summaryrefslogtreecommitdiff
path: root/Core/CryptoPkg/Library/BaseCryptLib/Pk/CryptRsaBasic.c
diff options
context:
space:
mode:
Diffstat (limited to 'Core/CryptoPkg/Library/BaseCryptLib/Pk/CryptRsaBasic.c')
-rw-r--r--Core/CryptoPkg/Library/BaseCryptLib/Pk/CryptRsaBasic.c325
1 files changed, 325 insertions, 0 deletions
diff --git a/Core/CryptoPkg/Library/BaseCryptLib/Pk/CryptRsaBasic.c b/Core/CryptoPkg/Library/BaseCryptLib/Pk/CryptRsaBasic.c
new file mode 100644
index 0000000000..ba1bcf0f0b
--- /dev/null
+++ b/Core/CryptoPkg/Library/BaseCryptLib/Pk/CryptRsaBasic.c
@@ -0,0 +1,325 @@
+/** @file
+ RSA Asymmetric Cipher Wrapper Implementation over OpenSSL.
+
+ This file implements following APIs which provide basic capabilities for RSA:
+ 1) RsaNew
+ 2) RsaFree
+ 3) RsaSetKey
+ 4) RsaPkcs1Verify
+
+Copyright (c) 2009 - 2017, Intel Corporation. All rights reserved.<BR>
+This program and the accompanying materials
+are licensed and made available under the terms and conditions of the BSD License
+which accompanies this distribution. The full text of the license may be found at
+http://opensource.org/licenses/bsd-license.php
+
+THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
+WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
+
+**/
+
+#include "InternalCryptLib.h"
+
+#include <openssl/bn.h>
+#include <openssl/rsa.h>
+#include <openssl/objects.h>
+
+/**
+ Allocates and initializes one RSA context for subsequent use.
+
+ @return Pointer to the RSA context that has been initialized.
+ If the allocations fails, RsaNew() returns NULL.
+
+**/
+VOID *
+EFIAPI
+RsaNew (
+ VOID
+ )
+{
+ //
+ // Allocates & Initializes RSA Context by OpenSSL RSA_new()
+ //
+ return (VOID *) RSA_new ();
+}
+
+/**
+ Release the specified RSA context.
+
+ @param[in] RsaContext Pointer to the RSA context to be released.
+
+**/
+VOID
+EFIAPI
+RsaFree (
+ IN VOID *RsaContext
+ )
+{
+ //
+ // Free OpenSSL RSA Context
+ //
+ RSA_free ((RSA *) RsaContext);
+}
+
+/**
+ Sets the tag-designated key component into the established RSA context.
+
+ This function sets the tag-designated RSA key component into the established
+ RSA context from the user-specified non-negative integer (octet string format
+ represented in RSA PKCS#1).
+ If BigNumber is NULL, then the specified key component in RSA context is cleared.
+
+ If RsaContext is NULL, then return FALSE.
+
+ @param[in, out] RsaContext Pointer to RSA context being set.
+ @param[in] KeyTag Tag of RSA key component being set.
+ @param[in] BigNumber Pointer to octet integer buffer.
+ If NULL, then the specified key component in RSA
+ context is cleared.
+ @param[in] BnSize Size of big number buffer in bytes.
+ If BigNumber is NULL, then it is ignored.
+
+ @retval TRUE RSA key component was set successfully.
+ @retval FALSE Invalid RSA key component tag.
+
+**/
+BOOLEAN
+EFIAPI
+RsaSetKey (
+ IN OUT VOID *RsaContext,
+ IN RSA_KEY_TAG KeyTag,
+ IN CONST UINT8 *BigNumber,
+ IN UINTN BnSize
+ )
+{
+ RSA *RsaKey;
+ BIGNUM *BnN;
+ BIGNUM *BnE;
+ BIGNUM *BnD;
+ BIGNUM *BnP;
+ BIGNUM *BnQ;
+ BIGNUM *BnDp;
+ BIGNUM *BnDq;
+ BIGNUM *BnQInv;
+
+ //
+ // Check input parameters.
+ //
+ if (RsaContext == NULL || BnSize > INT_MAX) {
+ return FALSE;
+ }
+
+ BnN = NULL;
+ BnE = NULL;
+ BnD = NULL;
+ BnP = NULL;
+ BnQ = NULL;
+ BnDp = NULL;
+ BnDq = NULL;
+ BnQInv = NULL;
+
+ //
+ // Retrieve the components from RSA object.
+ //
+ RsaKey = (RSA *) RsaContext;
+ RSA_get0_key (RsaKey, (const BIGNUM **)&BnN, (const BIGNUM **)&BnE, (const BIGNUM **)&BnD);
+ RSA_get0_factors (RsaKey, (const BIGNUM **)&BnP, (const BIGNUM **)&BnQ);
+ RSA_get0_crt_params (RsaKey, (const BIGNUM **)&BnDp, (const BIGNUM **)&BnDq, (const BIGNUM **)&BnQInv);
+
+ //
+ // Set RSA Key Components by converting octet string to OpenSSL BN representation.
+ // NOTE: For RSA public key (used in signature verification), only public components
+ // (N, e) are needed.
+ //
+ switch (KeyTag) {
+
+ //
+ // RSA Public Modulus (N), Public Exponent (e) and Private Exponent (d)
+ //
+ case RsaKeyN:
+ case RsaKeyE:
+ case RsaKeyD:
+ if (BnN == NULL) {
+ BnN = BN_new ();
+ }
+ if (BnE == NULL) {
+ BnE = BN_new ();
+ }
+ if (BnD == NULL) {
+ BnD = BN_new ();
+ }
+
+ if ((BnN == NULL) || (BnE == NULL) || (BnD == NULL)) {
+ return FALSE;
+ }
+
+ switch (KeyTag) {
+ case RsaKeyN:
+ BnN = BN_bin2bn (BigNumber, (UINT32)BnSize, BnN);
+ break;
+ case RsaKeyE:
+ BnE = BN_bin2bn (BigNumber, (UINT32)BnSize, BnE);
+ break;
+ case RsaKeyD:
+ BnD = BN_bin2bn (BigNumber, (UINT32)BnSize, BnD);
+ break;
+ default:
+ return FALSE;
+ }
+ if (RSA_set0_key (RsaKey, BN_dup(BnN), BN_dup(BnE), BN_dup(BnD)) == 0) {
+ return FALSE;
+ }
+
+ break;
+
+ //
+ // RSA Secret Prime Factor of Modulus (p and q)
+ //
+ case RsaKeyP:
+ case RsaKeyQ:
+ if (BnP == NULL) {
+ BnP = BN_new ();
+ }
+ if (BnQ == NULL) {
+ BnQ = BN_new ();
+ }
+ if ((BnP == NULL) || (BnQ == NULL)) {
+ return FALSE;
+ }
+
+ switch (KeyTag) {
+ case RsaKeyP:
+ BnP = BN_bin2bn (BigNumber, (UINT32)BnSize, BnP);
+ break;
+ case RsaKeyQ:
+ BnQ = BN_bin2bn (BigNumber, (UINT32)BnSize, BnQ);
+ break;
+ default:
+ return FALSE;
+ }
+ if (RSA_set0_factors (RsaKey, BN_dup(BnP), BN_dup(BnQ)) == 0) {
+ return FALSE;
+ }
+
+ break;
+
+ //
+ // p's CRT Exponent (== d mod (p - 1)), q's CRT Exponent (== d mod (q - 1)),
+ // and CRT Coefficient (== 1/q mod p)
+ //
+ case RsaKeyDp:
+ case RsaKeyDq:
+ case RsaKeyQInv:
+ if (BnDp == NULL) {
+ BnDp = BN_new ();
+ }
+ if (BnDq == NULL) {
+ BnDq = BN_new ();
+ }
+ if (BnQInv == NULL) {
+ BnQInv = BN_new ();
+ }
+ if ((BnDp == NULL) || (BnDq == NULL) || (BnQInv == NULL)) {
+ return FALSE;
+ }
+
+ switch (KeyTag) {
+ case RsaKeyDp:
+ BnDp = BN_bin2bn (BigNumber, (UINT32)BnSize, BnDp);
+ break;
+ case RsaKeyDq:
+ BnDq = BN_bin2bn (BigNumber, (UINT32)BnSize, BnDq);
+ break;
+ case RsaKeyQInv:
+ BnQInv = BN_bin2bn (BigNumber, (UINT32)BnSize, BnQInv);
+ break;
+ default:
+ return FALSE;
+ }
+ if (RSA_set0_crt_params (RsaKey, BN_dup(BnDp), BN_dup(BnDq), BN_dup(BnQInv)) == 0) {
+ return FALSE;
+ }
+
+ break;
+
+ default:
+ return FALSE;
+ }
+
+ return TRUE;
+}
+
+/**
+ Verifies the RSA-SSA signature with EMSA-PKCS1-v1_5 encoding scheme defined in
+ RSA PKCS#1.
+
+ If RsaContext is NULL, then return FALSE.
+ If MessageHash is NULL, then return FALSE.
+ If Signature is NULL, then return FALSE.
+ If HashSize is not equal to the size of MD5, SHA-1 or SHA-256 digest, then return FALSE.
+
+ @param[in] RsaContext Pointer to RSA context for signature verification.
+ @param[in] MessageHash Pointer to octet message hash to be checked.
+ @param[in] HashSize Size of the message hash in bytes.
+ @param[in] Signature Pointer to RSA PKCS1-v1_5 signature to be verified.
+ @param[in] SigSize Size of signature in bytes.
+
+ @retval TRUE Valid signature encoded in PKCS1-v1_5.
+ @retval FALSE Invalid signature or invalid RSA context.
+
+**/
+BOOLEAN
+EFIAPI
+RsaPkcs1Verify (
+ IN VOID *RsaContext,
+ IN CONST UINT8 *MessageHash,
+ IN UINTN HashSize,
+ IN CONST UINT8 *Signature,
+ IN UINTN SigSize
+ )
+{
+ INT32 DigestType;
+ UINT8 *SigBuf;
+
+ //
+ // Check input parameters.
+ //
+ if (RsaContext == NULL || MessageHash == NULL || Signature == NULL) {
+ return FALSE;
+ }
+
+ if (SigSize > INT_MAX || SigSize == 0) {
+ return FALSE;
+ }
+
+ //
+ // Determine the message digest algorithm according to digest size.
+ // Only MD5, SHA-1 or SHA-256 algorithm is supported.
+ //
+ switch (HashSize) {
+ case MD5_DIGEST_SIZE:
+ DigestType = NID_md5;
+ break;
+
+ case SHA1_DIGEST_SIZE:
+ DigestType = NID_sha1;
+ break;
+
+ case SHA256_DIGEST_SIZE:
+ DigestType = NID_sha256;
+ break;
+
+ default:
+ return FALSE;
+ }
+
+ SigBuf = (UINT8 *) Signature;
+ return (BOOLEAN) RSA_verify (
+ DigestType,
+ MessageHash,
+ (UINT32) HashSize,
+ SigBuf,
+ (UINT32) SigSize,
+ (RSA *) RsaContext
+ );
+}