summaryrefslogtreecommitdiff
path: root/Core/UefiCpuPkg/PiSmmCpuDxeSmm/PiSmmCpuDxeSmm.c
diff options
context:
space:
mode:
Diffstat (limited to 'Core/UefiCpuPkg/PiSmmCpuDxeSmm/PiSmmCpuDxeSmm.c')
-rw-r--r--Core/UefiCpuPkg/PiSmmCpuDxeSmm/PiSmmCpuDxeSmm.c1517
1 files changed, 1517 insertions, 0 deletions
diff --git a/Core/UefiCpuPkg/PiSmmCpuDxeSmm/PiSmmCpuDxeSmm.c b/Core/UefiCpuPkg/PiSmmCpuDxeSmm/PiSmmCpuDxeSmm.c
new file mode 100644
index 0000000000..8b3bb343ce
--- /dev/null
+++ b/Core/UefiCpuPkg/PiSmmCpuDxeSmm/PiSmmCpuDxeSmm.c
@@ -0,0 +1,1517 @@
+/** @file
+Agent Module to load other modules to deploy SMM Entry Vector for X86 CPU.
+
+Copyright (c) 2009 - 2016, Intel Corporation. All rights reserved.<BR>
+This program and the accompanying materials
+are licensed and made available under the terms and conditions of the BSD License
+which accompanies this distribution. The full text of the license may be found at
+http://opensource.org/licenses/bsd-license.php
+
+THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
+WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
+
+**/
+
+#include "PiSmmCpuDxeSmm.h"
+
+//
+// SMM CPU Private Data structure that contains SMM Configuration Protocol
+// along its supporting fields.
+//
+SMM_CPU_PRIVATE_DATA mSmmCpuPrivateData = {
+ SMM_CPU_PRIVATE_DATA_SIGNATURE, // Signature
+ NULL, // SmmCpuHandle
+ NULL, // Pointer to ProcessorInfo array
+ NULL, // Pointer to Operation array
+ NULL, // Pointer to CpuSaveStateSize array
+ NULL, // Pointer to CpuSaveState array
+ { {0} }, // SmmReservedSmramRegion
+ {
+ SmmStartupThisAp, // SmmCoreEntryContext.SmmStartupThisAp
+ 0, // SmmCoreEntryContext.CurrentlyExecutingCpu
+ 0, // SmmCoreEntryContext.NumberOfCpus
+ NULL, // SmmCoreEntryContext.CpuSaveStateSize
+ NULL // SmmCoreEntryContext.CpuSaveState
+ },
+ NULL, // SmmCoreEntry
+ {
+ mSmmCpuPrivateData.SmmReservedSmramRegion, // SmmConfiguration.SmramReservedRegions
+ RegisterSmmEntry // SmmConfiguration.RegisterSmmEntry
+ },
+};
+
+CPU_HOT_PLUG_DATA mCpuHotPlugData = {
+ CPU_HOT_PLUG_DATA_REVISION_1, // Revision
+ 0, // Array Length of SmBase and APIC ID
+ NULL, // Pointer to APIC ID array
+ NULL, // Pointer to SMBASE array
+ 0, // Reserved
+ 0, // SmrrBase
+ 0 // SmrrSize
+};
+
+//
+// Global pointer used to access mSmmCpuPrivateData from outside and inside SMM
+//
+SMM_CPU_PRIVATE_DATA *gSmmCpuPrivate = &mSmmCpuPrivateData;
+
+//
+// SMM Relocation variables
+//
+volatile BOOLEAN *mRebased;
+volatile BOOLEAN mIsBsp;
+
+///
+/// Handle for the SMM CPU Protocol
+///
+EFI_HANDLE mSmmCpuHandle = NULL;
+
+///
+/// SMM CPU Protocol instance
+///
+EFI_SMM_CPU_PROTOCOL mSmmCpu = {
+ SmmReadSaveState,
+ SmmWriteSaveState
+};
+
+EFI_CPU_INTERRUPT_HANDLER mExternalVectorTable[EXCEPTION_VECTOR_NUMBER];
+
+//
+// SMM stack information
+//
+UINTN mSmmStackArrayBase;
+UINTN mSmmStackArrayEnd;
+UINTN mSmmStackSize;
+
+//
+// Pointer to structure used during S3 Resume
+//
+SMM_S3_RESUME_STATE *mSmmS3ResumeState = NULL;
+
+UINTN mMaxNumberOfCpus = 1;
+UINTN mNumberOfCpus = 1;
+
+//
+// SMM ready to lock flag
+//
+BOOLEAN mSmmReadyToLock = FALSE;
+
+//
+// Global used to cache PCD for SMM Code Access Check enable
+//
+BOOLEAN mSmmCodeAccessCheckEnable = FALSE;
+
+//
+// Spin lock used to serialize setting of SMM Code Access Check feature
+//
+SPIN_LOCK *mConfigSmmCodeAccessCheckLock = NULL;
+
+/**
+ Initialize IDT to setup exception handlers for SMM.
+
+**/
+VOID
+InitializeSmmIdt (
+ VOID
+ )
+{
+ EFI_STATUS Status;
+ BOOLEAN InterruptState;
+ IA32_DESCRIPTOR DxeIdtr;
+ //
+ // Disable Interrupt and save DXE IDT table
+ //
+ InterruptState = SaveAndDisableInterrupts ();
+ AsmReadIdtr (&DxeIdtr);
+ //
+ // Load SMM temporary IDT table
+ //
+ AsmWriteIdtr (&gcSmiIdtr);
+ //
+ // Setup SMM default exception handlers, SMM IDT table
+ // will be updated and saved in gcSmiIdtr
+ //
+ Status = InitializeCpuExceptionHandlers (NULL);
+ ASSERT_EFI_ERROR (Status);
+ //
+ // Restore DXE IDT table and CPU interrupt
+ //
+ AsmWriteIdtr ((IA32_DESCRIPTOR *) &DxeIdtr);
+ SetInterruptState (InterruptState);
+}
+
+/**
+ Search module name by input IP address and output it.
+
+ @param CallerIpAddress Caller instruction pointer.
+
+**/
+VOID
+DumpModuleInfoByIp (
+ IN UINTN CallerIpAddress
+ )
+{
+ UINTN Pe32Data;
+ EFI_IMAGE_DOS_HEADER *DosHdr;
+ EFI_IMAGE_OPTIONAL_HEADER_PTR_UNION Hdr;
+ VOID *PdbPointer;
+ UINT64 DumpIpAddress;
+
+ //
+ // Find Image Base
+ //
+ Pe32Data = CallerIpAddress & ~(SIZE_4KB - 1);
+ while (Pe32Data != 0) {
+ DosHdr = (EFI_IMAGE_DOS_HEADER *) Pe32Data;
+ if (DosHdr->e_magic == EFI_IMAGE_DOS_SIGNATURE) {
+ //
+ // DOS image header is present, so read the PE header after the DOS image header.
+ //
+ Hdr.Pe32 = (EFI_IMAGE_NT_HEADERS32 *)(Pe32Data + (UINTN) ((DosHdr->e_lfanew) & 0x0ffff));
+ //
+ // Make sure PE header address does not overflow and is less than the initial address.
+ //
+ if (((UINTN)Hdr.Pe32 > Pe32Data) && ((UINTN)Hdr.Pe32 < CallerIpAddress)) {
+ if (Hdr.Pe32->Signature == EFI_IMAGE_NT_SIGNATURE) {
+ //
+ // It's PE image.
+ //
+ break;
+ }
+ }
+ }
+
+ //
+ // Not found the image base, check the previous aligned address
+ //
+ Pe32Data -= SIZE_4KB;
+ }
+
+ DumpIpAddress = CallerIpAddress;
+ DEBUG ((EFI_D_ERROR, "It is invoked from the instruction before IP(0x%lx)", DumpIpAddress));
+
+ if (Pe32Data != 0) {
+ PdbPointer = PeCoffLoaderGetPdbPointer ((VOID *) Pe32Data);
+ if (PdbPointer != NULL) {
+ DEBUG ((EFI_D_ERROR, " in module (%a)", PdbPointer));
+ }
+ }
+}
+
+/**
+ Read information from the CPU save state.
+
+ @param This EFI_SMM_CPU_PROTOCOL instance
+ @param Width The number of bytes to read from the CPU save state.
+ @param Register Specifies the CPU register to read form the save state.
+ @param CpuIndex Specifies the zero-based index of the CPU save state.
+ @param Buffer Upon return, this holds the CPU register value read from the save state.
+
+ @retval EFI_SUCCESS The register was read from Save State
+ @retval EFI_NOT_FOUND The register is not defined for the Save State of Processor
+ @retval EFI_INVALID_PARAMTER This or Buffer is NULL.
+
+**/
+EFI_STATUS
+EFIAPI
+SmmReadSaveState (
+ IN CONST EFI_SMM_CPU_PROTOCOL *This,
+ IN UINTN Width,
+ IN EFI_SMM_SAVE_STATE_REGISTER Register,
+ IN UINTN CpuIndex,
+ OUT VOID *Buffer
+ )
+{
+ EFI_STATUS Status;
+
+ //
+ // Retrieve pointer to the specified CPU's SMM Save State buffer
+ //
+ if ((CpuIndex >= gSmst->NumberOfCpus) || (Buffer == NULL)) {
+ return EFI_INVALID_PARAMETER;
+ }
+
+ //
+ // Check for special EFI_SMM_SAVE_STATE_REGISTER_PROCESSOR_ID
+ //
+ if (Register == EFI_SMM_SAVE_STATE_REGISTER_PROCESSOR_ID) {
+ //
+ // The pseudo-register only supports the 64-bit size specified by Width.
+ //
+ if (Width != sizeof (UINT64)) {
+ return EFI_INVALID_PARAMETER;
+ }
+ //
+ // If the processor is in SMM at the time the SMI occurred,
+ // the pseudo register value for EFI_SMM_SAVE_STATE_REGISTER_PROCESSOR_ID is returned in Buffer.
+ // Otherwise, EFI_NOT_FOUND is returned.
+ //
+ if (*(mSmmMpSyncData->CpuData[CpuIndex].Present)) {
+ *(UINT64 *)Buffer = gSmmCpuPrivate->ProcessorInfo[CpuIndex].ProcessorId;
+ return EFI_SUCCESS;
+ } else {
+ return EFI_NOT_FOUND;
+ }
+ }
+
+ if (!(*(mSmmMpSyncData->CpuData[CpuIndex].Present))) {
+ return EFI_INVALID_PARAMETER;
+ }
+
+ Status = SmmCpuFeaturesReadSaveStateRegister (CpuIndex, Register, Width, Buffer);
+ if (Status == EFI_UNSUPPORTED) {
+ Status = ReadSaveStateRegister (CpuIndex, Register, Width, Buffer);
+ }
+ return Status;
+}
+
+/**
+ Write data to the CPU save state.
+
+ @param This EFI_SMM_CPU_PROTOCOL instance
+ @param Width The number of bytes to read from the CPU save state.
+ @param Register Specifies the CPU register to write to the save state.
+ @param CpuIndex Specifies the zero-based index of the CPU save state
+ @param Buffer Upon entry, this holds the new CPU register value.
+
+ @retval EFI_SUCCESS The register was written from Save State
+ @retval EFI_NOT_FOUND The register is not defined for the Save State of Processor
+ @retval EFI_INVALID_PARAMTER ProcessorIndex or Width is not correct
+
+**/
+EFI_STATUS
+EFIAPI
+SmmWriteSaveState (
+ IN CONST EFI_SMM_CPU_PROTOCOL *This,
+ IN UINTN Width,
+ IN EFI_SMM_SAVE_STATE_REGISTER Register,
+ IN UINTN CpuIndex,
+ IN CONST VOID *Buffer
+ )
+{
+ EFI_STATUS Status;
+
+ //
+ // Retrieve pointer to the specified CPU's SMM Save State buffer
+ //
+ if ((CpuIndex >= gSmst->NumberOfCpus) || (Buffer == NULL)) {
+ return EFI_INVALID_PARAMETER;
+ }
+
+ //
+ // Writes to EFI_SMM_SAVE_STATE_REGISTER_PROCESSOR_ID are ignored
+ //
+ if (Register == EFI_SMM_SAVE_STATE_REGISTER_PROCESSOR_ID) {
+ return EFI_SUCCESS;
+ }
+
+ if (!mSmmMpSyncData->CpuData[CpuIndex].Present) {
+ return EFI_INVALID_PARAMETER;
+ }
+
+ Status = SmmCpuFeaturesWriteSaveStateRegister (CpuIndex, Register, Width, Buffer);
+ if (Status == EFI_UNSUPPORTED) {
+ Status = WriteSaveStateRegister (CpuIndex, Register, Width, Buffer);
+ }
+ return Status;
+}
+
+
+/**
+ C function for SMI handler. To change all processor's SMMBase Register.
+
+**/
+VOID
+EFIAPI
+SmmInitHandler (
+ VOID
+ )
+{
+ UINT32 ApicId;
+ UINTN Index;
+
+ //
+ // Update SMM IDT entries' code segment and load IDT
+ //
+ AsmWriteIdtr (&gcSmiIdtr);
+ ApicId = GetApicId ();
+
+ ASSERT (mNumberOfCpus <= PcdGet32 (PcdCpuMaxLogicalProcessorNumber));
+
+ for (Index = 0; Index < mNumberOfCpus; Index++) {
+ if (ApicId == (UINT32)gSmmCpuPrivate->ProcessorInfo[Index].ProcessorId) {
+ //
+ // Initialize SMM specific features on the currently executing CPU
+ //
+ SmmCpuFeaturesInitializeProcessor (
+ Index,
+ mIsBsp,
+ gSmmCpuPrivate->ProcessorInfo,
+ &mCpuHotPlugData
+ );
+
+ if (mIsBsp) {
+ //
+ // BSP rebase is already done above.
+ // Initialize private data during S3 resume
+ //
+ InitializeMpSyncData ();
+ }
+
+ //
+ // Hook return after RSM to set SMM re-based flag
+ //
+ SemaphoreHook (Index, &mRebased[Index]);
+
+ return;
+ }
+ }
+ ASSERT (FALSE);
+}
+
+/**
+ Relocate SmmBases for each processor.
+
+ Execute on first boot and all S3 resumes
+
+**/
+VOID
+EFIAPI
+SmmRelocateBases (
+ VOID
+ )
+{
+ UINT8 BakBuf[BACK_BUF_SIZE];
+ SMRAM_SAVE_STATE_MAP BakBuf2;
+ SMRAM_SAVE_STATE_MAP *CpuStatePtr;
+ UINT8 *U8Ptr;
+ UINT32 ApicId;
+ UINTN Index;
+ UINTN BspIndex;
+
+ //
+ // Make sure the reserved size is large enough for procedure SmmInitTemplate.
+ //
+ ASSERT (sizeof (BakBuf) >= gcSmmInitSize);
+
+ //
+ // Patch ASM code template with current CR0, CR3, and CR4 values
+ //
+ gSmmCr0 = (UINT32)AsmReadCr0 ();
+ gSmmCr3 = (UINT32)AsmReadCr3 ();
+ gSmmCr4 = (UINT32)AsmReadCr4 ();
+
+ //
+ // Patch GDTR for SMM base relocation
+ //
+ gcSmiInitGdtr.Base = gcSmiGdtr.Base;
+ gcSmiInitGdtr.Limit = gcSmiGdtr.Limit;
+
+ U8Ptr = (UINT8*)(UINTN)(SMM_DEFAULT_SMBASE + SMM_HANDLER_OFFSET);
+ CpuStatePtr = (SMRAM_SAVE_STATE_MAP *)(UINTN)(SMM_DEFAULT_SMBASE + SMRAM_SAVE_STATE_MAP_OFFSET);
+
+ //
+ // Backup original contents at address 0x38000
+ //
+ CopyMem (BakBuf, U8Ptr, sizeof (BakBuf));
+ CopyMem (&BakBuf2, CpuStatePtr, sizeof (BakBuf2));
+
+ //
+ // Load image for relocation
+ //
+ CopyMem (U8Ptr, gcSmmInitTemplate, gcSmmInitSize);
+
+ //
+ // Retrieve the local APIC ID of current processor
+ //
+ ApicId = GetApicId ();
+
+ //
+ // Relocate SM bases for all APs
+ // This is APs' 1st SMI - rebase will be done here, and APs' default SMI handler will be overridden by gcSmmInitTemplate
+ //
+ mIsBsp = FALSE;
+ BspIndex = (UINTN)-1;
+ for (Index = 0; Index < mNumberOfCpus; Index++) {
+ mRebased[Index] = FALSE;
+ if (ApicId != (UINT32)gSmmCpuPrivate->ProcessorInfo[Index].ProcessorId) {
+ SendSmiIpi ((UINT32)gSmmCpuPrivate->ProcessorInfo[Index].ProcessorId);
+ //
+ // Wait for this AP to finish its 1st SMI
+ //
+ while (!mRebased[Index]);
+ } else {
+ //
+ // BSP will be Relocated later
+ //
+ BspIndex = Index;
+ }
+ }
+
+ //
+ // Relocate BSP's SMM base
+ //
+ ASSERT (BspIndex != (UINTN)-1);
+ mIsBsp = TRUE;
+ SendSmiIpi (ApicId);
+ //
+ // Wait for the BSP to finish its 1st SMI
+ //
+ while (!mRebased[BspIndex]);
+
+ //
+ // Restore contents at address 0x38000
+ //
+ CopyMem (CpuStatePtr, &BakBuf2, sizeof (BakBuf2));
+ CopyMem (U8Ptr, BakBuf, sizeof (BakBuf));
+}
+
+/**
+ Perform SMM initialization for all processors in the S3 boot path.
+
+ For a native platform, MP initialization in the S3 boot path is also performed in this function.
+**/
+VOID
+EFIAPI
+SmmRestoreCpu (
+ VOID
+ )
+{
+ SMM_S3_RESUME_STATE *SmmS3ResumeState;
+ IA32_DESCRIPTOR Ia32Idtr;
+ IA32_DESCRIPTOR X64Idtr;
+ IA32_IDT_GATE_DESCRIPTOR IdtEntryTable[EXCEPTION_VECTOR_NUMBER];
+ EFI_STATUS Status;
+
+ DEBUG ((EFI_D_INFO, "SmmRestoreCpu()\n"));
+
+ //
+ // See if there is enough context to resume PEI Phase
+ //
+ if (mSmmS3ResumeState == NULL) {
+ DEBUG ((EFI_D_ERROR, "No context to return to PEI Phase\n"));
+ CpuDeadLoop ();
+ }
+
+ SmmS3ResumeState = mSmmS3ResumeState;
+ ASSERT (SmmS3ResumeState != NULL);
+
+ if (SmmS3ResumeState->Signature == SMM_S3_RESUME_SMM_64) {
+ //
+ // Save the IA32 IDT Descriptor
+ //
+ AsmReadIdtr ((IA32_DESCRIPTOR *) &Ia32Idtr);
+
+ //
+ // Setup X64 IDT table
+ //
+ ZeroMem (IdtEntryTable, sizeof (IA32_IDT_GATE_DESCRIPTOR) * 32);
+ X64Idtr.Base = (UINTN) IdtEntryTable;
+ X64Idtr.Limit = (UINT16) (sizeof (IA32_IDT_GATE_DESCRIPTOR) * 32 - 1);
+ AsmWriteIdtr ((IA32_DESCRIPTOR *) &X64Idtr);
+
+ //
+ // Setup the default exception handler
+ //
+ Status = InitializeCpuExceptionHandlers (NULL);
+ ASSERT_EFI_ERROR (Status);
+
+ //
+ // Initialize Debug Agent to support source level debug
+ //
+ InitializeDebugAgent (DEBUG_AGENT_INIT_THUNK_PEI_IA32TOX64, (VOID *)&Ia32Idtr, NULL);
+ }
+
+ //
+ // Skip initialization if mAcpiCpuData is not valid
+ //
+ if (mAcpiCpuData.NumberOfCpus > 0) {
+ //
+ // First time microcode load and restore MTRRs
+ //
+ EarlyInitializeCpu ();
+ }
+
+ //
+ // Restore SMBASE for BSP and all APs
+ //
+ SmmRelocateBases ();
+
+ //
+ // Skip initialization if mAcpiCpuData is not valid
+ //
+ if (mAcpiCpuData.NumberOfCpus > 0) {
+ //
+ // Restore MSRs for BSP and all APs
+ //
+ InitializeCpu ();
+ }
+
+ //
+ // Set a flag to restore SMM configuration in S3 path.
+ //
+ mRestoreSmmConfigurationInS3 = TRUE;
+
+ DEBUG (( EFI_D_INFO, "SMM S3 Return CS = %x\n", SmmS3ResumeState->ReturnCs));
+ DEBUG (( EFI_D_INFO, "SMM S3 Return Entry Point = %x\n", SmmS3ResumeState->ReturnEntryPoint));
+ DEBUG (( EFI_D_INFO, "SMM S3 Return Context1 = %x\n", SmmS3ResumeState->ReturnContext1));
+ DEBUG (( EFI_D_INFO, "SMM S3 Return Context2 = %x\n", SmmS3ResumeState->ReturnContext2));
+ DEBUG (( EFI_D_INFO, "SMM S3 Return Stack Pointer = %x\n", SmmS3ResumeState->ReturnStackPointer));
+
+ //
+ // If SMM is in 32-bit mode, then use SwitchStack() to resume PEI Phase
+ //
+ if (SmmS3ResumeState->Signature == SMM_S3_RESUME_SMM_32) {
+ DEBUG ((EFI_D_INFO, "Call SwitchStack() to return to S3 Resume in PEI Phase\n"));
+
+ SwitchStack (
+ (SWITCH_STACK_ENTRY_POINT)(UINTN)SmmS3ResumeState->ReturnEntryPoint,
+ (VOID *)(UINTN)SmmS3ResumeState->ReturnContext1,
+ (VOID *)(UINTN)SmmS3ResumeState->ReturnContext2,
+ (VOID *)(UINTN)SmmS3ResumeState->ReturnStackPointer
+ );
+ }
+
+ //
+ // If SMM is in 64-bit mode, then use AsmDisablePaging64() to resume PEI Phase
+ //
+ if (SmmS3ResumeState->Signature == SMM_S3_RESUME_SMM_64) {
+ DEBUG ((EFI_D_INFO, "Call AsmDisablePaging64() to return to S3 Resume in PEI Phase\n"));
+ //
+ // Disable interrupt of Debug timer, since new IDT table is for IA32 and will not work in long mode.
+ //
+ SaveAndSetDebugTimerInterrupt (FALSE);
+ //
+ // Restore IA32 IDT table
+ //
+ AsmWriteIdtr ((IA32_DESCRIPTOR *) &Ia32Idtr);
+ AsmDisablePaging64 (
+ SmmS3ResumeState->ReturnCs,
+ (UINT32)SmmS3ResumeState->ReturnEntryPoint,
+ (UINT32)SmmS3ResumeState->ReturnContext1,
+ (UINT32)SmmS3ResumeState->ReturnContext2,
+ (UINT32)SmmS3ResumeState->ReturnStackPointer
+ );
+ }
+
+ //
+ // Can not resume PEI Phase
+ //
+ DEBUG ((EFI_D_ERROR, "No context to return to PEI Phase\n"));
+ CpuDeadLoop ();
+}
+
+/**
+ Copy register table from ACPI NVS memory into SMRAM.
+
+ @param[in] DestinationRegisterTableList Points to destination register table.
+ @param[in] SourceRegisterTableList Points to source register table.
+ @param[in] NumberOfCpus Number of CPUs.
+
+**/
+VOID
+CopyRegisterTable (
+ IN CPU_REGISTER_TABLE *DestinationRegisterTableList,
+ IN CPU_REGISTER_TABLE *SourceRegisterTableList,
+ IN UINT32 NumberOfCpus
+ )
+{
+ UINTN Index;
+ UINTN Index1;
+ CPU_REGISTER_TABLE_ENTRY *RegisterTableEntry;
+
+ CopyMem (DestinationRegisterTableList, SourceRegisterTableList, NumberOfCpus * sizeof (CPU_REGISTER_TABLE));
+ for (Index = 0; Index < NumberOfCpus; Index++) {
+ DestinationRegisterTableList[Index].RegisterTableEntry = AllocatePool (DestinationRegisterTableList[Index].AllocatedSize);
+ ASSERT (DestinationRegisterTableList[Index].RegisterTableEntry != NULL);
+ CopyMem (DestinationRegisterTableList[Index].RegisterTableEntry, SourceRegisterTableList[Index].RegisterTableEntry, DestinationRegisterTableList[Index].AllocatedSize);
+ //
+ // Go though all MSRs in register table to initialize MSR spin lock
+ //
+ RegisterTableEntry = DestinationRegisterTableList[Index].RegisterTableEntry;
+ for (Index1 = 0; Index1 < DestinationRegisterTableList[Index].TableLength; Index1++, RegisterTableEntry++) {
+ if ((RegisterTableEntry->RegisterType == Msr) && (RegisterTableEntry->ValidBitLength < 64)) {
+ //
+ // Initialize MSR spin lock only for those MSRs need bit field writing
+ //
+ InitMsrSpinLockByIndex (RegisterTableEntry->Index);
+ }
+ }
+ }
+}
+
+/**
+ SMM Ready To Lock event notification handler.
+
+ The CPU S3 data is copied to SMRAM for security and mSmmReadyToLock is set to
+ perform additional lock actions that must be performed from SMM on the next SMI.
+
+ @param[in] Protocol Points to the protocol's unique identifier.
+ @param[in] Interface Points to the interface instance.
+ @param[in] Handle The handle on which the interface was installed.
+
+ @retval EFI_SUCCESS Notification handler runs successfully.
+ **/
+EFI_STATUS
+EFIAPI
+SmmReadyToLockEventNotify (
+ IN CONST EFI_GUID *Protocol,
+ IN VOID *Interface,
+ IN EFI_HANDLE Handle
+ )
+{
+ ACPI_CPU_DATA *AcpiCpuData;
+ IA32_DESCRIPTOR *Gdtr;
+ IA32_DESCRIPTOR *Idtr;
+
+ //
+ // Prevent use of mAcpiCpuData by initialize NumberOfCpus to 0
+ //
+ mAcpiCpuData.NumberOfCpus = 0;
+
+ //
+ // If PcdCpuS3DataAddress was never set, then do not copy CPU S3 Data into SMRAM
+ //
+ AcpiCpuData = (ACPI_CPU_DATA *)(UINTN)PcdGet64 (PcdCpuS3DataAddress);
+ if (AcpiCpuData == 0) {
+ goto Done;
+ }
+
+ //
+ // For a native platform, copy the CPU S3 data into SMRAM for use on CPU S3 Resume.
+ //
+ CopyMem (&mAcpiCpuData, AcpiCpuData, sizeof (mAcpiCpuData));
+
+ mAcpiCpuData.MtrrTable = (EFI_PHYSICAL_ADDRESS)(UINTN)AllocatePool (sizeof (MTRR_SETTINGS));
+ ASSERT (mAcpiCpuData.MtrrTable != 0);
+
+ CopyMem ((VOID *)(UINTN)mAcpiCpuData.MtrrTable, (VOID *)(UINTN)AcpiCpuData->MtrrTable, sizeof (MTRR_SETTINGS));
+
+ mAcpiCpuData.GdtrProfile = (EFI_PHYSICAL_ADDRESS)(UINTN)AllocatePool (sizeof (IA32_DESCRIPTOR));
+ ASSERT (mAcpiCpuData.GdtrProfile != 0);
+
+ CopyMem ((VOID *)(UINTN)mAcpiCpuData.GdtrProfile, (VOID *)(UINTN)AcpiCpuData->GdtrProfile, sizeof (IA32_DESCRIPTOR));
+
+ mAcpiCpuData.IdtrProfile = (EFI_PHYSICAL_ADDRESS)(UINTN)AllocatePool (sizeof (IA32_DESCRIPTOR));
+ ASSERT (mAcpiCpuData.IdtrProfile != 0);
+
+ CopyMem ((VOID *)(UINTN)mAcpiCpuData.IdtrProfile, (VOID *)(UINTN)AcpiCpuData->IdtrProfile, sizeof (IA32_DESCRIPTOR));
+
+ mAcpiCpuData.PreSmmInitRegisterTable = (EFI_PHYSICAL_ADDRESS)(UINTN)AllocatePool (mAcpiCpuData.NumberOfCpus * sizeof (CPU_REGISTER_TABLE));
+ ASSERT (mAcpiCpuData.PreSmmInitRegisterTable != 0);
+
+ CopyRegisterTable (
+ (CPU_REGISTER_TABLE *)(UINTN)mAcpiCpuData.PreSmmInitRegisterTable,
+ (CPU_REGISTER_TABLE *)(UINTN)AcpiCpuData->PreSmmInitRegisterTable,
+ mAcpiCpuData.NumberOfCpus
+ );
+
+ mAcpiCpuData.RegisterTable = (EFI_PHYSICAL_ADDRESS)(UINTN)AllocatePool (mAcpiCpuData.NumberOfCpus * sizeof (CPU_REGISTER_TABLE));
+ ASSERT (mAcpiCpuData.RegisterTable != 0);
+
+ CopyRegisterTable (
+ (CPU_REGISTER_TABLE *)(UINTN)mAcpiCpuData.RegisterTable,
+ (CPU_REGISTER_TABLE *)(UINTN)AcpiCpuData->RegisterTable,
+ mAcpiCpuData.NumberOfCpus
+ );
+
+ //
+ // Copy AP's GDT, IDT and Machine Check handler into SMRAM.
+ //
+ Gdtr = (IA32_DESCRIPTOR *)(UINTN)mAcpiCpuData.GdtrProfile;
+ Idtr = (IA32_DESCRIPTOR *)(UINTN)mAcpiCpuData.IdtrProfile;
+
+ mGdtForAp = AllocatePool ((Gdtr->Limit + 1) + (Idtr->Limit + 1) + mAcpiCpuData.ApMachineCheckHandlerSize);
+ ASSERT (mGdtForAp != NULL);
+ mIdtForAp = (VOID *) ((UINTN)mGdtForAp + (Gdtr->Limit + 1));
+ mMachineCheckHandlerForAp = (VOID *) ((UINTN)mIdtForAp + (Idtr->Limit + 1));
+
+ CopyMem (mGdtForAp, (VOID *)Gdtr->Base, Gdtr->Limit + 1);
+ CopyMem (mIdtForAp, (VOID *)Idtr->Base, Idtr->Limit + 1);
+ CopyMem (mMachineCheckHandlerForAp, (VOID *)(UINTN)mAcpiCpuData.ApMachineCheckHandlerBase, mAcpiCpuData.ApMachineCheckHandlerSize);
+
+Done:
+ //
+ // Set SMM ready to lock flag and return
+ //
+ mSmmReadyToLock = TRUE;
+ return EFI_SUCCESS;
+}
+
+/**
+ The module Entry Point of the CPU SMM driver.
+
+ @param ImageHandle The firmware allocated handle for the EFI image.
+ @param SystemTable A pointer to the EFI System Table.
+
+ @retval EFI_SUCCESS The entry point is executed successfully.
+ @retval Other Some error occurs when executing this entry point.
+
+**/
+EFI_STATUS
+EFIAPI
+PiCpuSmmEntry (
+ IN EFI_HANDLE ImageHandle,
+ IN EFI_SYSTEM_TABLE *SystemTable
+ )
+{
+ EFI_STATUS Status;
+ EFI_MP_SERVICES_PROTOCOL *MpServices;
+ UINTN NumberOfEnabledProcessors;
+ UINTN Index;
+ VOID *Buffer;
+ UINTN BufferPages;
+ UINTN TileCodeSize;
+ UINTN TileDataSize;
+ UINTN TileSize;
+ VOID *GuidHob;
+ EFI_SMRAM_DESCRIPTOR *SmramDescriptor;
+ SMM_S3_RESUME_STATE *SmmS3ResumeState;
+ UINT8 *Stacks;
+ VOID *Registration;
+ UINT32 RegEax;
+ UINT32 RegEdx;
+ UINTN FamilyId;
+ UINTN ModelId;
+ UINT32 Cr3;
+
+ //
+ // Initialize Debug Agent to support source level debug in SMM code
+ //
+ InitializeDebugAgent (DEBUG_AGENT_INIT_SMM, NULL, NULL);
+
+ //
+ // Report the start of CPU SMM initialization.
+ //
+ REPORT_STATUS_CODE (
+ EFI_PROGRESS_CODE,
+ EFI_COMPUTING_UNIT_HOST_PROCESSOR | EFI_CU_HP_PC_SMM_INIT
+ );
+
+ //
+ // Fix segment address of the long-mode-switch jump
+ //
+ if (sizeof (UINTN) == sizeof (UINT64)) {
+ gSmmJmpAddr.Segment = LONG_MODE_CODE_SEGMENT;
+ }
+
+ //
+ // Find out SMRR Base and SMRR Size
+ //
+ FindSmramInfo (&mCpuHotPlugData.SmrrBase, &mCpuHotPlugData.SmrrSize);
+
+ //
+ // Get MP Services Protocol
+ //
+ Status = SystemTable->BootServices->LocateProtocol (&gEfiMpServiceProtocolGuid, NULL, (VOID **)&MpServices);
+ ASSERT_EFI_ERROR (Status);
+
+ //
+ // Use MP Services Protocol to retrieve the number of processors and number of enabled processors
+ //
+ Status = MpServices->GetNumberOfProcessors (MpServices, &mNumberOfCpus, &NumberOfEnabledProcessors);
+ ASSERT_EFI_ERROR (Status);
+ ASSERT (mNumberOfCpus <= PcdGet32 (PcdCpuMaxLogicalProcessorNumber));
+
+ //
+ // If support CPU hot plug, PcdCpuSmmEnableBspElection should be set to TRUE.
+ // A constant BSP index makes no sense because it may be hot removed.
+ //
+ DEBUG_CODE (
+ if (FeaturePcdGet (PcdCpuHotPlugSupport)) {
+
+ ASSERT (FeaturePcdGet (PcdCpuSmmEnableBspElection));
+ }
+ );
+
+ //
+ // Save the PcdCpuSmmCodeAccessCheckEnable value into a global variable.
+ //
+ mSmmCodeAccessCheckEnable = PcdGetBool (PcdCpuSmmCodeAccessCheckEnable);
+ DEBUG ((EFI_D_INFO, "PcdCpuSmmCodeAccessCheckEnable = %d\n", mSmmCodeAccessCheckEnable));
+
+ //
+ // If support CPU hot plug, we need to allocate resources for possibly hot-added processors
+ //
+ if (FeaturePcdGet (PcdCpuHotPlugSupport)) {
+ mMaxNumberOfCpus = PcdGet32 (PcdCpuMaxLogicalProcessorNumber);
+ } else {
+ mMaxNumberOfCpus = mNumberOfCpus;
+ }
+ gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus = mMaxNumberOfCpus;
+
+ //
+ // The CPU save state and code for the SMI entry point are tiled within an SMRAM
+ // allocated buffer. The minimum size of this buffer for a uniprocessor system
+ // is 32 KB, because the entry point is SMBASE + 32KB, and CPU save state area
+ // just below SMBASE + 64KB. If more than one CPU is present in the platform,
+ // then the SMI entry point and the CPU save state areas can be tiles to minimize
+ // the total amount SMRAM required for all the CPUs. The tile size can be computed
+ // by adding the // CPU save state size, any extra CPU specific context, and
+ // the size of code that must be placed at the SMI entry point to transfer
+ // control to a C function in the native SMM execution mode. This size is
+ // rounded up to the nearest power of 2 to give the tile size for a each CPU.
+ // The total amount of memory required is the maximum number of CPUs that
+ // platform supports times the tile size. The picture below shows the tiling,
+ // where m is the number of tiles that fit in 32KB.
+ //
+ // +-----------------------------+ <-- 2^n offset from Base of allocated buffer
+ // | CPU m+1 Save State |
+ // +-----------------------------+
+ // | CPU m+1 Extra Data |
+ // +-----------------------------+
+ // | Padding |
+ // +-----------------------------+
+ // | CPU 2m SMI Entry |
+ // +#############################+ <-- Base of allocated buffer + 64 KB
+ // | CPU m-1 Save State |
+ // +-----------------------------+
+ // | CPU m-1 Extra Data |
+ // +-----------------------------+
+ // | Padding |
+ // +-----------------------------+
+ // | CPU 2m-1 SMI Entry |
+ // +=============================+ <-- 2^n offset from Base of allocated buffer
+ // | . . . . . . . . . . . . |
+ // +=============================+ <-- 2^n offset from Base of allocated buffer
+ // | CPU 2 Save State |
+ // +-----------------------------+
+ // | CPU 2 Extra Data |
+ // +-----------------------------+
+ // | Padding |
+ // +-----------------------------+
+ // | CPU m+1 SMI Entry |
+ // +=============================+ <-- Base of allocated buffer + 32 KB
+ // | CPU 1 Save State |
+ // +-----------------------------+
+ // | CPU 1 Extra Data |
+ // +-----------------------------+
+ // | Padding |
+ // +-----------------------------+
+ // | CPU m SMI Entry |
+ // +#############################+ <-- Base of allocated buffer + 32 KB == CPU 0 SMBASE + 64 KB
+ // | CPU 0 Save State |
+ // +-----------------------------+
+ // | CPU 0 Extra Data |
+ // +-----------------------------+
+ // | Padding |
+ // +-----------------------------+
+ // | CPU m-1 SMI Entry |
+ // +=============================+ <-- 2^n offset from Base of allocated buffer
+ // | . . . . . . . . . . . . |
+ // +=============================+ <-- 2^n offset from Base of allocated buffer
+ // | Padding |
+ // +-----------------------------+
+ // | CPU 1 SMI Entry |
+ // +=============================+ <-- 2^n offset from Base of allocated buffer
+ // | Padding |
+ // +-----------------------------+
+ // | CPU 0 SMI Entry |
+ // +#############################+ <-- Base of allocated buffer == CPU 0 SMBASE + 32 KB
+ //
+
+ //
+ // Retrieve CPU Family
+ //
+ AsmCpuid (CPUID_VERSION_INFO, &RegEax, NULL, NULL, NULL);
+ FamilyId = (RegEax >> 8) & 0xf;
+ ModelId = (RegEax >> 4) & 0xf;
+ if (FamilyId == 0x06 || FamilyId == 0x0f) {
+ ModelId = ModelId | ((RegEax >> 12) & 0xf0);
+ }
+
+ RegEdx = 0;
+ AsmCpuid (CPUID_EXTENDED_FUNCTION, &RegEax, NULL, NULL, NULL);
+ if (RegEax >= CPUID_EXTENDED_CPU_SIG) {
+ AsmCpuid (CPUID_EXTENDED_CPU_SIG, NULL, NULL, NULL, &RegEdx);
+ }
+ //
+ // Determine the mode of the CPU at the time an SMI occurs
+ // Intel(R) 64 and IA-32 Architectures Software Developer's Manual
+ // Volume 3C, Section 34.4.1.1
+ //
+ mSmmSaveStateRegisterLma = EFI_SMM_SAVE_STATE_REGISTER_LMA_32BIT;
+ if ((RegEdx & BIT29) != 0) {
+ mSmmSaveStateRegisterLma = EFI_SMM_SAVE_STATE_REGISTER_LMA_64BIT;
+ }
+ if (FamilyId == 0x06) {
+ if (ModelId == 0x17 || ModelId == 0x0f || ModelId == 0x1c) {
+ mSmmSaveStateRegisterLma = EFI_SMM_SAVE_STATE_REGISTER_LMA_64BIT;
+ }
+ }
+
+ //
+ // Compute tile size of buffer required to hold the CPU SMRAM Save State Map, extra CPU
+ // specific context in a PROCESSOR_SMM_DESCRIPTOR, and the SMI entry point. This size
+ // is rounded up to nearest power of 2.
+ //
+ TileCodeSize = GetSmiHandlerSize ();
+ TileCodeSize = ALIGN_VALUE(TileCodeSize, SIZE_4KB);
+ TileDataSize = sizeof (SMRAM_SAVE_STATE_MAP) + sizeof (PROCESSOR_SMM_DESCRIPTOR);
+ TileDataSize = ALIGN_VALUE(TileDataSize, SIZE_4KB);
+ TileSize = TileDataSize + TileCodeSize - 1;
+ TileSize = 2 * GetPowerOfTwo32 ((UINT32)TileSize);
+ DEBUG ((EFI_D_INFO, "SMRAM TileSize = 0x%08x (0x%08x, 0x%08x)\n", TileSize, TileCodeSize, TileDataSize));
+
+ //
+ // If the TileSize is larger than space available for the SMI Handler of CPU[i],
+ // the PROCESSOR_SMM_DESCRIPTOR of CPU[i+1] and the SMRAM Save State Map of CPU[i+1],
+ // the ASSERT(). If this ASSERT() is triggered, then the SMI Handler size must be
+ // reduced.
+ //
+ ASSERT (TileSize <= (SMRAM_SAVE_STATE_MAP_OFFSET + sizeof (SMRAM_SAVE_STATE_MAP) - SMM_HANDLER_OFFSET));
+
+ //
+ // Allocate buffer for all of the tiles.
+ //
+ // Intel(R) 64 and IA-32 Architectures Software Developer's Manual
+ // Volume 3C, Section 34.11 SMBASE Relocation
+ // For Pentium and Intel486 processors, the SMBASE values must be
+ // aligned on a 32-KByte boundary or the processor will enter shutdown
+ // state during the execution of a RSM instruction.
+ //
+ // Intel486 processors: FamilyId is 4
+ // Pentium processors : FamilyId is 5
+ //
+ BufferPages = EFI_SIZE_TO_PAGES (SIZE_32KB + TileSize * (mMaxNumberOfCpus - 1));
+ if ((FamilyId == 4) || (FamilyId == 5)) {
+ Buffer = AllocateAlignedPages (BufferPages, SIZE_32KB);
+ } else {
+ Buffer = AllocateAlignedPages (BufferPages, SIZE_4KB);
+ }
+ ASSERT (Buffer != NULL);
+ DEBUG ((EFI_D_INFO, "SMRAM SaveState Buffer (0x%08x, 0x%08x)\n", Buffer, EFI_PAGES_TO_SIZE(BufferPages)));
+
+ //
+ // Allocate buffer for pointers to array in SMM_CPU_PRIVATE_DATA.
+ //
+ gSmmCpuPrivate->ProcessorInfo = (EFI_PROCESSOR_INFORMATION *)AllocatePool (sizeof (EFI_PROCESSOR_INFORMATION) * mMaxNumberOfCpus);
+ ASSERT (gSmmCpuPrivate->ProcessorInfo != NULL);
+
+ gSmmCpuPrivate->Operation = (SMM_CPU_OPERATION *)AllocatePool (sizeof (SMM_CPU_OPERATION) * mMaxNumberOfCpus);
+ ASSERT (gSmmCpuPrivate->Operation != NULL);
+
+ gSmmCpuPrivate->CpuSaveStateSize = (UINTN *)AllocatePool (sizeof (UINTN) * mMaxNumberOfCpus);
+ ASSERT (gSmmCpuPrivate->CpuSaveStateSize != NULL);
+
+ gSmmCpuPrivate->CpuSaveState = (VOID **)AllocatePool (sizeof (VOID *) * mMaxNumberOfCpus);
+ ASSERT (gSmmCpuPrivate->CpuSaveState != NULL);
+
+ mSmmCpuPrivateData.SmmCoreEntryContext.CpuSaveStateSize = gSmmCpuPrivate->CpuSaveStateSize;
+ mSmmCpuPrivateData.SmmCoreEntryContext.CpuSaveState = gSmmCpuPrivate->CpuSaveState;
+
+ //
+ // Allocate buffer for pointers to array in CPU_HOT_PLUG_DATA.
+ //
+ mCpuHotPlugData.ApicId = (UINT64 *)AllocatePool (sizeof (UINT64) * mMaxNumberOfCpus);
+ ASSERT (mCpuHotPlugData.ApicId != NULL);
+ mCpuHotPlugData.SmBase = (UINTN *)AllocatePool (sizeof (UINTN) * mMaxNumberOfCpus);
+ ASSERT (mCpuHotPlugData.SmBase != NULL);
+ mCpuHotPlugData.ArrayLength = (UINT32)mMaxNumberOfCpus;
+
+ //
+ // Retrieve APIC ID of each enabled processor from the MP Services protocol.
+ // Also compute the SMBASE address, CPU Save State address, and CPU Save state
+ // size for each CPU in the platform
+ //
+ for (Index = 0; Index < mMaxNumberOfCpus; Index++) {
+ mCpuHotPlugData.SmBase[Index] = (UINTN)Buffer + Index * TileSize - SMM_HANDLER_OFFSET;
+ gSmmCpuPrivate->CpuSaveStateSize[Index] = sizeof(SMRAM_SAVE_STATE_MAP);
+ gSmmCpuPrivate->CpuSaveState[Index] = (VOID *)(mCpuHotPlugData.SmBase[Index] + SMRAM_SAVE_STATE_MAP_OFFSET);
+ gSmmCpuPrivate->Operation[Index] = SmmCpuNone;
+
+ if (Index < mNumberOfCpus) {
+ Status = MpServices->GetProcessorInfo (MpServices, Index, &gSmmCpuPrivate->ProcessorInfo[Index]);
+ ASSERT_EFI_ERROR (Status);
+ mCpuHotPlugData.ApicId[Index] = gSmmCpuPrivate->ProcessorInfo[Index].ProcessorId;
+
+ DEBUG ((EFI_D_INFO, "CPU[%03x] APIC ID=%04x SMBASE=%08x SaveState=%08x Size=%08x\n",
+ Index,
+ (UINT32)gSmmCpuPrivate->ProcessorInfo[Index].ProcessorId,
+ mCpuHotPlugData.SmBase[Index],
+ gSmmCpuPrivate->CpuSaveState[Index],
+ gSmmCpuPrivate->CpuSaveStateSize[Index]
+ ));
+ } else {
+ gSmmCpuPrivate->ProcessorInfo[Index].ProcessorId = INVALID_APIC_ID;
+ mCpuHotPlugData.ApicId[Index] = INVALID_APIC_ID;
+ }
+ }
+
+ //
+ // Allocate SMI stacks for all processors.
+ //
+ if (FeaturePcdGet (PcdCpuSmmStackGuard)) {
+ //
+ // 2 more pages is allocated for each processor.
+ // one is guard page and the other is known good stack.
+ //
+ // +-------------------------------------------+-----+-------------------------------------------+
+ // | Known Good Stack | Guard Page | SMM Stack | ... | Known Good Stack | Guard Page | SMM Stack |
+ // +-------------------------------------------+-----+-------------------------------------------+
+ // | | | |
+ // |<-------------- Processor 0 -------------->| |<-------------- Processor n -------------->|
+ //
+ mSmmStackSize = EFI_PAGES_TO_SIZE (EFI_SIZE_TO_PAGES (PcdGet32 (PcdCpuSmmStackSize)) + 2);
+ Stacks = (UINT8 *) AllocatePages (gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus * (EFI_SIZE_TO_PAGES (PcdGet32 (PcdCpuSmmStackSize)) + 2));
+ ASSERT (Stacks != NULL);
+ mSmmStackArrayBase = (UINTN)Stacks;
+ mSmmStackArrayEnd = mSmmStackArrayBase + gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus * mSmmStackSize - 1;
+ } else {
+ mSmmStackSize = PcdGet32 (PcdCpuSmmStackSize);
+ Stacks = (UINT8 *) AllocatePages (EFI_SIZE_TO_PAGES (gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus * mSmmStackSize));
+ ASSERT (Stacks != NULL);
+ }
+
+ //
+ // Set SMI stack for SMM base relocation
+ //
+ gSmmInitStack = (UINTN) (Stacks + mSmmStackSize - sizeof (UINTN));
+
+ //
+ // Initialize IDT
+ //
+ InitializeSmmIdt ();
+
+ //
+ // Relocate SMM Base addresses to the ones allocated from SMRAM
+ //
+ mRebased = (BOOLEAN *)AllocateZeroPool (sizeof (BOOLEAN) * mMaxNumberOfCpus);
+ ASSERT (mRebased != NULL);
+ SmmRelocateBases ();
+
+ //
+ // Call hook for BSP to perform extra actions in normal mode after all
+ // SMM base addresses have been relocated on all CPUs
+ //
+ SmmCpuFeaturesSmmRelocationComplete ();
+
+ //
+ // SMM Time initialization
+ //
+ InitializeSmmTimer ();
+
+ //
+ // Initialize MP globals
+ //
+ Cr3 = InitializeMpServiceData (Stacks, mSmmStackSize);
+
+ //
+ // Fill in SMM Reserved Regions
+ //
+ gSmmCpuPrivate->SmmReservedSmramRegion[0].SmramReservedStart = 0;
+ gSmmCpuPrivate->SmmReservedSmramRegion[0].SmramReservedSize = 0;
+
+ //
+ // Install the SMM Configuration Protocol onto a new handle on the handle database.
+ // The entire SMM Configuration Protocol is allocated from SMRAM, so only a pointer
+ // to an SMRAM address will be present in the handle database
+ //
+ Status = SystemTable->BootServices->InstallMultipleProtocolInterfaces (
+ &gSmmCpuPrivate->SmmCpuHandle,
+ &gEfiSmmConfigurationProtocolGuid, &gSmmCpuPrivate->SmmConfiguration,
+ NULL
+ );
+ ASSERT_EFI_ERROR (Status);
+
+ //
+ // Install the SMM CPU Protocol into SMM protocol database
+ //
+ Status = gSmst->SmmInstallProtocolInterface (
+ &mSmmCpuHandle,
+ &gEfiSmmCpuProtocolGuid,
+ EFI_NATIVE_INTERFACE,
+ &mSmmCpu
+ );
+ ASSERT_EFI_ERROR (Status);
+
+ //
+ // Expose address of CPU Hot Plug Data structure if CPU hot plug is supported.
+ //
+ if (FeaturePcdGet (PcdCpuHotPlugSupport)) {
+ Status = PcdSet64S (PcdCpuHotPlugDataAddress, (UINT64)(UINTN)&mCpuHotPlugData);
+ ASSERT_EFI_ERROR (Status);
+ }
+
+ //
+ // Initialize SMM CPU Services Support
+ //
+ Status = InitializeSmmCpuServices (mSmmCpuHandle);
+ ASSERT_EFI_ERROR (Status);
+
+ //
+ // register SMM Ready To Lock Protocol notification
+ //
+ Status = gSmst->SmmRegisterProtocolNotify (
+ &gEfiSmmReadyToLockProtocolGuid,
+ SmmReadyToLockEventNotify,
+ &Registration
+ );
+ ASSERT_EFI_ERROR (Status);
+
+ GuidHob = GetFirstGuidHob (&gEfiAcpiVariableGuid);
+ if (GuidHob != NULL) {
+ SmramDescriptor = (EFI_SMRAM_DESCRIPTOR *) GET_GUID_HOB_DATA (GuidHob);
+
+ DEBUG ((EFI_D_INFO, "SMM S3 SMRAM Structure = %x\n", SmramDescriptor));
+ DEBUG ((EFI_D_INFO, "SMM S3 Structure = %x\n", SmramDescriptor->CpuStart));
+
+ SmmS3ResumeState = (SMM_S3_RESUME_STATE *)(UINTN)SmramDescriptor->CpuStart;
+ ZeroMem (SmmS3ResumeState, sizeof (SMM_S3_RESUME_STATE));
+
+ mSmmS3ResumeState = SmmS3ResumeState;
+ SmmS3ResumeState->Smst = (EFI_PHYSICAL_ADDRESS)(UINTN)gSmst;
+
+ SmmS3ResumeState->SmmS3ResumeEntryPoint = (EFI_PHYSICAL_ADDRESS)(UINTN)SmmRestoreCpu;
+
+ SmmS3ResumeState->SmmS3StackSize = SIZE_32KB;
+ SmmS3ResumeState->SmmS3StackBase = (EFI_PHYSICAL_ADDRESS)(UINTN)AllocatePages (EFI_SIZE_TO_PAGES ((UINTN)SmmS3ResumeState->SmmS3StackSize));
+ if (SmmS3ResumeState->SmmS3StackBase == 0) {
+ SmmS3ResumeState->SmmS3StackSize = 0;
+ }
+
+ SmmS3ResumeState->SmmS3Cr0 = gSmmCr0;
+ SmmS3ResumeState->SmmS3Cr3 = Cr3;
+ SmmS3ResumeState->SmmS3Cr4 = gSmmCr4;
+
+ if (sizeof (UINTN) == sizeof (UINT64)) {
+ SmmS3ResumeState->Signature = SMM_S3_RESUME_SMM_64;
+ }
+ if (sizeof (UINTN) == sizeof (UINT32)) {
+ SmmS3ResumeState->Signature = SMM_S3_RESUME_SMM_32;
+ }
+ }
+
+ //
+ // Check XD and BTS features
+ //
+ CheckProcessorFeature ();
+
+ //
+ // Initialize SMM Profile feature
+ //
+ InitSmmProfile (Cr3);
+
+ //
+ // Patch SmmS3ResumeState->SmmS3Cr3
+ //
+ InitSmmS3Cr3 ();
+
+ DEBUG ((EFI_D_INFO, "SMM CPU Module exit from SMRAM with EFI_SUCCESS\n"));
+
+ return EFI_SUCCESS;
+}
+
+/**
+
+ Find out SMRAM information including SMRR base and SMRR size.
+
+ @param SmrrBase SMRR base
+ @param SmrrSize SMRR size
+
+**/
+VOID
+FindSmramInfo (
+ OUT UINT32 *SmrrBase,
+ OUT UINT32 *SmrrSize
+ )
+{
+ EFI_STATUS Status;
+ UINTN Size;
+ EFI_SMM_ACCESS2_PROTOCOL *SmmAccess;
+ EFI_SMRAM_DESCRIPTOR *CurrentSmramRange;
+ EFI_SMRAM_DESCRIPTOR *SmramRanges;
+ UINTN SmramRangeCount;
+ UINTN Index;
+ UINT64 MaxSize;
+ BOOLEAN Found;
+
+ //
+ // Get SMM Access Protocol
+ //
+ Status = gBS->LocateProtocol (&gEfiSmmAccess2ProtocolGuid, NULL, (VOID **)&SmmAccess);
+ ASSERT_EFI_ERROR (Status);
+
+ //
+ // Get SMRAM information
+ //
+ Size = 0;
+ Status = SmmAccess->GetCapabilities (SmmAccess, &Size, NULL);
+ ASSERT (Status == EFI_BUFFER_TOO_SMALL);
+
+ SmramRanges = (EFI_SMRAM_DESCRIPTOR *)AllocatePool (Size);
+ ASSERT (SmramRanges != NULL);
+
+ Status = SmmAccess->GetCapabilities (SmmAccess, &Size, SmramRanges);
+ ASSERT_EFI_ERROR (Status);
+
+ SmramRangeCount = Size / sizeof (EFI_SMRAM_DESCRIPTOR);
+
+ //
+ // Find the largest SMRAM range between 1MB and 4GB that is at least 256K - 4K in size
+ //
+ CurrentSmramRange = NULL;
+ for (Index = 0, MaxSize = SIZE_256KB - EFI_PAGE_SIZE; Index < SmramRangeCount; Index++) {
+ //
+ // Skip any SMRAM region that is already allocated, needs testing, or needs ECC initialization
+ //
+ if ((SmramRanges[Index].RegionState & (EFI_ALLOCATED | EFI_NEEDS_TESTING | EFI_NEEDS_ECC_INITIALIZATION)) != 0) {
+ continue;
+ }
+
+ if (SmramRanges[Index].CpuStart >= BASE_1MB) {
+ if ((SmramRanges[Index].CpuStart + SmramRanges[Index].PhysicalSize) <= BASE_4GB) {
+ if (SmramRanges[Index].PhysicalSize >= MaxSize) {
+ MaxSize = SmramRanges[Index].PhysicalSize;
+ CurrentSmramRange = &SmramRanges[Index];
+ }
+ }
+ }
+ }
+
+ ASSERT (CurrentSmramRange != NULL);
+
+ *SmrrBase = (UINT32)CurrentSmramRange->CpuStart;
+ *SmrrSize = (UINT32)CurrentSmramRange->PhysicalSize;
+
+ do {
+ Found = FALSE;
+ for (Index = 0; Index < SmramRangeCount; Index++) {
+ if (SmramRanges[Index].CpuStart < *SmrrBase && *SmrrBase == (SmramRanges[Index].CpuStart + SmramRanges[Index].PhysicalSize)) {
+ *SmrrBase = (UINT32)SmramRanges[Index].CpuStart;
+ *SmrrSize = (UINT32)(*SmrrSize + SmramRanges[Index].PhysicalSize);
+ Found = TRUE;
+ } else if ((*SmrrBase + *SmrrSize) == SmramRanges[Index].CpuStart && SmramRanges[Index].PhysicalSize > 0) {
+ *SmrrSize = (UINT32)(*SmrrSize + SmramRanges[Index].PhysicalSize);
+ Found = TRUE;
+ }
+ }
+ } while (Found);
+
+ DEBUG ((EFI_D_INFO, "SMRR Base: 0x%x, SMRR Size: 0x%x\n", *SmrrBase, *SmrrSize));
+}
+
+/**
+Configure SMM Code Access Check feature on an AP.
+SMM Feature Control MSR will be locked after configuration.
+
+@param[in,out] Buffer Pointer to private data buffer.
+**/
+VOID
+EFIAPI
+ConfigSmmCodeAccessCheckOnCurrentProcessor (
+ IN OUT VOID *Buffer
+ )
+{
+ UINTN CpuIndex;
+ UINT64 SmmFeatureControlMsr;
+ UINT64 NewSmmFeatureControlMsr;
+
+ //
+ // Retrieve the CPU Index from the context passed in
+ //
+ CpuIndex = *(UINTN *)Buffer;
+
+ //
+ // Get the current SMM Feature Control MSR value
+ //
+ SmmFeatureControlMsr = SmmCpuFeaturesGetSmmRegister (CpuIndex, SmmRegFeatureControl);
+
+ //
+ // Compute the new SMM Feature Control MSR value
+ //
+ NewSmmFeatureControlMsr = SmmFeatureControlMsr;
+ if (mSmmCodeAccessCheckEnable) {
+ NewSmmFeatureControlMsr |= SMM_CODE_CHK_EN_BIT;
+ if (FeaturePcdGet (PcdCpuSmmFeatureControlMsrLock)) {
+ NewSmmFeatureControlMsr |= SMM_FEATURE_CONTROL_LOCK_BIT;
+ }
+ }
+
+ //
+ // Only set the SMM Feature Control MSR value if the new value is different than the current value
+ //
+ if (NewSmmFeatureControlMsr != SmmFeatureControlMsr) {
+ SmmCpuFeaturesSetSmmRegister (CpuIndex, SmmRegFeatureControl, NewSmmFeatureControlMsr);
+ }
+
+ //
+ // Release the spin lock user to serialize the updates to the SMM Feature Control MSR
+ //
+ ReleaseSpinLock (mConfigSmmCodeAccessCheckLock);
+}
+
+/**
+Configure SMM Code Access Check feature for all processors.
+SMM Feature Control MSR will be locked after configuration.
+**/
+VOID
+ConfigSmmCodeAccessCheck (
+ VOID
+ )
+{
+ UINTN Index;
+ EFI_STATUS Status;
+
+ //
+ // Check to see if the Feature Control MSR is supported on this CPU
+ //
+ Index = gSmmCpuPrivate->SmmCoreEntryContext.CurrentlyExecutingCpu;
+ if (!SmmCpuFeaturesIsSmmRegisterSupported (Index, SmmRegFeatureControl)) {
+ mSmmCodeAccessCheckEnable = FALSE;
+ return;
+ }
+
+ //
+ // Check to see if the CPU supports the SMM Code Access Check feature
+ // Do not access this MSR unless the CPU supports the SmmRegFeatureControl
+ //
+ if ((AsmReadMsr64 (EFI_MSR_SMM_MCA_CAP) & SMM_CODE_ACCESS_CHK_BIT) == 0) {
+ mSmmCodeAccessCheckEnable = FALSE;
+ return;
+ }
+
+ //
+ // Initialize the lock used to serialize the MSR programming in BSP and all APs
+ //
+ InitializeSpinLock (mConfigSmmCodeAccessCheckLock);
+
+ //
+ // Acquire Config SMM Code Access Check spin lock. The BSP will release the
+ // spin lock when it is done executing ConfigSmmCodeAccessCheckOnCurrentProcessor().
+ //
+ AcquireSpinLock (mConfigSmmCodeAccessCheckLock);
+
+ //
+ // Enable SMM Code Access Check feature on the BSP.
+ //
+ ConfigSmmCodeAccessCheckOnCurrentProcessor (&Index);
+
+ //
+ // Enable SMM Code Access Check feature for the APs.
+ //
+ for (Index = 0; Index < gSmst->NumberOfCpus; Index++) {
+ if (Index != gSmmCpuPrivate->SmmCoreEntryContext.CurrentlyExecutingCpu) {
+
+ //
+ // Acquire Config SMM Code Access Check spin lock. The AP will release the
+ // spin lock when it is done executing ConfigSmmCodeAccessCheckOnCurrentProcessor().
+ //
+ AcquireSpinLock (mConfigSmmCodeAccessCheckLock);
+
+ //
+ // Call SmmStartupThisAp() to enable SMM Code Access Check on an AP.
+ //
+ Status = gSmst->SmmStartupThisAp (ConfigSmmCodeAccessCheckOnCurrentProcessor, Index, &Index);
+ ASSERT_EFI_ERROR (Status);
+
+ //
+ // Wait for the AP to release the Config SMM Code Access Check spin lock.
+ //
+ while (!AcquireSpinLockOrFail (mConfigSmmCodeAccessCheckLock)) {
+ CpuPause ();
+ }
+
+ //
+ // Release the Config SMM Code Access Check spin lock.
+ //
+ ReleaseSpinLock (mConfigSmmCodeAccessCheckLock);
+ }
+ }
+}
+
+/**
+ This API provides a way to allocate memory for page table.
+
+ This API can be called more once to allocate memory for page tables.
+
+ Allocates the number of 4KB pages of type EfiRuntimeServicesData and returns a pointer to the
+ allocated buffer. The buffer returned is aligned on a 4KB boundary. If Pages is 0, then NULL
+ is returned. If there is not enough memory remaining to satisfy the request, then NULL is
+ returned.
+
+ @param Pages The number of 4 KB pages to allocate.
+
+ @return A pointer to the allocated buffer or NULL if allocation fails.
+
+**/
+VOID *
+AllocatePageTableMemory (
+ IN UINTN Pages
+ )
+{
+ VOID *Buffer;
+
+ Buffer = SmmCpuFeaturesAllocatePageTableMemory (Pages);
+ if (Buffer != NULL) {
+ return Buffer;
+ }
+ return AllocatePages (Pages);
+}
+
+/**
+ Perform the remaining tasks.
+
+**/
+VOID
+PerformRemainingTasks (
+ VOID
+ )
+{
+ if (mSmmReadyToLock) {
+ //
+ // Start SMM Profile feature
+ //
+ if (FeaturePcdGet (PcdCpuSmmProfileEnable)) {
+ SmmProfileStart ();
+ }
+ //
+ // Create a mix of 2MB and 4KB page table. Update some memory ranges absent and execute-disable.
+ //
+ InitPaging ();
+ //
+ // Configure SMM Code Access Check feature if available.
+ //
+ ConfigSmmCodeAccessCheck ();
+
+ SmmCpuFeaturesCompleteSmmReadyToLock ();
+
+ //
+ // Clean SMM ready to lock flag
+ //
+ mSmmReadyToLock = FALSE;
+ }
+}
+
+/**
+ Perform the pre tasks.
+
+**/
+VOID
+PerformPreTasks (
+ VOID
+ )
+{
+ //
+ // Restore SMM Configuration in S3 boot path.
+ //
+ if (mRestoreSmmConfigurationInS3) {
+ //
+ // Need make sure gSmst is correct because below function may use them.
+ //
+ gSmst->SmmStartupThisAp = gSmmCpuPrivate->SmmCoreEntryContext.SmmStartupThisAp;
+ gSmst->CurrentlyExecutingCpu = gSmmCpuPrivate->SmmCoreEntryContext.CurrentlyExecutingCpu;
+ gSmst->NumberOfCpus = gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus;
+ gSmst->CpuSaveStateSize = gSmmCpuPrivate->SmmCoreEntryContext.CpuSaveStateSize;
+ gSmst->CpuSaveState = gSmmCpuPrivate->SmmCoreEntryContext.CpuSaveState;
+
+ //
+ // Configure SMM Code Access Check feature if available.
+ //
+ ConfigSmmCodeAccessCheck ();
+
+ SmmCpuFeaturesCompleteSmmReadyToLock ();
+
+ mRestoreSmmConfigurationInS3 = FALSE;
+ }
+}