x = rs_byte(p);
+ x |= (long)rs_byte(p) << 8;
+ x |= (long)rs_byte(p) << 16;
+ x |= (long)rs_byte(p) << 24;
+ }
+#if SIZEOF_LONG > 4
+ /* Sign extension for 64-bit machines */
+ x |= -(x & 0x80000000L);
+#endif
+ return x;
+}
+
+/* r_long64 deals with the TYPE_INT64 code. On a machine with
+ sizeof(long) > 4, it returns a Python int object, else a Python long
+ object. Note that w_long64 writes out TYPE_INT if 32 bits is enough,
+ so there's no inefficiency here in returning a PyLong on 32-bit boxes
+ for everything written via TYPE_INT64 (i.e., if an int is written via
+ TYPE_INT64, it *needs* more than 32 bits).
+*/
+static PyObject *
+r_long64(RFILE *p)
+{
+ long lo4 = r_long(p);
+ long hi4 = r_long(p);
+#if SIZEOF_LONG > 4
+ long x = (hi4 << 32) | (lo4 & 0xFFFFFFFFL);
+ return PyInt_FromLong(x);
+#else
+ unsigned char buf[8];
+ int one = 1;
+ int is_little_endian = (int)*(char*)&one;
+ if (is_little_endian) {
+ memcpy(buf, &lo4, 4);
+ memcpy(buf+4, &hi4, 4);
+ }
+ else {
+ memcpy(buf, &hi4, 4);
+ memcpy(buf+4, &lo4, 4);
+ }
+ return _PyLong_FromByteArray(buf, 8, is_little_endian, 1);
+#endif
+}
+
+static PyObject *
+r_PyLong(RFILE *p)
+{
+ PyLongObject *ob;
+ int size, i, j, md, shorts_in_top_digit;
+ long n;
+ digit d;
+
+ n = r_long(p);
+ if (n == 0)
+ return (PyObject *)_PyLong_New(0);
+ if (n < -INT_MAX || n > INT_MAX) {
+ PyErr_SetString(PyExc_ValueError,
+ "bad marshal data (long size out of range)");
+ return NULL;
+ }
+
+ size = 1 + (ABS(n) - 1) / PyLong_MARSHAL_RATIO;
+ shorts_in_top_digit = 1 + (ABS(n) - 1) % PyLong_MARSHAL_RATIO;
+ ob = _PyLong_New(size);
+ if (ob == NULL)
+ return NULL;
+ Py_SIZE(ob) = n > 0 ? size : -size;
+
+ for (i = 0; i < size-1; i++) {
+ d = 0;
+ for (j=0; j < PyLong_MARSHAL_RATIO; j++) {
+ md = r_short(p);
+ if (md < 0 || md > PyLong_MARSHAL_BASE)
+ goto bad_digit;
+ d += (digit)md << j*PyLong_MARSHAL_SHIFT;
+ }
+ ob->ob_digit[i] = d;
+ }
+ d = 0;
+ for (j=0; j < shorts_in_top_digit; j++) {
+ md = r_short(p);
+ if (md < 0 || md > PyLong_MARSHAL_BASE)
+ goto bad_digit;
+ /* topmost marshal digit should be nonzero */
+ if (md == 0 && j == shorts_in_top_digit - 1) {
+ Py_DECREF(ob);
+ PyErr_SetString(PyExc_ValueError,
+ "bad marshal data (unnormalized long data)");
+ return NULL;
+ }
+ d += (digit)md << j*PyLong_MARSHAL_SHIFT;
+ }
+ /* top digit should be nonzero, else the resulting PyLong won't be
+ normalized */
+ ob->ob_digit[size-1] = d;
+ return (PyObject *)ob;
+ bad_digit:
+ Py_DECREF(ob);
+ PyErr_SetString(PyExc_ValueError,
+ "bad marshal data (digit out of range in long)");
+ return NULL;
+}
+
+
+static PyObject *
+r_object(RFILE *p)
+{
+ /* NULL is a valid return value, it does not necessarily means that
+ an exception is set. */
+ PyObject *v, *v2;
+ long i, n;
+ int type = r_byte(p);
+ PyObject *retval;
+
+ p->depth++;
+
+ if (p->depth > MAX_MARSHAL_STACK_DEPTH) {
+ p->depth--;
+ PyErr_SetString(PyExc_ValueError, "recursion limit exceeded");
+ return NULL;
+ }
+
+ switch (type) {
+
+ case EOF:
+ PyErr_SetString(PyExc_EOFError,
+ "EOF read where object expected");
+ retval = NULL;
+ break;
+
+ case TYPE_NULL:
+ retval = NULL;
+ break;
+
+ case TYPE_NONE:
+ Py_INCREF(Py_None);
+ retval = Py_None;
+ break;
+
+ case TYPE_STOPITER:
+ Py_INCREF(PyExc_StopIteration);
+ retval = PyExc_StopIteration;
+ break;
+
+ case TYPE_ELLIPSIS:
+ Py_INCREF(Py_Ellipsis);
+ retval = Py_Ellipsis;
+ break;
+
+ case TYPE_FALSE:
+ Py_INCREF(Py_False);
+ retval = Py_False;
+ break;
+
+ case TYPE_TRUE:
+ Py_INCREF(Py_True);
+ retval = Py_True;
+ break;
+
+ case TYPE_INT:
+ retval = PyInt_FromLong(r_long(p));
+ break;
+
+ case TYPE_INT64:
+ retval = r_long64(p);
+ break;
+
+ case TYPE_LONG:
+ retval = r_PyLong(p);
+ break;
+
+ case TYPE_FLOAT:
+ {
+ char buf[256];
+ double dx;
+ n = r_byte(p);
+ if (n == EOF || r_string(buf, (int)n, p) != n) {
+ PyErr_SetString(PyExc_EOFError,
+ "EOF read where object expected");
+ retval = NULL;
+ break;
+ }
+ buf[n] = '\0';
+ dx = PyOS_string_to_double(buf, NULL, NULL);
+ if (dx == -1.0 && PyErr_Occurred()) {
+ retval = NULL;
+ break;
+ }
+ retval = PyFloat_FromDouble(dx);
+ break;
+ }
+
+ case TYPE_BINARY_FLOAT:
+ {
+ unsigned char buf[8];
+ double x;
+ if (r_string((char*)buf, 8, p) != 8) {
+ PyErr_SetString(PyExc_EOFError,
+ "EOF read where object expected");
+ retval = NULL;
+ break;
+ }
+ x = _PyFloat_Unpack8(buf, 1);
+ if (x == -1.0 && PyErr_Occurred()) {
+ retval = NULL;
+ break;
+ }
+ retval = PyFloat_FromDouble(x);
+ break;
+ }
+
+#ifndef WITHOUT_COMPLEX
+ case TYPE_COMPLEX:
+ {
+ char buf[256];
+ Py_complex c;
+ n = r_byte(p);
+ if (n == EOF || r_string(buf, (int)n, p) != n) {
+ PyErr_SetString(PyExc_EOFError,
+ "EOF read where object expected");
+ retval = NULL;
+ break;
+ }
+ buf[n] = '\0';
+ c.real = PyOS_string_to_double(buf, NULL, NULL);
+ if (c.real == -1.0 && PyErr_Occurred()) {
+ retval = NULL;
+ break;
+ }
+ n = r_byte(p);
+ if (n == EOF || r_string(buf, (int)n, p) != n) {
+ PyErr_SetString(PyExc_EOFError,
+ "EOF read where object expected");
+ retval = NULL;
+ break;
+ }
+ buf[n] = '\0';
+ c.imag = PyOS_string_to_double(buf, NULL, NULL);
+ if (c.imag == -1.0 && PyErr_Occurred()) {
+ retval = NULL;
+ break;
+ }
+ retval = PyComplex_FromCComplex(c);
+ break;
+ }
+
+ case TYPE_BINARY_COMPLEX:
+ {
+ unsigned char buf[8];
+ Py_complex c;
+ if (r_string((char*)buf, 8, p) != 8) {
+ PyErr_SetString(PyExc_EOFError,
+ "EOF read where object expected");
+ retval = NULL;
+ break;
+ }
+ c.real = _PyFloat_Unpack8(buf, 1);
+ if (c.real == -1.0 && PyErr_Occurred()) {
+ retval = NULL;
+ break;
+ }
+ if (r_string((char*)buf, 8, p) != 8) {
+ PyErr_SetString(PyExc_EOFError,
+ "EOF read where object expected");
+ retval = NULL;
+ break;
+ }
+ c.imag = _PyFloat_Unpack8(buf, 1);
+ if (c.imag == -1.0 && PyErr_Occurred()) {
+ retval = NULL;
+ break;
+ }
+ retval = PyComplex_FromCComplex(c);
+ break;
+ }
+#endif
+
+ case TYPE_INTERNED:
+ case TYPE_STRING:
+ n = r_long(p);
+ if (n < 0 || n > INT_MAX) {
+ PyErr_SetString(PyExc_ValueError, "bad marshal data (string size out of range)");
+ retval = NULL;
+ break;
+ }
+ v = PyString_FromStringAndSize((char *)NULL, n);
+ if (v == NULL) {
+ retval = NULL;
+ break;
+ }
+ if (r_string(PyString_AS_STRING(v), (int)n, p) != n) {
+ Py_DECREF(v);
+ PyErr_SetString(PyExc_EOFError,
+ "EOF read where object expected");
+ retval = NULL;
+ break;
+ }
+ if (type == TYPE_INTERNED) {
+ PyString_InternInPlace(&v);
+ if (PyList_Append(p->strings, v) < 0) {
+ retval = NULL;
+ break;
+ }
+ }
+ retval = v;
+ break;
+
+ case TYPE_STRINGREF:
+ n = r_long(p);
+ if (n < 0 || n >= PyList_GET_SIZE(p->strings)) {
+ PyErr_SetString(PyExc_ValueError, "bad marshal data (string ref out of range)");
+ retval = NULL;
+ break;
+ }
+ v = PyList_GET_ITEM(p->strings, n);
+ Py_INCREF(v);
+ retval = v;
+ break;
+
+#ifdef Py_USING_UNICODE
+ case TYPE_UNICODE:
+ {
+ char *buffer;
+
+ n = r_long(p);
+ if (n < 0 || n > INT_MAX) {
+ PyErr_SetString(PyExc_ValueError, "bad marshal data (unicode size out of range)");
+ retval = NULL;
+ break;
+ }
+ buffer = PyMem_NEW(char, n);
+ if (buffer == NULL) {
+ retval = PyErr_NoMemory();
+ break;
+ }
+ if (r_string(buffer, (int)n, p) != n) {
+ PyMem_DEL(buffer);
+ PyErr_SetString(PyExc_EOFError,
+ "EOF read where object expected");
+ retval = NULL;
+ break;
+ }
+ v = PyUnicode_DecodeUTF8(buffer, n, NULL);
+ PyMem_DEL(buffer);
+ retval = v;
+ break;
+ }
+#endif
+
+ case TYPE_TUPLE:
+ n = r_long(p);
+ if (n < 0 || n > INT_MAX) {
+ PyErr_SetString(PyExc_ValueError, "bad marshal data (tuple size out of range)");
+ retval = NULL;
+ break;
+ }
+ v = PyTuple_New((int)n);
+ if (v == NULL) {
+ retval = NULL;
+ break;
+ }
+ for (i = 0; i < n; i++) {
+ v2 = r_object(p);
+ if ( v2 == NULL ) {
+ if (!PyErr_Occurred())
+ PyErr_SetString(PyExc_TypeError,
+ "NULL object in marshal data for tuple");
+ Py_DECREF(v);
+ v = NULL;
+ break;
+ }
+ PyTuple_SET_ITEM(v, (int)i, v2);
+ }
+ retval = v;
+ break;
+
+ case TYPE_LIST:
+ n = r_long(p);
+ if (n < 0 || n > INT_MAX) {
+ PyErr_SetString(PyExc_ValueError, "bad marshal data (list size out of range)");
+ retval = NULL;
+ break;
+ }
+ v = PyList_New((int)n);
+ if (v == NULL) {
+ retval = NULL;
+ break;
+ }
+ for (i = 0; i < n; i++) {
+ v2 = r_object(p);
+ if ( v2 == NULL ) {
+ if (!PyErr_Occurred())
+ PyErr_SetString(PyExc_TypeError,
+ "NULL object in marshal data for list");
+ Py_DECREF(v);
+ v = NULL;
+ break;
+ }
+ PyList_SET_ITEM(v, (int)i, v2);
+ }
+ retval = v;
+ break;
+
+ case TYPE_DICT:
+ v = PyDict_New();
+ if (v == NULL) {
+ retval = NULL;
+ break;
+ }
+ for (;;) {
+ PyObject *key, *val;
+ key = r_object(p);
+ if (key == NULL)
+ break;
+ val = r_object(p);
+ if (val != NULL)
+ PyDict_SetItem(v, key, val);
+ Py_DECREF(key);
+ Py_XDECREF(val);
+ }
+ if (PyErr_Occurred()) {
+ Py_DECREF(v);
+ v = NULL;
+ }
+ retval = v;
+ break;
+
+ case TYPE_SET:
+ case TYPE_FROZENSET:
+ n = r_long(p);
+ if (n < 0 || n > INT_MAX) {
+ PyErr_SetString(PyExc_ValueError, "bad marshal data (set size out of range)");
+ retval = NULL;
+ break;
+ }
+ v = (type == TYPE_SET) ? PySet_New(NULL) : PyFrozenSet_New(NULL);
+ if (v == NULL) {
+ retval = NULL;
+ break;
+ }
+ for (i = 0; i < n; i++) {
+ v2 = r_object(p);
+ if ( v2 == NULL ) {
+ if (!PyErr_Occurred())
+ PyErr_SetString(PyExc_TypeError,
+ "NULL object in marshal data for set");
+ Py_DECREF(v);
+ v = NULL;
+ break;
+ }
+ if (PySet_Add(v, v2) == -1) {
+ Py_DECREF(v);
+ Py_DECREF(v2);
+ v = NULL;
+ break;
+ }
+ Py_DECREF(v2);
+ }
+ retval = v;
+ break;
+
+ case TYPE_CODE:
+ if (PyEval_GetRestricted()) {
+ PyErr_SetString(PyExc_RuntimeError,
+ "cannot unmarshal code objects in "
+ "restricted execution mode");
+ retval = NULL;
+ break;
+ }
+ else {
+ int argcount;
+ int nlocals;
+ int stacksize;
+ int flags;
+ PyObject *code = NULL;
+ PyObject *consts = NULL;
+ PyObject *names = NULL;
+ PyObject *varnames = NULL;
+ PyObject *freevars = NULL;
+ PyObject *cellvars = NULL;
+ PyObject *filename = NULL;
+ PyObject *name = NULL;
+ int firstlineno;
+ PyObject *lnotab = NULL;
+
+ v = NULL;
+
+ /* XXX ignore long->int overflows for now */
+ argcount = (int)r_long(p);
+ nlocals = (int)r_long(p);
+ stacksize = (int)r_long(p);
+ flags = (int)r_long(p);
+ code = r_object(p);
+ if (code == NULL)
+ goto code_error;
+ consts = r_object(p);
+ if (consts == NULL)
+ goto code_error;
+ names = r_object(p);
+ if (names == NULL)
+ goto code_error;
+ varnames = r_object(p);
+ if (varnames == NULL)
+ goto code_error;
+ freevars = r_object(p);
+ if (freevars == NULL)
+ goto code_error;
+ cellvars = r_object(p);
+ if (cellvars == NULL)
+ goto code_error;
+ filename = r_object(p);
+ if (filename == NULL)
+ goto code_error;
+ name = r_object(p);
+ if (name == NULL)
+ goto code_error;
+ firstlineno = (int)r_long(p);
+ lnotab = r_object(p);
+ if (lnotab == NULL)
+ goto code_error;
+
+ v = (PyObject *) PyCode_New(
+ argcount, nlocals, stacksize, flags,
+ code, consts, names, varnames,
+ freevars, cellvars, filename, name,
+ firstlineno, lnotab);
+
+ code_error:
+ Py_XDECREF(code);
+ Py_XDECREF(consts);
+ Py_XDECREF(names);
+ Py_XDECREF(varnames);
+ Py_XDECREF(freevars);
+ Py_XDECREF(cellvars);
+ Py_XDECREF(filename);
+ Py_XDECREF(name);
+ Py_XDECREF(lnotab);
+
+ }
+ retval = v;
+ break;
+
+ default:
+ /* Bogus data got written, which isn't ideal.
+ This will let you keep working and recover. */
+ PyErr_SetString(PyExc_ValueError, "bad marshal data (unknown type code)");
+ retval = NULL;
+ break;
+
+ }
+ p->depth--;
+ return retval;
+}
+
+static PyObject *
+read_object(RFILE *p)
+{
+ PyObject *v;
+ if (PyErr_Occurred()) {
+ fprintf(stderr, "XXX readobject called with exception set\n");
+ return NULL;
+ }
+ v = r_object(p);
+ if (v == NULL && !PyErr_Occurred())
+ PyErr_SetString(PyExc_TypeError, "NULL object in marshal data for object");
+ return v;
+}
+
+int
+PyMarshal_ReadShortFromFile(FILE *fp)
+{
+ RFILE rf;
+ assert(fp);
+ rf.fp = fp;
+ rf.strings = NULL;
+ rf.end = rf.ptr = NULL;
+ return r_short(&rf);
+}
+
+long
+PyMarshal_ReadLongFromFile(FILE *fp)
+{
+ RFILE rf;
+ rf.fp = fp;
+ rf.strings = NULL;
+ rf.ptr = rf.end = NULL;
+ return r_long(&rf);
+}
+
+#ifdef HAVE_FSTAT
+/* Return size of file in bytes; < 0 if unknown. */
+static off_t
+getfilesize(FILE *fp)
+{
+ struct stat st;
+ if (fstat(fileno(fp), &st) != 0)
+ return -1;
+ else
+ return st.st_size;
+}
+#endif
+
+/* If we can get the size of the file up-front, and it's reasonably small,
+ * read it in one gulp and delegate to ...FromString() instead. Much quicker
+ * than reading a byte at a time from file; speeds .pyc imports.
+ * CAUTION: since this may read the entire remainder of the file, don't
+ * call it unless you know you're done with the file.
+ */
+PyObject *
+PyMarshal_ReadLastObjectFromFile(FILE *fp)
+{
+/* REASONABLE_FILE_LIMIT is by defn something big enough for Tkinter.pyc. */
+#define REASONABLE_FILE_LIMIT (1L << 18)
+#ifdef HAVE_FSTAT
+ off_t filesize;
+ filesize = getfilesize(fp);
+ if (filesize > 0 && filesize <= REASONABLE_FILE_LIMIT) {
+ char* pBuf = (char *)PyMem_MALLOC(filesize);
+ if (pBuf != NULL) {
+ PyObject* v;
+ size_t n;
+ /* filesize must fit into an int, because it
+ is smaller than REASONABLE_FILE_LIMIT */
+ n = fread(pBuf, 1, (int)filesize, fp);
+ v = PyMarshal_ReadObjectFromString(pBuf, n);
+ PyMem_FREE(pBuf);
+ return v;
+ }
+
+ }
+#endif
+ /* We don't have fstat, or we do but the file is larger than
+ * REASONABLE_FILE_LIMIT or malloc failed -- read a byte at a time.
+ */
+ return PyMarshal_ReadObjectFromFile(fp);
+
+#undef REASONABLE_FILE_LIMIT
+}
+
+PyObject *
+PyMarshal_ReadObjectFromFile(FILE *fp)
+{
+ RFILE rf;
+ PyObject *result;
+ rf.fp = fp;
+ rf.strings = PyList_New(0);
+ rf.depth = 0;
+ rf.ptr = rf.end = NULL;
+ result = r_object(&rf);
+ Py_DECREF(rf.strings);
+ return result;
+}
+
+PyObject *
+PyMarshal_ReadObjectFromString(char *str, Py_ssize_t len)
+{
+ RFILE rf;
+ PyObject *result;
+ rf.fp = NULL;
+ rf.ptr = str;
+ rf.end = str + len;
+ rf.strings = PyList_New(0);
+ rf.depth = 0;
+ result = r_object(&rf);
+ Py_DECREF(rf.strings);
+ return result;
+}
+
+static void
+set_error(int error)
+{
+ switch (error) {
+ case WFERR_NOMEMORY:
+ PyErr_NoMemory();
+ break;
+ case WFERR_UNMARSHALLABLE:
+ PyErr_SetString(PyExc_ValueError, "unmarshallable object");
+ break;
+ case WFERR_NESTEDTOODEEP:
+ default:
+ PyErr_SetString(PyExc_ValueError,
+ "object too deeply nested to marshal");
+ break;
+ }
+}
+
+PyObject *
+PyMarshal_WriteObjectToString(PyObject *x, int version)
+{
+ WFILE wf;
+ wf.fp = NULL;
+ wf.str = PyString_FromStringAndSize((char *)NULL, 50);
+ if (wf.str == NULL)
+ return NULL;
+ wf.ptr = PyString_AS_STRING((PyStringObject *)wf.str);
+ wf.end = wf.ptr + PyString_Size(wf.str);
+ wf.error = WFERR_OK;
+ wf.depth = 0;
+ wf.version = version;
+ wf.strings = (version > 0) ? PyDict_New() : NULL;
+ w_object(x, &wf);
+ Py_XDECREF(wf.strings);
+ if (wf.str != NULL) {
+ char *base = PyString_AS_STRING((PyStringObject *)wf.str);
+ if (wf.ptr - base > PY_SSIZE_T_MAX) {
+ Py_DECREF(wf.str);
+ PyErr_SetString(PyExc_OverflowError,
+ "too much marshall data for a string");
+ return NULL;
+ }
+ if (_PyString_Resize(&wf.str, (Py_ssize_t)(wf.ptr - base)))
+ return NULL;
+ }
+ if (wf.error != WFERR_OK) {
+ Py_XDECREF(wf.str);
+ set_error(wf.error);
+ return NULL;
+ }
+ return wf.str;
+}
+
+/* And an interface for Python programs... */
+
+static PyObject *
+marshal_dump(PyObject *self, PyObject *args)
+{
+ WFILE wf;
+ PyObject *x;
+ PyObject *f;
+ int version = Py_MARSHAL_VERSION;
+ if (!PyArg_ParseTuple(args, "OO|i:dump", &x, &f, &version))
+ return NULL;
+ if (!PyFile_Check(f)) {
+ PyErr_SetString(PyExc_TypeError,
+ "marshal.dump() 2nd arg must be file");
+ return NULL;
+ }
+ wf.fp = PyFile_AsFile(f);
+ wf.str = NULL;
+ wf.ptr = wf.end = NULL;
+ wf.error = WFERR_OK;
+ wf.depth = 0;
+ wf.strings = (version > 0) ? PyDict_New() : 0;
+ wf.version = version;
+ w_object(x, &wf);
+ Py_XDECREF(wf.strings);
+ if (wf.error != WFERR_OK) {
+ set_error(wf.error);
+ return NULL;
+ }
+ Py_INCREF(Py_None);
+ return Py_None;
+}
+
+PyDoc_STRVAR(dump_doc,
+"dump(value, file[, version])\n\
+\n\
+Write the value on the open file. The value must be a supported type.\n\
+The file must be an open file object such as sys.stdout or returned by\n\
+open() or os.popen(). It must be opened in binary mode ('wb' or 'w+b').\n\
+\n\
+If the value has (or contains an object that has) an unsupported type, a\n\
+ValueError exception is raised — but garbage data will also be written\n\
+to the file. The object will not be properly read back by load()\n\
+\n\
+New in version 2.4: The version argument indicates the data format that\n\
+dump should use.");
+
+static PyObject *
+marshal_load(PyObject *self, PyObject *f)
+{
+ RFILE rf;
+ PyObject *result;
+ if (!PyFile_Check(f)) {
+ PyErr_SetString(PyExc_TypeError,
+ "marshal.load() arg must be file");
+ return NULL;
+ }
+ rf.fp = PyFile_AsFile(f);
+ rf.strings = PyList_New(0);
+ rf.depth = 0;
+ result = read_object(&rf);
+ Py_DECREF(rf.strings);
+ return result;
+}
+
+PyDoc_STRVAR(load_doc,
+"load(file)\n\
+\n\
+Read one value from the open file and return it. If no valid value is\n\
+read (e.g. because the data has a different Python version’s\n\
+incompatible marshal format), raise EOFError, ValueError or TypeError.\n\
+The file must be an open file object opened in binary mode ('rb' or\n\
+'r+b').\n\
+\n\
+Note: If an object containing an unsupported type was marshalled with\n\
+dump(), load() will substitute None for the unmarshallable type.");
+
+
+static PyObject *
+marshal_dumps(PyObject *self, PyObject *args)
+{
+ PyObject *x;
+ int version = Py_MARSHAL_VERSION;
+ if (!PyArg_ParseTuple(args, "O|i:dumps", &x, &version))
+ return NULL;
+ return PyMarshal_WriteObjectToString(x, version);
+}
+
+PyDoc_STRVAR(dumps_doc,
+"dumps(value[, version])\n\
+\n\
+Return the string that would be written to a file by dump(value, file).\n\
+The value must be a supported type. Raise a ValueError exception if\n\
+value has (or contains an object that has) an unsupported type.\n\
+\n\
+New in version 2.4: The version argument indicates the data format that\n\
+dumps should use.");
+
+
+static PyObject *
+marshal_loads(PyObject *self, PyObject *args)
+{
+ RFILE rf;
+ char *s;
+ Py_ssize_t n;
+ PyObject* result;
+ if (!PyArg_ParseTuple(args, "s#:loads", &s, &n))
+ return NULL;
+ rf.fp = NULL;
+ rf.ptr = s;
+ rf.end = s + n;
+ rf.strings = PyList_New(0);
+ rf.depth = 0;
+ result = read_object(&rf);
+ Py_DECREF(rf.strings);
+ return result;
+}
+
+PyDoc_STRVAR(loads_doc,
+"loads(string)\n\
+\n\
+Convert the string to a value. If no valid value is found, raise\n\
+EOFError, ValueError or TypeError. Extra characters in the string are\n\
+ignored.");
+
+static PyMethodDef marshal_methods[] = {
+ {"dump", marshal_dump, METH_VARARGS, dump_doc},
+ {"load", marshal_load, METH_O, load_doc},
+ {"dumps", marshal_dumps, METH_VARARGS, dumps_doc},
+ {"loads", marshal_loads, METH_VARARGS, loads_doc},
+ {NULL, NULL} /* sentinel */
+};
+
+PyDoc_STRVAR(marshal_doc,
+"This module contains functions that can read and write Python values in\n\
+a binary format. The format is specific to Python, but independent of\n\
+machine architecture issues.\n\
+\n\
+Not all Python object types are supported; in general, only objects\n\
+whose value is independent from a particular invocation of Python can be\n\
+written and read by this module. The following types are supported:\n\
+None, integers, long integers, floating point numbers, strings, Unicode\n\
+objects, tuples, lists, sets, dictionaries, and code objects, where it\n\
+should be understood that tuples, lists and dictionaries are only\n\
+supported as long as the values contained therein are themselves\n\
+supported; and recursive lists and dictionaries should not be written\n\
+(they will cause infinite loops).\n\
+\n\
+Variables:\n\
+\n\
+version -- indicates the format that the module uses. Version 0 is the\n\
+ historical format, version 1 (added in Python 2.4) shares interned\n\
+ strings and version 2 (added in Python 2.5) uses a binary format for\n\
+ floating point numbers. (New in version 2.4)\n\
+\n\
+Functions:\n\
+\n\
+dump() -- write value to a file\n\
+load() -- read value from a file\n\
+dumps() -- write value to a string\n\
+loads() -- read value from a string");
+
+
+PyMODINIT_FUNC
+PyMarshal_Init(void)
+{
+ PyObject *mod = Py_InitModule3("marshal", marshal_methods,
+ marshal_doc);
+ if (mod == NULL)
+ return;
+ PyModule_AddIntConstant(mod, "version", Py_MARSHAL_VERSION);
+}
|