diff options
Diffstat (limited to 'MdePkg/Include')
-rw-r--r-- | MdePkg/Include/Protocol/IdeControllerInit.h | 696 | ||||
-rw-r--r-- | MdePkg/Include/Protocol/IncompatiblePciDeviceSupport.h | 173 | ||||
-rw-r--r-- | MdePkg/Include/Protocol/PciHostBridgeResourceAllocation.h | 421 | ||||
-rw-r--r-- | MdePkg/Include/Protocol/PciHotPlugInit.h | 278 | ||||
-rw-r--r-- | MdePkg/Include/Protocol/PciPlatform.h | 344 |
5 files changed, 1912 insertions, 0 deletions
diff --git a/MdePkg/Include/Protocol/IdeControllerInit.h b/MdePkg/Include/Protocol/IdeControllerInit.h new file mode 100644 index 0000000000..b4c5dcb0df --- /dev/null +++ b/MdePkg/Include/Protocol/IdeControllerInit.h @@ -0,0 +1,696 @@ +/** @file
+ This file declares EFI IDE Controller Init Protocol
+
+ The EFI_IDE_CONTROLLER_INIT_PROTOCOL provides the chipset-specific information
+ to the IDE bus driver. This protocol is mandatory for IDE controllers if the
+ IDE devices behind the controller are to be enumerated by an IDE bus driver.
+
+ There can only be one instance of EFI_IDE_CONTROLLER_INIT_PROTOCOL for each IDE
+ controller in a system. It is installed on the handle that corresponds to the
+ IDE controller. An IDE bus driver that wishes to manage an IDE bus and possibly
+ IDE devices in a system will have to retrieve the EFI_IDE_CONTROLLER_INIT_PROTOCOL
+ instance that is associated with the controller to be managed.
+
+ A device handle for an IDE controller must contain an EFI_DEVICE_PATH_PROTOCOL.
+
+ Copyright (c) 2007 - 2009, Intel Corporation
+ All rights reserved. This program and the accompanying materials
+ are licensed and made available under the terms and conditions of the BSD License
+ which accompanies this distribution. The full text of the license may be found at
+ http://opensource.org/licenses/bsd-license.php
+
+ THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
+ WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
+
+ @par Revision Reference:
+ This Protocol is defined in UEFI Platform Initialization Specification 1.2
+ Volume 5: Standards
+
+**/
+
+#ifndef _EFI_IDE_CONTROLLER_INIT_PROTOCOL_H_
+#define _EFI_IDE_CONTROLLER_INIT_PROTOCOL_H_
+
+///
+/// Global ID for the EFI_IDE_CONTROLLER_INIT_PROTOCOL
+///
+#define EFI_IDE_CONTROLLER_INIT_PROTOCOL_GUID \
+ { \
+ 0xa1e37052, 0x80d9, 0x4e65, {0xa3, 0x17, 0x3e, 0x9a, 0x55, 0xc4, 0x3e, 0xc9 } \
+ }
+
+///
+/// Forward declaration for EFI_IDE_CONTROLLER_INIT_PROTOCOL
+///
+typedef struct _EFI_IDE_CONTROLLER_INIT_PROTOCOL EFI_IDE_CONTROLLER_INIT_PROTOCOL;
+
+///
+/// The phase of the IDE Controller enumeration
+///
+typedef enum {
+ ///
+ /// The IDE bus driver is about to begin enumerating the devices
+ /// behind the specified channel. This notification can be used to
+ /// perform any chipset-specific programming.
+ ///
+ EfiIdeBeforeChannelEnumeration,
+ ///
+ /// The IDE bus driver has completed enumerating the devices
+ /// behind the specified channel. This notification can be used to
+ /// perform any chipset-specific programming.
+ ///
+ EfiIdeAfterChannelEnumeration,
+ ///
+ /// The IDE bus driver is about to reset the devices behind the
+ /// specified channel. This notification can be used to perform any
+ /// chipset-specific programming.
+ ///
+ EfiIdeBeforeChannelReset,
+ ///
+ /// The IDE bus driver has completed resetting the devices behind
+ /// the specified channel. This notification can be used to perform
+ /// any chipset-specific programming.
+ ///
+ EfiIdeAfterChannelReset,
+ ///
+ /// The IDE bus driver is about to detect the presence of devices
+ /// behind the specified channel. This notification can be used to
+ /// set up the bus signals to default levels or for implementing
+ /// predelays.
+ ///
+ EfiIdeBusBeforeDevicePresenceDetection,
+ ///
+ /// The IDE bus driver is done with detecting the presence of
+ /// devices behind the specified channel. This notification can be
+ /// used to perform any chipset-specific programming.
+ ///
+ EfiIdeBusAfterDevicePresenceDetection,
+ ///
+ /// The IDE bus is requesting the IDE controller driver to
+ /// reprogram the IDE controller hardware and thereby reset all
+ /// the mode and timing settings to default settings.
+ ///
+ EfiIdeResetMode,
+ EfiIdeBusPhaseMaximum
+} EFI_IDE_CONTROLLER_ENUM_PHASE;
+
+///
+/// This extended mode describes the SATA physical protocol.
+/// SATA physical layers can operate at different speeds.
+/// These speeds are defined below. Various PATA protocols
+/// and associated modes are not applicable to SATA devices.
+///
+typedef enum {
+ EfiAtaSataTransferProtocol
+} EFI_ATA_EXT_TRANSFER_PROTOCOL;
+
+///
+/// Automatically detects the optimum SATA speed.
+///
+#define EFI_SATA_AUTO_SPEED 0
+
+///
+/// Indicates a first-generation (Gen1) SATA speed.
+///
+#define EFI_SATA_GEN1_SPEED 1
+
+///
+/// Indicates a second-generation (Gen2) SATA speed.
+///
+#define EFI_SATA_GEN2_SPEED 2
+
+///
+/// EFI_ATA_MODE structure
+///
+typedef struct {
+ BOOLEAN Valid; ///< TRUE if Mode is valid.
+ UINT32 Mode; ///< The actual ATA mode. This field is not a bit map.
+} EFI_ATA_MODE;
+
+///
+/// EFI_ATA_EXTENDED_MODE structure
+///
+typedef struct {
+ ///
+ /// An enumeration defining various transfer protocols other than the protocols
+ /// that exist at the time this specification was developed (i.e., PIO, single
+ /// word DMA, multiword DMA, and UDMA). Each transfer protocol is associated
+ /// with a mode. The various transfer protocols are defined by the ATA/ATAPI
+ /// specification. This enumeration makes the interface extensible because we
+ /// can support new transport protocols beyond UDMA. Type EFI_ATA_EXT_TRANSFER_PROTOCOL
+ /// is defined below.
+ ///
+ EFI_ATA_EXT_TRANSFER_PROTOCOL TransferProtocol;
+ ///
+ /// The mode for operating the transfer protocol that is identified by TransferProtocol.
+ ///
+ UINT32 Mode;
+} EFI_ATA_EXTENDED_MODE;
+
+///
+/// EFI_ATA_COLLECTIVE_MODE structure
+///
+typedef struct {
+ ///
+ /// This field specifies the PIO mode. PIO modes are defined in the ATA/ATAPI
+ /// specification. The ATA/ATAPI specification defines the enumeration. In
+ /// other words, a value of 1 in this field means PIO mode 1. The actual meaning
+ /// of PIO mode 1 is governed by the ATA/ATAPI specification. Type EFI_ATA_MODE
+ /// is defined below.
+ ///
+ EFI_ATA_MODE PioMode;
+ ///
+ /// This field specifies the single word DMA mode. Single word DMA modes are defined
+ /// in the ATA/ATAPI specification, versions 1 and 2. Single word DMA support was
+ /// obsoleted in the ATA/ATAPI specification, version 3; therefore, most devices and
+ /// controllers will not support this transfer mode. The ATA/ATAPI specification defines
+ /// the enumeration. In other words, a value of 1 in this field means single word DMA
+ /// mode 1. The actual meaning of single word DMA mode 1 is governed by the ATA/
+ /// ATAPI specification.
+ ///
+ EFI_ATA_MODE SingleWordDmaMode;
+ ///
+ /// This field specifies the multiword DMA mode. Various multiword DMA modes are
+ /// defined in the ATA/ATAPI specification. A value of 1 in this field means multiword
+ /// DMA mode 1. The actual meaning of multiword DMA mode 1 is governed by the
+ /// ATA/ATAPI specification.
+ ///
+ EFI_ATA_MODE MultiWordDmaMode;
+ ///
+ /// This field specifies the ultra DMA (UDMA) mode. UDMA modes are defined in the
+ /// ATA/ATAPI specification. A value of 1 in this field means UDMA mode 1. The
+ /// actual meaning of UDMA mode 1 is governed by the ATA/ATAPI specification.
+ ///
+ EFI_ATA_MODE UdmaMode;
+ ///
+ /// The number of extended-mode bitmap entries. Extended modes describe transfer
+ /// protocols beyond PIO, single word DMA, multiword DMA, and UDMA. This field
+ /// can be zero and provides extensibility.
+ ///
+ UINT32 ExtModeCount;
+ ///
+ /// ExtModeCount number of entries. Each entry represents a transfer protocol other
+ /// than the ones defined above (i.e., PIO, single word DMA, multiword DMA, and
+ /// UDMA). This field is defined for extensibility. At this time, only one extended
+ /// transfer protocol is defined to cover SATA transfers. Type
+ /// EFI_ATA_EXTENDED_MODE is defined below.
+ ///
+ EFI_ATA_EXTENDED_MODE ExtMode[1];
+} EFI_ATA_COLLECTIVE_MODE;
+
+///
+/// EFI_ATA_IDENTIFY_DATA structure
+///
+/// This structure definition is not part of the protocol
+/// definition because the ATA/ATAPI Specification controls
+/// the definition of all the fields. The ATA/ATAPI
+/// Specification can obsolete old fields or redefine existing
+/// fields. This definition is provided here for reference only.
+///
+#pragma pack(1)
+typedef struct {
+ UINT16 config; ///< General Configuration
+ UINT16 cylinders; ///< Number of Cylinders
+ UINT16 reserved_2;
+ UINT16 heads; ///< Number of logical heads
+ UINT16 vendor_data1;
+ UINT16 vendor_data2;
+ UINT16 sectors_per_track;
+ UINT16 vendor_specific_7_9[3];
+ CHAR8 SerialNo[20]; ///< ASCII
+ UINT16 vendor_specific_20_21[2];
+ UINT16 ecc_bytes_available;
+ CHAR8 FirmwareVer[8]; ///< ASCII
+ CHAR8 ModelName[40]; ///< ASCII
+ UINT16 multi_sector_cmd_max_sct_cnt;
+ UINT16 reserved_48;
+ UINT16 capabilities;
+ UINT16 reserved_50;
+ UINT16 pio_cycle_timing;
+ UINT16 reserved_52;
+ UINT16 field_validity;
+ UINT16 current_cylinders;
+ UINT16 current_heads;
+ UINT16 current_sectors;
+ UINT16 CurrentCapacityLsb;
+ UINT16 CurrentCapacityMsb;
+ UINT16 reserved_59;
+ UINT16 user_addressable_sectors_lo;
+ UINT16 user_addressable_sectors_hi;
+ UINT16 reserved_62;
+ UINT16 multi_word_dma_mode;
+ UINT16 advanced_pio_modes;
+ UINT16 min_multi_word_dma_cycle_time;
+ UINT16 rec_multi_word_dma_cycle_time;
+ UINT16 min_pio_cycle_time_without_flow_control;
+ UINT16 min_pio_cycle_time_with_flow_control;
+ UINT16 reserved_69_79[11];
+ UINT16 major_version_no;
+ UINT16 minor_version_no;
+ UINT16 command_set_supported_82; ///< word 82
+ UINT16 command_set_supported_83; ///< word 83
+ UINT16 command_set_feature_extn; ///< word 84
+ UINT16 command_set_feature_enb_85; ///< word 85
+ UINT16 command_set_feature_enb_86; ///< word 86
+ UINT16 command_set_feature_default; ///< word 87
+ UINT16 ultra_dma_mode; ///< word 88
+ UINT16 reserved_89_105[17];
+ UINT16 phy_logic_sector_support; ///< word 106
+ UINT16 reserved_107_116[10];
+ UINT16 logic_sector_size_lo; ///< word 117
+ UINT16 logic_sector_size_hi; ///< word 118
+ UINT16 reserved_119_127[9];
+ UINT16 security_status;
+ UINT16 vendor_data_129_159[31];
+ UINT16 reserved_160_208[49];
+ UINT16 alignment_logic_in_phy_blocks; ///< word 209
+ UINT16 reserved_210_255[46];
+} EFI_ATA_IDENTIFY_DATA;
+#pragma pack()
+
+///
+/// EFI_ATAPI_IDENTIFY_DATA structure
+///
+/// This structure definition is not part of the protocol
+/// definition because the ATA/ATAPI Specification controls
+/// the definition of all the fields. The ATA/ATAPI
+/// Specification can obsolete old fields or redefine existing
+/// fields. This definition is provided here for reference only.
+///
+#pragma pack(1)
+typedef struct {
+ UINT16 config; ///< General Configuration
+ UINT16 obsolete_1;
+ UINT16 specific_config;
+ UINT16 obsolete_3;
+ UINT16 retired_4_5[2];
+ UINT16 obsolete_6;
+ UINT16 cfa_reserved_7_8[2];
+ UINT16 retired_9;
+ CHAR8 SerialNo[20]; ///< ASCII
+ UINT16 retired_20_21[2];
+ UINT16 obsolete_22;
+ CHAR8 FirmwareVer[8]; ///< ASCII
+ CHAR8 ModelName[40]; ///< ASCII
+ UINT16 multi_sector_cmd_max_sct_cnt;
+ UINT16 reserved_48;
+ UINT16 capabilities_49;
+ UINT16 capabilities_50;
+ UINT16 obsolete_51_52[2];
+ UINT16 field_validity;
+ UINT16 obsolete_54_58[5];
+ UINT16 mutil_sector_setting;
+ UINT16 user_addressable_sectors_lo;
+ UINT16 user_addressable_sectors_hi;
+ UINT16 obsolete_62;
+ UINT16 multi_word_dma_mode;
+ UINT16 advanced_pio_modes;
+ UINT16 min_multi_word_dma_cycle_time;
+ UINT16 rec_multi_word_dma_cycle_time;
+ UINT16 min_pio_cycle_time_without_flow_control;
+ UINT16 min_pio_cycle_time_with_flow_control;
+ UINT16 reserved_69_74[6];
+ UINT16 queue_depth;
+ UINT16 reserved_76_79[4];
+ UINT16 major_version_no;
+ UINT16 minor_version_no;
+ UINT16 cmd_set_support_82;
+ UINT16 cmd_set_support_83;
+ UINT16 cmd_feature_support;
+ UINT16 cmd_feature_enable_85;
+ UINT16 cmd_feature_enable_86;
+ UINT16 cmd_feature_default;
+ UINT16 ultra_dma_select;
+ UINT16 time_required_for_sec_erase;
+ UINT16 time_required_for_enhanced_sec_erase;
+ UINT16 current_advanced_power_mgmt_value;
+ UINT16 master_pwd_revison_code;
+ UINT16 hardware_reset_result;
+ UINT16 current_auto_acoustic_mgmt_value;
+ UINT16 reserved_95_99[5];
+ UINT16 max_user_lba_for_48bit_addr[4];
+ UINT16 reserved_104_126[23];
+ UINT16 removable_media_status_notification_support;
+ UINT16 security_status;
+ UINT16 vendor_data_129_159[31];
+ UINT16 cfa_power_mode;
+ UINT16 cfa_reserved_161_175[15];
+ UINT16 current_media_serial_no[30];
+ UINT16 reserved_206_254[49];
+ UINT16 integrity_word;
+} EFI_ATAPI_IDENTIFY_DATA;
+#pragma pack()
+
+///
+/// This flag indicates whether the IDENTIFY data is a response from an ATA device
+/// (EFI_ATA_IDENTIFY_DATA) or response from an ATAPI device
+/// (EFI_ATAPI_IDENTIFY_DATA). According to the ATA/ATAPI specification,
+/// EFI_IDENTIFY_DATA is for an ATA device if bit 15 of the Config field is zero.
+/// The Config field is common to both EFI_ATA_IDENTIFY_DATA and
+/// EFI_ATAPI_IDENTIFY_DATA.
+///
+#define EFI_ATAPI_DEVICE_IDENTIFY_DATA 0x8000
+
+///
+/// EFI_IDENTIFY_DATA structure
+///
+typedef union {
+ ///
+ /// The data that is returned by an ATA device upon successful completion
+ /// of the ATA IDENTIFY_DEVICE command.
+ ///
+ EFI_ATA_IDENTIFY_DATA AtaData;
+ ///
+ /// The data that is returned by an ATAPI device upon successful completion
+ /// of the ATA IDENTIFY_PACKET_DEVICE command.
+ ///
+ EFI_ATAPI_IDENTIFY_DATA AtapiData;
+} EFI_IDENTIFY_DATA;
+
+/**
+ Returns the information about the specified IDE channel.
+
+ This function can be used to obtain information about a particular IDE channel.
+ The IDE bus driver uses this information during the enumeration process.
+
+ If Enabled is set to FALSE, the IDE bus driver will not scan the channel. Note
+ that it will not prevent an operating system driver from scanning the channel.
+
+ For most of today's controllers, MaxDevices will either be 1 or 2. For SATA
+ controllers, this value will always be 1. SATA configurations can contain SATA
+ port multipliers. SATA port multipliers behave like SATA bridges and can support
+ up to 16 devices on the other side. If an SATA port out of the IDE controller
+ is connected to a port multiplier, MaxDevices will be set to the number of SATA
+ devices that the port multiplier supports. Because today's port multipliers
+ support up to 15 SATA devices, this number can be as large as 15. The IDE bus
+ driver is required to scan for the presence of port multipliers behind an SATA
+ controller and enumerate up to MaxDevices number of devices behind the port
+ multiplier.
+
+ In this context, the devices behind a port multiplier constitute a channel.
+
+ @param[in] This Pointer to the EFI_IDE_CONTROLLER_INIT_PROTOCOL instance.
+ @param[in] Channel Zero-based channel number.
+ @param[out] Enabled TRUE if this channel is enabled. Disabled channels
+ are not scanned to see if any devices are present.
+ @param[out] MaxDevices The maximum number of IDE devices that the bus driver
+ can expect on this channel. For the ATA/ATAPI
+ specification, version 6, this number will either be
+ 1 or 2. For Serial ATA (SATA) configurations with a
+ port multiplier, this number can be as large as 15.
+
+ @retval EFI_SUCCESS Information was returned without any errors.
+ @retval EFI_INVALID_PARAMETER Channel is invalid (Channel >= ChannelCount).
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_IDE_CONTROLLER_GET_CHANNEL_INFO)(
+ IN EFI_IDE_CONTROLLER_INIT_PROTOCOL *This,
+ IN UINT8 Channel,
+ OUT BOOLEAN *Enabled,
+ OUT UINT8 *MaxDevices
+ );
+
+/**
+ The notifications from the IDE bus driver that it is about to enter a certain
+ phase of the IDE channel enumeration process.
+
+ This function can be used to notify the IDE controller driver to perform
+ specific actions, including any chipset-specific initialization, so that the
+ chipset is ready to enter the next phase. Seven notification points are defined
+ at this time.
+
+ More synchronization points may be added as required in the future.
+
+ @param[in] This Pointer to the EFI_IDE_CONTROLLER_INIT_PROTOCOL instance.
+ @param[in] Phase The phase during enumeration.
+ @param[in] Channel Zero-based channel number.
+
+ @retval EFI_SUCCESS The notification was accepted without any errors.
+ @retval EFI_NOT_SUPPORTED Phase is not supported.
+ @retval EFI_INVALID_PARAMETER Channel is invalid (Channel >= ChannelCount).
+ @retval EFI_NOT_READY This phase cannot be entered at this time; for
+ example, an attempt was made to enter a Phase
+ without having entered one or more previous
+ Phase.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_IDE_CONTROLLER_NOTIFY_PHASE)(
+ IN EFI_IDE_CONTROLLER_INIT_PROTOCOL *This,
+ IN EFI_IDE_CONTROLLER_ENUM_PHASE Phase,
+ IN UINT8 Channel
+ );
+
+/**
+ Submits the device information to the IDE controller driver.
+
+ This function is used by the IDE bus driver to pass detailed information about
+ a particular device to the IDE controller driver. The IDE bus driver obtains
+ this information by issuing an ATA or ATAPI IDENTIFY_DEVICE command. IdentifyData
+ is the pointer to the response data buffer. The IdentifyData buffer is owned
+ by the IDE bus driver, and the IDE controller driver must make a local copy
+ of the entire buffer or parts of the buffer as needed. The original IdentifyData
+ buffer pointer may not be valid when
+
+ - EFI_IDE_CONTROLLER_INIT_PROTOCOL.CalculateMode() or
+ - EFI_IDE_CONTROLLER_INIT_PROTOCOL.DisqualifyMode() is called at a later point.
+
+ The IDE controller driver may consult various fields of EFI_IDENTIFY_DATA to
+ compute the optimum mode for the device. These fields are not limited to the
+ timing information. For example, an implementation of the IDE controller driver
+ may examine the vendor and type/mode field to match known bad drives.
+
+ The IDE bus driver may submit drive information in any order, as long as it
+ submits information for all the devices belonging to the enumeration group
+ before EFI_IDE_CONTROLLER_INIT_PROTOCOL.CalculateMode() is called for any device
+ in that enumeration group. If a device is absent, EFI_IDE_CONTROLLER_INIT_PROTOCOL.SubmitData()
+ should be called with IdentifyData set to NULL. The IDE controller driver may
+ not have any other mechanism to know whether a device is present or not. Therefore,
+ setting IdentifyData to NULL does not constitute an error condition.
+ EFI_IDE_CONTROLLER_INIT_PROTOCOL.SubmitData() can be called only once for a
+ given (Channel, Device) pair.
+
+ @param[in] This Pointer to the EFI_IDE_CONTROLLER_INIT_PROTOCOL instance.
+ @param[in] Channel Zero-based channel number.
+ @param[in] Device Zero-based device number on the Channel.
+ @param[in] IdentifyData The device's response to the ATA IDENTIFY_DEVICE command.
+
+ @retval EFI_SUCCESS The information was accepted without any errors.
+ @retval EFI_INVALID_PARAMETER Channel is invalid (Channel >= ChannelCount).
+ @retval EFI_INVALID_PARAMETER Device is invalid.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_IDE_CONTROLLER_SUBMIT_DATA)(
+ IN EFI_IDE_CONTROLLER_INIT_PROTOCOL *This,
+ IN UINT8 Channel,
+ IN UINT8 Device,
+ IN EFI_IDENTIFY_DATA *IdentifyData
+ );
+
+/**
+ Disqualifies specific modes for an IDE device.
+
+ This function allows the IDE bus driver or other drivers (such as platform
+ drivers) to reject certain timing modes and request the IDE controller driver
+ to recalculate modes. This function allows the IDE bus driver and the IDE
+ controller driver to negotiate the timings on a per-device basis. This function
+ is useful in the case of drives that lie about their capabilities. An example
+ is when the IDE device fails to accept the timing modes that are calculated
+ by the IDE controller driver based on the response to the Identify Drive command.
+
+ If the IDE bus driver does not want to limit the ATA timing modes and leave that
+ decision to the IDE controller driver, it can either not call this function for
+ the given device or call this function and set the Valid flag to FALSE for all
+ modes that are listed in EFI_ATA_COLLECTIVE_MODE.
+
+ The IDE bus driver may disqualify modes for a device in any order and any number
+ of times.
+
+ This function can be called multiple times to invalidate multiple modes of the
+ same type (e.g., Programmed Input/Output [PIO] modes 3 and 4). See the ATA/ATAPI
+ specification for more information on PIO modes.
+
+ For Serial ATA (SATA) controllers, this member function can be used to disqualify
+ a higher transfer rate mode on a given channel. For example, a platform driver
+ may inform the IDE controller driver to not use second-generation (Gen2) speeds
+ for a certain SATA drive.
+
+ @param[in] This Pointer to the EFI_IDE_CONTROLLER_INIT_PROTOCOL instance.
+ @param[in] Channel Zero-based channel number.
+ @param[in] Device Zero-based device number on the Channel.
+ @param[in] BadModes The modes that the device does not support and that
+ should be disqualified.
+
+ @retval EFI_SUCCESS The modes were accepted without any errors.
+ @retval EFI_INVALID_PARAMETER Channel is invalid (Channel >= ChannelCount).
+ @retval EFI_INVALID_PARAMETER Device is invalid.
+ @retval EFI_INVALID_PARAMETER IdentifyData is NULL.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_IDE_CONTROLLER_DISQUALIFY_MODE)(
+ IN EFI_IDE_CONTROLLER_INIT_PROTOCOL *This,
+ IN UINT8 Channel,
+ IN UINT8 Device,
+ IN EFI_ATA_COLLECTIVE_MODE *BadModes
+ );
+
+/**
+ Returns the information about the optimum modes for the specified IDE device.
+
+ This function is used by the IDE bus driver to obtain the optimum ATA modes for
+ a specific device. The IDE controller driver takes into account the following
+ while calculating the mode:
+ - The IdentifyData inputs to EFI_IDE_CONTROLLER_INIT_PROTOCOL.SubmitData()
+ - The BadModes inputs to EFI_IDE_CONTROLLER_INIT_PROTOCOL.DisqualifyMode()
+
+ The IDE bus driver is required to call EFI_IDE_CONTROLLER_INIT_PROTOCOL.SubmitData()
+ for all the devices that belong to an enumeration group before calling
+ EFI_IDE_CONTROLLER_INIT_PROTOCOL.CalculateMode() for any device in the same group.
+
+ The IDE controller driver will use controller- and possibly platform-specific
+ algorithms to arrive at SupportedModes. The IDE controller may base its
+ decision on user preferences and other considerations as well. This function
+ may be called multiple times because the IDE bus driver may renegotiate the mode
+ with the IDE controller driver using EFI_IDE_CONTROLLER_INIT_PROTOCOL.DisqualifyMode().
+
+ The IDE bus driver may collect timing information for various devices in any
+ order. The IDE bus driver is responsible for making sure that all the dependencies
+ are satisfied; for example, the SupportedModes information for device A that
+ was previously returned may become stale after a call to
+ EFI_IDE_CONTROLLER_INIT_PROTOCOL.DisqualifyMode() for device B.
+
+ The buffer SupportedModes is allocated by the callee because the caller does
+ not necessarily know the size of the buffer. The type EFI_ATA_COLLECTIVE_MODE
+ is defined in a way that allows for future extensibility and can be of variable
+ length. This memory pool should be deallocated by the caller when it is no
+ longer necessary.
+
+ The IDE controller driver for a Serial ATA (SATA) controller can use this
+ member function to force a lower speed (first-generation [Gen1] speeds on a
+ second-generation [Gen2]-capable hardware). The IDE controller driver can
+ also allow the IDE bus driver to stay with the speed that has been negotiated
+ by the physical layer.
+
+ @param[in] This Pointer to the EFI_IDE_CONTROLLER_INIT_PROTOCOL instance.
+ @param[in] Channel Zero-based channel number.
+ @param[in] Device Zero-based device number on the Channel.
+ @param[out] SupportedModes The optimum modes for the device.
+
+ @retval EFI_SUCCESS SupportedModes was returned.
+ @retval EFI_INVALID_PARAMETER Channel is invalid (Channel >= ChannelCount).
+ @retval EFI_INVALID_PARAMETER Device is invalid.
+ @retval EFI_INVALID_PARAMETER SupportedModes is NULL.
+ @retval EFI_NOT_READY Modes cannot be calculated due to a lack of
+ data. This error may happen if
+ EFI_IDE_CONTROLLER_INIT_PROTOCOL.SubmitData()
+ and EFI_IDE_CONTROLLER_INIT_PROTOCOL.DisqualifyData()
+ were not called for at least one drive in the
+ same enumeration group.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_IDE_CONTROLLER_CALCULATE_MODE)(
+ IN EFI_IDE_CONTROLLER_INIT_PROTOCOL *This,
+ IN UINT8 Channel,
+ IN UINT8 Device,
+ OUT EFI_ATA_COLLECTIVE_MODE **SupportedModes
+ );
+
+/**
+ Commands the IDE controller driver to program the IDE controller hardware
+ so that the specified device can operate at the specified mode.
+
+ This function is used by the IDE bus driver to instruct the IDE controller
+ driver to program the IDE controller hardware to the specified modes. This
+ function can be called only once for a particular device. For a Serial ATA
+ (SATA) Advanced Host Controller Interface (AHCI) controller, no controller-
+ specific programming may be required.
+
+ @param[in] This Pointer to the EFI_IDE_CONTROLLER_INIT_PROTOCOL instance.
+ @param[in] Channel Zero-based channel number.
+ @param[in] Device Zero-based device number on the Channel.
+ @param[in] Modes The modes to set.
+
+ @retval EFI_SUCCESS The command was accepted without any errors.
+ @retval EFI_INVALID_PARAMETER Channel is invalid (Channel >= ChannelCount).
+ @retval EFI_INVALID_PARAMETER Device is invalid.
+ @retval EFI_NOT_READY Modes cannot be set at this time due to lack of data.
+ @retval EFI_DEVICE_ERROR Modes cannot be set due to hardware failure.
+ The IDE bus driver should not use this device.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_IDE_CONTROLLER_SET_TIMING)(
+ IN EFI_IDE_CONTROLLER_INIT_PROTOCOL *This,
+ IN UINT8 Channel,
+ IN UINT8 Device,
+ IN EFI_ATA_COLLECTIVE_MODE *Modes
+ );
+
+///
+/// Provides the basic interfaces to abstract an IDE controller.
+///
+struct _EFI_IDE_CONTROLLER_INIT_PROTOCOL {
+ ///
+ /// Returns the information about a specific channel.
+ ///
+ EFI_IDE_CONTROLLER_GET_CHANNEL_INFO GetChannelInfo;
+
+ ///
+ /// The notification that the IDE bus driver is about to enter the
+ /// specified phase during the enumeration process.
+ ///
+ EFI_IDE_CONTROLLER_NOTIFY_PHASE NotifyPhase;
+
+ ///
+ /// Submits the Drive Identify data that was returned by the device.
+ ///
+ EFI_IDE_CONTROLLER_SUBMIT_DATA SubmitData;
+
+ ///
+ /// Submits information about modes that should be disqualified. The specified
+ /// IDE device does not support these modes and these modes should not be
+ /// returned by EFI_IDE_CONTROLLER_INIT_PROTOCOL.CalculateMode()
+ ///
+ EFI_IDE_CONTROLLER_DISQUALIFY_MODE DisqualifyMode;
+
+ ///
+ /// Calculates and returns the optimum mode for a particular IDE device.
+ ///
+ EFI_IDE_CONTROLLER_CALCULATE_MODE CalculateMode;
+
+ ///
+ /// Programs the IDE controller hardware to the default timing or per the modes
+ /// that were returned by the last call to EFI_IDE_CONTROLLER_INIT_PROTOCOL.CalculateMode().
+ ///
+ EFI_IDE_CONTROLLER_SET_TIMING SetTiming;
+
+ ///
+ /// Set to TRUE if the enumeration group includes all the channels that are
+ /// produced by this controller. FALSE if an enumeration group consists of
+ /// only one channel.
+ ///
+ BOOLEAN EnumAll;
+
+ ///
+ /// The number of channels that are produced by this controller. Parallel ATA
+ /// (PATA) controllers can support up to two channels. Advanced Host Controller
+ /// Interface (AHCI) Serial ATA (SATA) controllers can support up to 32 channels,
+ /// each of which can have up to one device. In the presence of a multiplier,
+ /// each channel can have 15 devices.
+ ///
+ UINT8 ChannelCount;
+};
+
+extern EFI_GUID gEfiIdeControllerInitProtocolGuid;
+
+#endif
diff --git a/MdePkg/Include/Protocol/IncompatiblePciDeviceSupport.h b/MdePkg/Include/Protocol/IncompatiblePciDeviceSupport.h new file mode 100644 index 0000000000..f10675b243 --- /dev/null +++ b/MdePkg/Include/Protocol/IncompatiblePciDeviceSupport.h @@ -0,0 +1,173 @@ +/** @file
+ This file declares Incompatible PCI Device Support Protocol
+
+ Allows the PCI bus driver to support resource allocation for some PCI devices
+ that do not comply with the PCI Specification.
+
+ @par Note:
+ This protocol is optional. Only those platforms that implement this protocol
+ will have the capability to support incompatible PCI devices. The absence of
+ this protocol can cause the PCI bus driver to configure these incompatible
+ PCI devices incorrectly. As a result, these devices may not work properly.
+
+ The EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL is used by the PCI bus driver
+ to support resource allocation for some PCI devices that do not comply with the
+ PCI Specification. This protocol can find some incompatible PCI devices and
+ report their special resource requirements to the PCI bus driver. The generic
+ PCI bus driver does not have prior knowledge of any incompatible PCI devices.
+ It interfaces with the EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL to find out
+ if a device is incompatible and to obtain the special configuration requirements
+ for a specific incompatible PCI device.
+
+ This protocol is optional, and only one instance of this protocol can be present
+ in the system. If a platform supports this protocol, this protocol is produced
+ by a Driver Execution Environment (DXE) driver and must be made available before
+ the Boot Device Selection (BDS) phase. The PCI bus driver will look for the
+ presence of this protocol before it begins PCI enumeration. If this protocol
+ exists in a platform, it indicates that the platform has the capability to support
+ those incompatible PCI devices. However, final support for incompatible PCI
+ devices still depends on the implementation of the PCI bus driver. The PCI bus
+ driver may fully, partially, or not even support these incompatible devices.
+
+ During PCI bus enumeration, the PCI bus driver will probe the PCI Base Address
+ Registers (BARs) for each PCI device regardless of whether the PCI device is
+ incompatible or not to determine the resource requirements so that the PCI bus
+ driver can invoke the proper PCI resources for them. Generally, this resource
+ information includes the following:
+ - Resource type
+ - Resource length
+ - Alignment
+
+ However, some incompatible PCI devices may have special requirements. As a result,
+ the length or the alignment that is derived through BAR probing may not be exactly
+ the same as the actual resource requirement of the device. For example, there
+ are some devices that request I/O resources at a length of 0x100 from their I/O
+ BAR, but these incompatible devices will never work correctly if an odd I/O base
+ address, such as 0x100, 0x300, or 0x500, is assigned to the BAR. Instead, these
+ devices request an even base address, such as 0x200 or 0x400. The Incompatible
+ PCI Device Support Protocol can then be used to obtain these special resource
+ requirements for these incompatible PCI devices. In this way, the PCI bus driver
+ will take special consideration for these devices during PCI resource allocation
+ to ensure that they can work correctly.
+
+ This protocol may support the following incompatible PCI BAR types:
+ - I/O or memory length that is different from what the BAR reports
+ - I/O or memory alignment that is different from what the BAR reports
+ - Fixed I/O or memory base address
+
+ See the Conventional PCI Specification 3.0 for the details of how a PCI BAR
+ reports the resource length and the alignment that it requires.
+
+ Copyright (c) 2007 - 2009, Intel Corporation
+ All rights reserved. This program and the accompanying materials
+ are licensed and made available under the terms and conditions of the BSD License
+ which accompanies this distribution. The full text of the license may be found at
+ http://opensource.org/licenses/bsd-license.php
+
+ THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
+ WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
+
+ @par Revision Reference:
+ This Protocol is defined in UEFI Platform Initialization Specification 1.2
+ Volume 5: Standards
+
+**/
+
+#ifndef _INCOMPATIBLE_PCI_DEVICE_SUPPORT_H_
+#define _INCOMPATIBLE_PCI_DEVICE_SUPPORT_H_
+
+///
+/// Global ID for EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL
+///
+#define EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL_GUID \
+ { \
+ 0xeb23f55a, 0x7863, 0x4ac2, {0x8d, 0x3d, 0x95, 0x65, 0x35, 0xde, 0x03, 0x75} \
+ }
+
+///
+/// Forward declaration for EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL
+///
+typedef struct _EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL;
+
+/**
+ Returns a list of ACPI resource descriptors that detail the special resource
+ configuration requirements for an incompatible PCI device.
+
+ This function returns a list of ACPI resource descriptors that detail the
+ special resource configuration requirements for an incompatible PCI device.
+
+ Prior to bus enumeration, the PCI bus driver will look for the presence
+ of the EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL. Only one instance of this
+ protocol can be present in the system. For each PCI device that the PCI bus
+ driver discovers, the PCI bus driver calls this function with the device's vendor
+ ID, device ID, revision ID, subsystem vendor ID, and subsystem device ID. If the
+ VendorId, DeviceId, RevisionId, SubsystemVendorId, or SubsystemDeviceId value is
+ set to (UINTN)-1, that field will be ignored. The ID values that are not (UINTN)-1
+ will be used to identify the current device.
+
+ This function will only return EFI_SUCCESS. However, if the device is an
+ incompatible PCI device, a list of ACPI resource descriptors will be returned
+ in Configuration. Otherwise, NULL will be returned in Configuration instead.
+ The PCI bus driver does not need to allocate memory for Configuration. However,
+ it is the PCI bus driver's responsibility to free it. The PCI bus driver then
+ can configure this device with the information that is derived from this list
+ of resource nodes, rather than the result of BAR probing.
+
+ Only the following two resource descriptor types from the ACPI Specification
+ may be used to describe the incompatible PCI device resource requirements:
+ - QWORD Address Space Descriptor (ACPI 2.0, section 6.4.3.5.1; also ACPI 3.0)
+ - End Tag (ACPI 2.0, section 6.4.2.8; also ACPI 3.0)
+
+ The QWORD Address Space Descriptor can describe memory, I/O, and bus number
+ ranges for dynamic or fixed resources. The configuration of a PCI root bridge
+ is described with one or more QWORD Address Space Descriptors, followed by an
+ End Tag. See the ACPI Specification for details on the field values.
+
+ @param[in] This Pointer to the EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL
+ instance.
+ @param[in] VendorId A unique ID to identify the manufacturer of
+ the PCI device. See the Conventional PCI
+ Specification 3.0 for details.
+ @param[in] DeviceId A unique ID to identify the particular PCI
+ device. See the Conventional PCI Specification
+ 3.0 for details.
+ @param[in] RevisionId A PCI device-specific revision identifier.
+ See the Conventional PCI Specification 3.0
+ for details.
+ @param[in] SubsystemVendorId Specifies the subsystem vendor ID. See the
+ Conventional PCI Specification 3.0 for details.
+ @param[in] SubsystemDeviceId Specifies the subsystem device ID. See the
+ Conventional PCI Specification 3.0 for details.
+ @param[out] Configuration A list of ACPI resource descriptors that detail
+ the configuration requirement.
+
+ @retval EFI_SUCCESS The function always returns EFI_SUCCESS.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_CHECK_DEVICE)(
+ IN EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL *This,
+ IN UINTN VendorId,
+ IN UINTN DeviceId,
+ IN UINTN RevisionId,
+ IN UINTN SubsystemVendorId,
+ IN UINTN SubsystemDeviceId,
+ OUT VOID **Configuration
+ );
+
+///
+/// Interface structure for the Incompatible PCI Device Support Protocol
+///
+struct _EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL {
+ ///
+ /// Returns a list of ACPI resource descriptors that detail any special
+ /// resource configuration requirements if the specified device is a recognized
+ /// incompatible PCI device.
+ ///
+ EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_CHECK_DEVICE CheckDevice;
+};
+
+extern EFI_GUID gEfiIncompatiblePciDeviceSupportProtocolGuid;
+
+#endif
diff --git a/MdePkg/Include/Protocol/PciHostBridgeResourceAllocation.h b/MdePkg/Include/Protocol/PciHostBridgeResourceAllocation.h new file mode 100644 index 0000000000..792ac0b78a --- /dev/null +++ b/MdePkg/Include/Protocol/PciHostBridgeResourceAllocation.h @@ -0,0 +1,421 @@ +/** @file
+ This file declares PCI Host Bridge Resource Allocation Protocol which
+ provides the basic interfaces to abstract a PCI host bridge resource allocation.
+ This protocol is mandatory if the system includes PCI devices.
+
+ Copyright (c) 2007 - 2009, Intel Corporation
+ All rights reserved. This program and the accompanying materials
+ are licensed and made available under the terms and conditions of the BSD License
+ which accompanies this distribution. The full text of the license may be found at
+ http://opensource.org/licenses/bsd-license.php
+
+ THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
+ WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
+
+ @par Revision Reference:
+ This Protocol is defined in UEFI Platform Initialization Specification 1.2
+ Volume 5: Standards
+
+**/
+
+#ifndef _PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_H_
+#define _PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_H_
+
+//
+// This file must be included because EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL
+// uses EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_PCI_ADDRESS
+//
+#include <Protocol/PciRootBridgeIo.h>
+
+///
+/// Global ID for the EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL
+///
+#define EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL_GUID \
+ { \
+ 0xCF8034BE, 0x6768, 0x4d8b, {0xB7,0x39,0x7C,0xCE,0x68,0x3A,0x9F,0xBE } \
+ }
+
+///
+/// Forward declaration for EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL
+///
+typedef struct _EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL;
+
+/// If this bit is set, then the PCI Root Bridge does not
+/// support separate windows for Non-prefetchable and Prefetchable
+/// memory. A PCI bus driver needs to include requests for Prefetchable
+/// memory in the Non-prefetchable memory pool.
+///
+#define EFI_PCI_HOST_BRIDGE_COMBINE_MEM_PMEM 1
+
+///
+/// If this bit is set, then the PCI Root Bridge supports
+/// 64 bit memory windows. If this bit is not set,
+/// the PCI bus driver needs to include requests for 64 bit
+/// memory address in the corresponding 32 bit memory pool.
+///
+#define EFI_PCI_HOST_BRIDGE_MEM64_DECODE 2
+
+///
+/// A UINT64 value that contains the status of a PCI resource requested
+/// in the Configuration parameter returned by GetProposedResources()
+/// The legal values are EFI_RESOURCE_SATISFIED and EFI_RESOURCE_NOT_SATISFIED
+///
+typedef UINT64 EFI_RESOURCE_ALLOCATION_STATUS;
+
+///
+/// The request of this resource type could be fulfilled. Used in the
+/// Configuration parameter returned by GetProposedResources() to identify
+/// a PCI resources request that can be satisfied.
+///
+#define EFI_RESOURCE_SATISFIED 0x0000000000000000ULL
+
+///
+/// The request of this resource type could not be fulfilled for its
+/// absence in the host bridge resource pool. Used in the Configuration parameter
+/// returned by GetProposedResources() to identify a PCI resources request that
+/// can not be satisfied.
+///
+#define EFI_RESOURCE_NOT_SATISFIED 0xFFFFFFFFFFFFFFFFULL
+
+///
+/// This enum is used to specify the phase of the PCI enumaeration process
+///
+typedef enum {
+ ///
+ /// Reset the host bridge PCI apertures and internal data structures.
+ /// PCI enumerator should issue this notification before starting fresh
+ /// enumeration process. Enumeration cannot be restarted after sending
+ /// any other notification such as EfiPciHostBridgeBeginBusAllocation.
+ ///
+ EfiPciHostBridgeBeginEnumeration,
+
+ ///
+ /// The bus allocation phase is about to begin. No specific action
+ /// is required here. This notification can be used to perform any
+ /// chipset specific programming.
+ ///
+ EfiPciHostBridgeBeginBusAllocation,
+
+ ///
+ /// The bus allocation and bus programming phase is complete. No specific
+ /// action is required here. This notification can be used to perform any
+ /// chipset specific programming.
+ ///
+ EfiPciHostBridgeEndBusAllocation,
+
+ ///
+ /// The resource allocation phase is about to begin.No specific action is
+ /// required here. This notification can be used to perform any chipset specific programming.
+ ///
+ EfiPciHostBridgeBeginResourceAllocation,
+
+ ///
+ /// Allocate resources per previously submitted requests for all the PCI Root
+ /// Bridges. These resource settings are returned on the next call to
+ /// GetProposedResources().
+ ///
+ EfiPciHostBridgeAllocateResources,
+
+ ///
+ /// Program the Host Bridge hardware to decode previously allocated resources
+ /// (proposed resources) for all the PCI Root Bridges.
+ ///
+ EfiPciHostBridgeSetResources,
+
+ ///
+ /// De-allocate previously allocated resources previously for all the PCI
+ /// Root Bridges and reset the I/O and memory apertures to initial state.
+ ///
+ EfiPciHostBridgeFreeResources,
+
+ ///
+ /// The resource allocation phase is completed. No specific action is required
+ /// here. This notification can be used to perform any chipset specific programming.
+ ///
+ EfiPciHostBridgeEndResourceAllocation
+} EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PHASE;
+
+///
+/// Definitions of 2 notification points.
+///
+typedef enum {
+ ///
+ /// This notification is only applicable to PCI-PCI bridges and
+ /// indicates that the PCI enumerator is about to begin enumerating
+ /// the bus behind the PCI-PCI Bridge. This notification is sent after
+ /// the primary bus number, the secondary bus number and the subordinate
+ /// bus number registers in the PCI-PCI Bridge are programmed to valid
+ /// (not necessary final) values
+ ///
+ EfiPciBeforeChildBusEnumeration,
+
+ ///
+ /// This notification is sent before the PCI enumerator probes BAR registers
+ /// for every valid PCI function.
+ ///
+ EfiPciBeforeResourceCollection
+} EFI_PCI_CONTROLLER_RESOURCE_ALLOCATION_PHASE;
+
+/**
+ These are the notifications from the PCI bus driver that it is about to enter a certain phase of the PCI
+ enumeration process.
+
+ @param[in] This Pointer to the EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL
+ instance.
+ @param[in] Phase The phase during enumeration
+
+ @retval EFI_SUCCESS The notification was accepted without any errors.
+ @retval EFI_INVALID_PARAMETER The Phase is invalid.
+ @retval EFI_NOT_READY This phase cannot be entered at this time. For example, this error
+ is valid for a Phase of EfiPciHostBridgeAllocateResources if
+ SubmitResources() has not been called for one or more
+ PCI root bridges before this call.
+ @retval EFI_DEVICE_ERROR Programming failed due to a hardware error. This error is valid for
+ a Phase of EfiPciHostBridgeSetResources.
+ @retval EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.
+ This error is valid for a Phase of EfiPciHostBridgeAllocateResources
+ if the previously submitted resource requests cannot be fulfilled or were only
+ partially fulfilled
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL_NOTIFY_PHASE)(
+ IN EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL *This,
+ IN EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PHASE Phase
+ );
+
+/**
+ Returns the device handle of the next PCI root bridge that is associated with this host bridge.
+
+ @param[in] This Pointer to the EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL
+ instance.
+ @param[in,out] RootBridgeHandle Returns the device handle of the next PCI root bridge. On input, it holds the
+ RootBridgeHandle that was returned by the most recent call to
+ GetNextRootBridge(). If RootBridgeHandle is NULL on input, the handle
+ for the first PCI root bridge is returned.
+
+ @retval EFI_SUCCESS The requested attribute information was returned.
+ @retval EFI_INVALID_PARAMETER RootBridgeHandle is not an EFI_HANDLE that was returned
+ on a previous call to GetNextRootBridge().
+ @retval EFI_NOT_FOUND There are no more PCI root bridge device handles.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL_GET_NEXT_ROOT_BRIDGE)(
+ IN EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL *This,
+ IN OUT EFI_HANDLE *RootBridgeHandle
+ );
+
+/**
+ Returns the allocation attributes of a PCI root bridge.
+
+ @param[in] This Pointer to the EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL
+ instance.
+ @param[in] RootBridgeHandle The device handle of the PCI root bridge in which the caller is interested.
+ @param[out] Attribute The pointer to attributes of the PCI root bridge.
+
+ @retval EFI_SUCCESS The requested attribute information was returned.
+ @retval EFI_INVALID_PARAMETER RootBridgeHandle is not a valid root bridge handle.
+ @retval EFI_INVALID_PARAMETER Attributes is NULL.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL_GET_ATTRIBUTES)(
+ IN EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL *This,
+ IN EFI_HANDLE RootBridgeHandle,
+ OUT UINT64 *Attributes
+ );
+
+/**
+ Sets up the specified PCI root bridge for the bus enumeration process.
+
+ @param[in] This Pointer to the EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL
+ instance.
+ @param[in] RootBridgeHandle The PCI root bridge to be set up.
+ @param[out] Configuration Pointer to the pointer to the PCI bus resource descriptor.
+
+ @retval EFI_SUCCESS The PCI root bridge was set up and the bus range was returned in
+ Configuration.
+ @retval EFI_INVALID_PARAMETER RootBridgeHandle is not a valid root bridge handle.
+ @retval EFI_DEVICE_ERROR Programming failed due to a hardware error.
+ @retval EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL_START_BUS_ENUMERATION)(
+ IN EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL *This,
+ IN EFI_HANDLE RootBridgeHandle,
+ OUT VOID **Configuration
+ );
+
+/**
+ Programs the PCI root bridge hardware so that it decodes the specified PCI bus range.
+
+ @param[in] This Pointer to the EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL
+ instance.
+ @param[in] RootBridgeHandle The PCI root bridge whose bus range is to be programmed.
+ @param[in] Configuration The pointer to the PCI bus resource descriptor..
+
+ @retval EFI_SUCCESS The bus range for the PCI root bridge was programmed.
+ @retval EFI_INVALID_PARAMETER RootBridgeHandle is not a valid root bridge handle.
+ @retval EFI_INVALID_PARAMETER Configuration is NULL
+ @retval EFI_INVALID_PARAMETER Configuration does not point to a valid ACPI (2.0 & 3.0)
+ resource descriptor.
+ @retval EFI_INVALID_PARAMETER Configuration does not include a valid ACPI 2.0 bus resource
+ descriptor.
+ @retval EFI_INVALID_PARAMETER Configuration includes valid ACPI (2.0 & 3.0) resource
+ descriptors other than bus descriptors.
+ @retval EFI_INVALID_PARAMETER Configuration contains one or more invalid ACPI resource
+ descriptors.
+ @retval EFI_INVALID_PARAMETER "Address Range Minimum" is invalid for this root bridge.
+ @retval EFI_INVALID_PARAMETER "Address Range Length" is invalid for this root bridge.
+ @retval EFI_DEVICE_ERROR Programming failed due to a hardware error.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL_SET_BUS_NUMBERS)(
+ IN EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL *This,
+ IN EFI_HANDLE RootBridgeHandle,
+ IN VOID *Configuration
+ );
+
+/**
+ Submits the I/O and memory resource requirements for the specified PCI root bridge.
+
+ @param[in] This Pointer to the EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL
+ instance.
+ @param[in] RootBridgeHandle The PCI root bridge whose I/O and memory resource requirements are being
+ submitted.
+ @param[in] Configuration The pointer to the PCI I/O and PCI memory resource descriptor.
+
+ @retval EFI_SUCCESS The I/O and memory resource requests for a PCI root bridge were
+ accepted.
+ @retval EFI_INVALID_PARAMETER RootBridgeHandle is not a valid root bridge handle.
+ @retval EFI_INVALID_PARAMETER Configuration is NULL.
+ @retval EFI_INVALID_PARAMETER Configuration does not point to a valid ACPI (2.0 & 3.0)
+ resource descriptor.
+ @retval EFI_INVALID_PARAMETER Configuration includes requests for one or more resource
+ types that are not supported by this PCI root bridge. This error will
+ happen if the caller did not combine resources according to
+ Attributes that were returned by GetAllocAttributes().
+ @retval EFI_INVALID_PARAMETER "Address Range Maximum" is invalid.
+ @retval EFI_INVALID_PARAMETER "Address Range Length" is invalid for this PCI root bridge.
+ @retval EFI_INVALID_PARAMETER "Address Space Granularity" is invalid for this PCI root bridge.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL_SUBMIT_RESOURCES)(
+ IN EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL *This,
+ IN EFI_HANDLE RootBridgeHandle,
+ IN VOID *Configuration
+ );
+
+/**
+ Returns the proposed resource settings for the specified PCI root bridge.
+
+ @param[in] This Pointer to the EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL
+ instance.
+ @param[in] RootBridgeHandle The PCI root bridge handle.
+ @param[out] Configuration The pointer to the pointer to the PCI I/O and memory resource descriptor.
+
+ @retval EFI_SUCCESS The requested parameters were returned.
+ @retval EFI_INVALID_PARAMETER RootBridgeHandle is not a valid root bridge handle.
+ @retval EFI_DEVICE_ERROR Programming failed due to a hardware error.
+ @retval EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL_GET_PROPOSED_RESOURCES)(
+ IN EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL *This,
+ IN EFI_HANDLE RootBridgeHandle,
+ OUT VOID **Configuration
+ );
+
+/**
+ Provides the hooks from the PCI bus driver to every PCI controller (device/function) at various
+ stages of the PCI enumeration process that allow the host bridge driver to preinitialize individual
+ PCI controllers before enumeration.
+
+ @param[in] This Pointer to the EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL instance.
+ @param[in] RootBridgeHandle The associated PCI root bridge handle.
+ @param[in] PciAddress The address of the PCI device on the PCI bus.
+ @param[in] Phase The phase of the PCI device enumeration.
+
+ @retval EFI_SUCCESS The requested parameters were returned.
+ @retval EFI_INVALID_PARAMETER RootBridgeHandle is not a valid root bridge handle.
+ @retval EFI_INVALID_PARAMETER Phase is not a valid phase that is defined in
+ EFI_PCI_CONTROLLER_RESOURCE_ALLOCATION_PHASE.
+ @retval EFI_DEVICE_ERROR Programming failed due to a hardware error. The PCI enumerator
+ should not enumerate this device, including its child devices if it is
+ a PCI-to-PCI bridge.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL_PREPROCESS_CONTROLLER)(
+ IN EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL *This,
+ IN EFI_HANDLE RootBridgeHandle,
+ IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_PCI_ADDRESS PciAddress,
+ IN EFI_PCI_CONTROLLER_RESOURCE_ALLOCATION_PHASE Phase
+ );
+
+///
+/// Provides the basic interfaces to abstract a PCI host bridge resource allocation.
+///
+struct _EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL {
+ ///
+ /// The notification from the PCI bus enumerator that it is about to enter
+ /// a certain phase during the enumeration process.
+ ///
+ EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL_NOTIFY_PHASE NotifyPhase;
+
+ ///
+ /// Retrieves the device handle for the next PCI root bridge that is produced by the
+ /// host bridge to which this instance of the EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL is attached.
+ ///
+ EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL_GET_NEXT_ROOT_BRIDGE GetNextRootBridge;
+
+ ///
+ /// Retrieves the allocation-related attributes of a PCI root bridge.
+ ///
+ EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL_GET_ATTRIBUTES GetAllocAttributes;
+
+ ///
+ /// Sets up a PCI root bridge for bus enumeration.
+ ///
+ EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL_START_BUS_ENUMERATION StartBusEnumeration;
+
+ ///
+ /// Sets up the PCI root bridge so that it decodes a specific range of bus numbers.
+ ///
+ EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL_SET_BUS_NUMBERS SetBusNumbers;
+
+ ///
+ /// Submits the resource requirements for the specified PCI root bridge.
+ ///
+ EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL_SUBMIT_RESOURCES SubmitResources;
+
+ ///
+ /// Returns the proposed resource assignment for the specified PCI root bridges.
+ ///
+ EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL_GET_PROPOSED_RESOURCES GetProposedResources;
+
+ ///
+ /// Provides hooks from the PCI bus driver to every PCI controller
+ /// (device/function) at various stages of the PCI enumeration process that
+ /// allow the host bridge driver to preinitialize individual PCI controllers
+ /// before enumeration.
+ ///
+ EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL_PREPROCESS_CONTROLLER PreprocessController;
+};
+
+extern EFI_GUID gEfiPciHostBridgeResourceAllocationProtocolGuid;
+
+#endif
diff --git a/MdePkg/Include/Protocol/PciHotPlugInit.h b/MdePkg/Include/Protocol/PciHotPlugInit.h new file mode 100644 index 0000000000..1892a4854b --- /dev/null +++ b/MdePkg/Include/Protocol/PciHotPlugInit.h @@ -0,0 +1,278 @@ +/** @file
+ This file declares EFI PCI Hot Plug Init Protocol.
+
+ This protocol provides the necessary functionality to initialize the Hot Plug
+ Controllers (HPCs) and the buses that they control. This protocol also provides
+ information regarding resource padding.
+
+ @par Note:
+ This protocol is required only on platforms that support one or more PCI Hot
+ Plug* slots or CardBus sockets.
+
+ The EFI_PCI_HOT_PLUG_INIT_PROTOCOL provides a mechanism for the PCI bus enumerator
+ to properly initialize the HPCs and CardBus sockets that require initialization.
+ The HPC initialization takes place before the PCI enumeration process is complete.
+ There cannot be more than one instance of this protocol in a system. This protocol
+ is installed on its own separate handle.
+
+ Because the system may include multiple HPCs, one instance of this protocol
+ should represent all of them. The protocol functions use the device path of
+ the HPC to identify the HPC. When the PCI bus enumerator finds a root HPC, it
+ will call EFI_PCI_HOT_PLUG_INIT_PROTOCOL.InitializeRootHpc(). If InitializeRootHpc()
+ is unable to initialize a root HPC, the PCI enumerator will ignore that root HPC
+ and continue the enumeration process. If the HPC is not initialized, the devices
+ that it controls may not be initialized, and no resource padding will be provided.
+
+ From the standpoint of the PCI bus enumerator, HPCs are divided into the following
+ two classes:
+
+ - Root HPC:
+ These HPCs must be initialized by calling InitializeRootHpc() during the
+ enumeration process. These HPCs will also require resource padding. The
+ platform code must have a priori knowledge of these devices and must know
+ how to initialize them. There may not be any way to access their PCI
+ configuration space before the PCI enumerator programs all the upstream
+ bridges and thus enables the path to these devices. The PCI bus enumerator
+ is responsible for determining the PCI bus address of the HPC before it
+ calls InitializeRootHpc().
+ - Nonroot HPC:
+ These HPCs will not need explicit initialization during enumeration process.
+ These HPCs will require resource padding. The platform code does not have
+ to have a priori knowledge of these devices.
+
+ Copyright (c) 2007 - 2009, Intel Corporation
+ All rights reserved. This program and the accompanying materials
+ are licensed and made available under the terms and conditions of the BSD License
+ which accompanies this distribution. The full text of the license may be found at
+ http://opensource.org/licenses/bsd-license.php
+
+ THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
+ WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
+
+ @par Revision Reference:
+ This Protocol is defined in UEFI Platform Initialization Specification 1.2
+ Volume 5: Standards
+
+**/
+
+#ifndef _EFI_PCI_HOT_PLUG_INIT_H_
+#define _EFI_PCI_HOT_PLUG_INIT_H_
+
+///
+/// Global ID for the EFI_PCI_HOT_PLUG_INIT_PROTOCOL
+///
+#define EFI_PCI_HOT_PLUG_INIT_PROTOCOL_GUID \
+ { \
+ 0xaa0e8bc1, 0xdabc, 0x46b0, {0xa8, 0x44, 0x37, 0xb8, 0x16, 0x9b, 0x2b, 0xea } \
+ }
+
+///
+/// Forward declaration for EFI_PCI_HOT_PLUG_INIT_PROTOCOL
+///
+typedef struct _EFI_PCI_HOT_PLUG_INIT_PROTOCOL EFI_PCI_HOT_PLUG_INIT_PROTOCOL;
+
+///
+/// Describes the current state of an HPC
+///
+typedef UINT16 EFI_HPC_STATE;
+
+///
+/// The HPC initialization function was called and the HPC completed
+/// initialization, but it was not enabled for some reason. The HPC may be
+/// disabled in hardware, or it may be disabled due to user preferences,
+/// hardware failure, or other reasons. No resource padding is required.
+///
+#define EFI_HPC_STATE_INITIALIZED 0x01
+
+///
+/// The HPC initialization function was called, the HPC completed
+/// initialization, and it was enabled. Resource padding is required.
+///
+#define EFI_HPC_STATE_ENABLED 0x02
+
+///
+/// Location definition for PCI Hot Plug Controller
+///
+typedef struct{
+ ///
+ ///
+ /// The device path to the root HPC. An HPC cannot control its parent buses.
+ /// The PCI bus driver requires this information so that it can pass the
+ /// correct HpcPciAddress to the InitializeRootHpc() and GetResourcePadding()
+ /// functions.
+ ///
+ EFI_DEVICE_PATH_PROTOCOL *HpcDevicePath;
+ ///
+ /// The device path to the Hot Plug Bus (HPB) that is controlled by the root
+ /// HPC. The PCI bus driver uses this information to check if a particular PCI
+ /// bus has hot-plug slots. The device path of a PCI bus is the same as the
+ /// device path of its parent. For Standard(PCI) Hot Plug Controllers (SHPCs)
+ /// and PCI Express*, HpbDevicePath is the same as HpcDevicePath.
+ ///
+ EFI_DEVICE_PATH_PROTOCOL *HpbDevicePath;
+} EFI_HPC_LOCATION;
+
+///
+/// Describes how resource padding should be applied
+///
+typedef enum {
+ ///
+ /// Apply the padding at a PCI bus level. In other words, the resources
+ /// that are allocated to the bus containing hot-plug slots are padded by
+ /// the specified amount. If the hot-plug bus is behind a PCI-to-PCI
+ /// bridge, the PCI-to-PCI bridge apertures will indicate the padding
+ ///
+ EfiPaddingPciBus,
+ ///
+ /// Apply the padding at a PCI root bridge level. If a PCI root bridge
+ /// includes more than one hot-plug bus, the resource padding requests
+ /// for these buses are added together and the resources that are
+ /// allocated to the root bridge are padded by the specified amount. This
+ /// strategy may reduce the total amount of padding, but requires
+ /// reprogramming of PCI-to-PCI bridges in a hot-add event. If the hotplug
+ /// bus is behind a PCI-to-PCI bridge, the PCI-to-PCI bridge
+ /// apertures do not indicate the padding for that bus.
+ ///
+ EfiPaddingPciRootBridge
+} EFI_HPC_PADDING_ATTRIBUTES;
+
+/**
+ Returns a list of root Hot Plug Controllers (HPCs) that require initialization
+ during the boot process.
+
+ This procedure returns a list of root HPCs. The PCI bus driver must initialize
+ these controllers during the boot process. The PCI bus driver may or may not be
+ able to detect these HPCs. If the platform includes a PCI-to-CardBus bridge, it
+ can be included in this list if it requires initialization. The HpcList must be
+ self consistent. An HPC cannot control any of its parent buses. Only one HPC can
+ control a PCI bus. Because this list includes only root HPCs, no HPC in the list
+ can be a child of another HPC. This policy must be enforced by the
+ EFI_PCI_HOT_PLUG_INIT_PROTOCOL. The PCI bus driver may not check for such
+ invalid conditions. The callee allocates the buffer HpcList
+
+ @param[in] This Pointer to the EFI_PCI_HOT_PLUG_INIT_PROTOCOL instance.
+ @param[out] HpcCount The number of root HPCs that were returned.
+ @param[out] HpcList The list of root HPCs. HpcCount defines the number of
+ elements in this list.
+
+ @retval EFI_SUCCESS HpcList was returned.
+ @retval EFI_OUT_OF_RESOURCES HpcList was not returned due to insufficient
+ resources.
+ @retval EFI_INVALID_PARAMETER HpcCount is NULL or HpcList is NULL.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_GET_ROOT_HPC_LIST)(
+ IN EFI_PCI_HOT_PLUG_INIT_PROTOCOL *This,
+ OUT UINTN *HpcCount,
+ OUT EFI_HPC_LOCATION **HpcList
+ );
+
+/**
+ Initializes one root Hot Plug Controller (HPC). This process may causes
+ initialization of its subordinate buses.
+
+ This function initializes the specified HPC. At the end of initialization,
+ the hot-plug slots or sockets (controlled by this HPC) are powered and are
+ connected to the bus. All the necessary registers in the HPC are set up. For
+ a Standard (PCI) Hot Plug Controller (SHPC), the registers that must be set
+ up are defined in the PCI Standard Hot Plug Controller and Subsystem
+ Specification.
+
+ @param[in] This Pointer to the EFI_PCI_HOT_PLUG_INIT_PROTOCOL instance.
+ @param[in] HpcDevicePath The device path to the HPC that is being initialized.
+ @param[in] HpcPciAddress The address of the HPC function on the PCI bus.
+ @param[in] Event The event that should be signaled when the HPC
+ initialization is complete. Set to NULL if the
+ caller wants to wait until the entire initialization
+ process is complete.
+ @param[out] HpcState The state of the HPC hardware. The state is
+ EFI_HPC_STATE_INITIALIZED or EFI_HPC_STATE_ENABLED.
+
+ @retval EFI_SUCCESS If Event is NULL, the specific HPC was successfully
+ initialized. If Event is not NULL, Event will be
+ signaled at a later time when initialization is complete.
+ @retval EFI_UNSUPPORTED This instance of EFI_PCI_HOT_PLUG_INIT_PROTOCOL
+ does not support the specified HPC.
+ @retval EFI_OUT_OF_RESOURCES Initialization failed due to insufficient
+ resources.
+ @retval EFI_INVALID_PARAMETER HpcState is NULL.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_INITIALIZE_ROOT_HPC)(
+ IN EFI_PCI_HOT_PLUG_INIT_PROTOCOL *This,
+ IN EFI_DEVICE_PATH_PROTOCOL *HpcDevicePath,
+ IN UINT64 HpcPciAddress,
+ IN EFI_EVENT Event, OPTIONAL
+ OUT EFI_HPC_STATE *HpcState
+ );
+
+/**
+ Returns the resource padding that is required by the PCI bus that is controlled
+ by the specified Hot Plug Controller (HPC).
+
+ This function returns the resource padding that is required by the PCI bus that
+ is controlled by the specified HPC. This member function is called for all the
+ root HPCs and nonroot HPCs that are detected by the PCI bus enumerator. This
+ function will be called before PCI resource allocation is completed. This function
+ must be called after all the root HPCs, with the possible exception of a
+ PCI-to-CardBus bridge, have completed initialization.
+
+ @param[in] This Pointer to the EFI_PCI_HOT_PLUG_INIT_PROTOCOL instance.
+ @param[in] HpcDevicePath The device path to the HPC.
+ @param[in] HpcPciAddress The address of the HPC function on the PCI bus.
+ @param[in] HpcState The state of the HPC hardware.
+ @param[out] Padding The amount of resource padding that is required by the
+ PCI bus under the control of the specified HPC.
+ @param[out] Attributes Describes how padding is accounted for. The padding
+ is returned in the form of ACPI 2.0 resource descriptors.
+
+ @retval EFI_SUCCESS The resource padding was successfully returned.
+ @retval EFI_UNSUPPORTED This instance of the EFI_PCI_HOT_PLUG_INIT_PROTOCOL
+ does not support the specified HPC.
+ @retval EFI_NOT_READY This function was called before HPC initialization
+ is complete.
+ @retval EFI_INVALID_PARAMETER HpcState or Padding or Attributes is NULL.
+ @retval EFI_OUT_OF_RESOURCES ACPI 2.0 resource descriptors for Padding
+ cannot be allocated due to insufficient resources.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_GET_HOT_PLUG_PADDING)(
+ IN EFI_PCI_HOT_PLUG_INIT_PROTOCOL *This,
+ IN EFI_DEVICE_PATH_PROTOCOL *HpcDevicePath,
+ IN UINT64 HpcPciAddress,
+ OUT EFI_HPC_STATE *HpcState,
+ OUT VOID **Padding,
+ OUT EFI_HPC_PADDING_ATTRIBUTES *Attributes
+ );
+
+///
+/// This protocol provides the necessary functionality to initialize the
+/// Hot Plug Controllers (HPCs) and the buses that they control. This protocol
+/// also provides information regarding resource padding.
+///
+struct _EFI_PCI_HOT_PLUG_INIT_PROTOCOL {
+ ///
+ /// Returns a list of root HPCs and the buses that they control.
+ ///
+ EFI_GET_ROOT_HPC_LIST GetRootHpcList;
+
+ ///
+ /// Initializes the specified root HPC.
+ ///
+ EFI_INITIALIZE_ROOT_HPC InitializeRootHpc;
+
+ ///
+ /// Returns the resource padding that is required by the HPC.
+ ///
+ EFI_GET_HOT_PLUG_PADDING GetResourcePadding;
+};
+
+extern EFI_GUID gEfiPciHotPlugInitProtocolGuid;
+
+#endif
diff --git a/MdePkg/Include/Protocol/PciPlatform.h b/MdePkg/Include/Protocol/PciPlatform.h new file mode 100644 index 0000000000..123309b8b1 --- /dev/null +++ b/MdePkg/Include/Protocol/PciPlatform.h @@ -0,0 +1,344 @@ +/** @file
+ This file declares PlatfromOpRom protocols which provides the interface between
+ the PCI bus driver/PCI Host Bridge Resource Allocation driver and a platform-specific
+ driver to describe the unique features of a platform. This
+ protocol is optional.
+
+ Copyright (c) 2007 - 2009, Intel Corporation
+ All rights reserved. This program and the accompanying materials
+ are licensed and made available under the terms and conditions of the BSD License
+ which accompanies this distribution. The full text of the license may be found at
+ http://opensource.org/licenses/bsd-license.php
+
+ THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
+ WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
+
+ @par Revision Reference:
+ This Protocol is defined in UEFI Platform Initialization Specification 1.2
+ Volume 5: Standards
+
+**/
+
+#ifndef _PCI_PLATFORM_H_
+#define _PCI_PLATFORM_H_
+
+///
+/// This file must be included because the EFI_PCI_PLATFORM_PROTOCOL uses
+/// EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PHASE
+///
+#include <Protocol/PciHostBridgeResourceAllocation.h>
+
+///
+/// Global ID for the EFI_PCI_PLATFORM_PROTOCOL
+///
+#define EFI_PCI_PLATFORM_PROTOCOL_GUID \
+ { \
+ 0x7d75280, 0x27d4, 0x4d69, {0x90, 0xd0, 0x56, 0x43, 0xe2, 0x38, 0xb3, 0x41} \
+ }
+
+///
+/// Forward declaration for EFI_PCI_PLATFORM_PROTOCOL
+///
+typedef struct _EFI_PCI_PLATFORM_PROTOCOL EFI_PCI_PLATFORM_PROTOCOL;
+
+///
+/// EFI_PCI_PLATYFORM_POLICY that is a bitmask with the following legal combinations:
+/// - EFI_RESERVE_NONE_IO_ALIAS:<BR>
+/// Does not set aside either ISA or VGA I/O resources during PCI
+/// enumeration. By using this selection, the platform indicates that it does
+/// not want to support a PCI device that requires ISA or legacy VGA
+/// resources. If a PCI device driver asks for these resources, the request
+/// will be turned down.
+/// - EFI_RESERVE_ISA_IO_ALIAS | EFI_RESERVE_VGA_IO_ALIAS:<BR>
+/// Sets aside the ISA I/O range and all the aliases during PCI
+/// enumeration. VGA I/O ranges and aliases are included in ISA alias
+/// ranges. In this scheme, 75 percent of the I/O space remains unused.
+/// By using this selection, the platform indicates that it wants to support
+/// PCI devices that require the following, at the cost of wasted I/O space:
+/// ISA range and its aliases
+/// Legacy VGA range and its aliases
+/// The PCI bus driver will not allocate I/O addresses out of the ISA I/O
+/// range and its aliases. The following are the ISA I/O ranges:
+/// - n100..n3FF
+/// - n500..n7FF
+/// - n900..nBFF
+/// - nD00..nFFF
+///
+/// In this case, the PCI bus driver will ask the PCI host bridge driver for
+/// larger I/O ranges. The PCI host bridge driver is not aware of the ISA
+/// aliasing policy and merely attempts to allocate the requested ranges.
+/// The first device that requests the legacy VGA range will get all the
+/// legacy VGA range plus its aliased addresses forwarded to it. The first
+/// device that requests the legacy ISA range will get all the legacy ISA
+/// range plus its aliased addresses forwarded to it.
+/// - EFI_RESERVE_ISA_IO_NO_ALIAS | EFI_RESERVE_VGA_IO_ALIAS:<BR>
+/// Sets aside the ISA I/O range (0x100–0x3FF) during PCI enumeration
+/// and the aliases of the VGA I/O ranges. By using this selection, the
+/// platform indicates that it will support VGA devices that require VGA
+/// ranges, including those that require VGA aliases. The platform further
+/// wants to support non-VGA devices that ask for the ISA range (0x100–
+/// 3FF), but not if it also asks for the ISA aliases. The PCI bus driver will
+/// not allocate I/O addresses out of the legacy ISA I/O range (0x100–
+/// 0x3FF) range or the aliases of the VGA I/O range. If a PCI device
+/// driver asks for the ISA I/O ranges, including aliases, the request will be
+/// turned down. The first device that requests the legacy VGA range will
+/// get all the legacy VGA range plus its aliased addresses forwarded to
+/// it. When the legacy VGA device asks for legacy VGA ranges and its
+/// aliases, all the upstream PCI-to-PCI bridges must be set up to perform
+/// 10-bit decode on legacy VGA ranges. To prevent two bridges from
+/// positively decoding the same address, all PCI-to-PCI bridges that are
+/// peers to this bridge will have to be set up to not decode ISA aliased
+/// ranges. In that case, all the devices behind the peer bridges can
+/// occupy only I/O addresses that are not ISA aliases. This is a limitation
+/// of PCI-to-PCI bridges and is described in the white paper PCI-to-PCI
+/// Bridges and Card Bus Controllers on Windows 2000, Windows XP,
+/// and Windows Server 2003. The PCI enumeration process must be
+/// cognizant of this restriction.
+/// - EFI_RESERVE_ISA_IO_NO_ALIAS | EFI_RESERVE_VGA_IO_NO_ALIAS:<BR>
+/// Sets aside the ISA I/O range (0x100–0x3FF) during PCI enumeration.
+/// VGA I/O ranges are included in the ISA range. By using this selection,
+/// the platform indicates that it wants to support PCI devices that require
+/// the ISA range and legacy VGA range, but it does not want to support
+/// devices that require ISA alias ranges or VGA alias ranges. The PCI
+/// bus driver will not allocate I/O addresses out of the legacy ISA I/O
+/// range (0x100–0x3FF). If a PCI device driver asks for the ISA I/O
+/// ranges, including aliases, the request will be turned down. By using
+/// this selection, the platform indicates that it will support VGA devices
+/// that require VGA ranges, but it will not support VGA devices that
+/// require VGA aliases. To truly support 16-bit VGA decode, all the PCIto-
+/// PCI bridges that are upstream to a VGA device, as well as
+/// upstream to the parent PCI root bridge, must support 16-bit VGA I/O
+/// decode. See the PCI-to-PCI Bridge Architecture Specification for
+/// information regarding the 16-bit VGA decode support. This
+/// requirement must hold true for every VGA device in the system. If any
+/// of these bridges does not support 16-bit VGA decode, it will positively
+/// decode all the aliases of the VGA I/O ranges and this selection must
+/// be treated like EFI_RESERVE_ISA_IO_NO_ALIAS |
+/// EFI_RESERVE_VGA_IO_ALIAS.
+///
+typedef UINT32 EFI_PCI_PLATFORM_POLICY;
+
+///
+/// Does not set aside either ISA or VGA I/O resources during PCI
+/// enumeration.
+///
+#define EFI_RESERVE_NONE_IO_ALIAS 0x0000
+
+///
+/// Sets aside ISA I/O range and all aliases
+/// - n100..n3FF
+/// - n500..n7FF
+/// - n900..nBFF
+/// - nD00..nFFF
+///
+#define EFI_RESERVE_ISA_IO_ALIAS 0x0001
+
+///
+/// Sets aside ISA I/O range 0x100-0x3FF
+///
+#define EFI_RESERVE_ISA_IO_NO_ALIAS 0x0002
+
+///
+/// Sets aside VGA I/O ranges and all aliases
+///
+#define EFI_RESERVE_VGA_IO_ALIAS 0x0004
+
+///
+/// Sets aside VGA I/O rangess
+///
+#define EFI_RESERVE_VGA_IO_NO_ALIAS 0x0008
+
+///
+/// EFI_PCI_EXECUTION_PHASE is used to call a platform protocol and execute
+/// platform-specific code.
+///
+typedef enum {
+ ///
+ /// The phase that indicates the entry point to the PCI Bus Notify phase. This
+ /// platform hook is called before the PCI bus driver calls the
+ /// EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL driver.
+ ///
+ BeforePciHostBridge = 0,
+ ///
+ /// The phase that indicates the entry point to the PCI Bus Notify phase. This
+ /// platform hook is called before the PCI bus driver calls the
+ /// EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL driver.
+ ///
+ ChipsetEntry = 0,
+ ///
+ /// The phase that indicates the exit point to the Chipset Notify phase before
+ /// returning to the PCI Bus Driver Notify phase. This platform hook is called after
+ /// the PCI bus driver calls the EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL
+ /// driver.
+ ///
+ AfterPciHostBridge = 1,
+ ///
+ /// The phase that indicates the exit point to the Chipset Notify phase before
+ /// returning to the PCI Bus Driver Notify phase. This platform hook is called after
+ /// the PCI bus driver calls the EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL
+ /// driver.
+ ///
+ ChipsetExit = 1,
+ MaximumChipsetPhase
+} EFI_PCI_EXECUTION_PHASE;
+
+typedef EFI_PCI_EXECUTION_PHASE EFI_PCI_CHIPSET_EXECUTION_PHASE;
+
+/**
+ The notification from the PCI bus enumerator to the platform that it is
+ about to enter a certain phase during the enumeration process.
+
+ The PlatformNotify() function can be used to notify the platform driver so that
+ it can perform platform-specific actions. No specific actions are required.
+ Eight notification points are defined at this time. More synchronization points
+ may be added as required in the future. The PCI bus driver calls the platform driver
+ twice for every Phase-once before the PCI Host Bridge Resource Allocation Protocol
+ driver is notified, and once after the PCI Host Bridge Resource Allocation Protocol
+ driver has been notified.
+ This member function may not perform any error checking on the input parameters. It
+ also does not return any error codes. If this member function detects any error condition,
+ it needs to handle those errors on its own because there is no way to surface any
+ errors to the caller.
+
+ @param[in] This Pointer to the EFI_PCI_PLATFORM_PROTOCOL instance.
+ @param[in] HostBridge The handle of the host bridge controller.
+ @param[in] Phase The phase of the PCI bus enumeration.
+ @param[in] ChipsetPhase Defines the execution phase of the PCI chipset driver.
+
+ @retval EFI_SUCCESS The function completed successfully.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_PCI_PLATFORM_PHASE_NOTIFY)(
+ IN EFI_PCI_PLATFORM_PROTOCOL *This,
+ IN EFI_HANDLE HostBridge,
+ IN EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PHASE Phase,
+ IN EFI_PCI_CHIPSET_EXECUTION_PHASE ChipsetPhase
+ );
+
+/**
+ The notification from the PCI bus enumerator to the platform for each PCI
+ controller at several predefined points during PCI controller initialization.
+
+ The PlatformPrepController() function can be used to notify the platform driver so that
+ it can perform platform-specific actions. No specific actions are required.
+ Several notification points are defined at this time. More synchronization points may be
+ added as required in the future. The PCI bus driver calls the platform driver twice for
+ every PCI controller-once before the PCI Host Bridge Resource Allocation Protocol driver
+ is notified, and once after the PCI Host Bridge Resource Allocation Protocol driver has
+ been notified.
+ This member function may not perform any error checking on the input parameters. It also
+ does not return any error codes. If this member function detects any error condition, it
+ needs to handle those errors on its own because there is no way to surface any errors to
+ the caller.
+
+ @param[in] This Pointer to the EFI_PCI_PLATFORM_PROTOCOL instance.
+ @param[in] HostBridge The associated PCI host bridge handle.
+ @param[in] RootBridge The associated PCI root bridge handle.
+ @param[in] PciAddress The address of the PCI device on the PCI bus.
+ @param[in] Phase The phase of the PCI controller enumeration.
+ @param[in] ChipsetPhase Defines the execution phase of the PCI chipset driver.
+
+ @retval EFI_SUCCESS The function completed successfully.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_PCI_PLATFORM_PREPROCESS_CONTROLLER)(
+ IN EFI_PCI_PLATFORM_PROTOCOL *This,
+ IN EFI_HANDLE HostBridge,
+ IN EFI_HANDLE RootBridge,
+ IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_PCI_ADDRESS PciAddress,
+ IN EFI_PCI_CONTROLLER_RESOURCE_ALLOCATION_PHASE Phase,
+ IN EFI_PCI_CHIPSET_EXECUTION_PHASE ChipsetPhase
+ );
+
+/**
+ Retrieves the platform policy regarding enumeration.
+
+ The GetPlatformPolicy() function retrieves the platform policy regarding PCI
+ enumeration. The PCI bus driver and the PCI Host Bridge Resource Allocation Protocol
+ driver can call this member function to retrieve the policy.
+
+ @param[in] This Pointer to the EFI_PCI_PLATFORM_PROTOCOL instance.
+ @param[out] PciPolicy The platform policy with respect to VGA and ISA aliasing.
+
+ @retval EFI_SUCCESS The function completed successfully.
+ @retval EFI_INVALID_PARAMETER PciPolicy is NULL.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_PCI_PLATFORM_GET_PLATFORM_POLICY)(
+ IN EFI_PCI_PLATFORM_PROTOCOL *This,
+ OUT EFI_PCI_PLATFORM_POLICY *PciPolicy
+ );
+
+/**
+ Gets the PCI device's option ROM from a platform-specific location.
+
+ The GetPciRom() function gets the PCI device's option ROM from a platform-specific location.
+ The option ROM will be loaded into memory. This member function is used to return an image
+ that is packaged as a PCI 2.2 option ROM. The image may contain both legacy and EFI option
+ ROMs. See the UEFI 2.0 Specification for details. This member function can be used to return
+ option ROM images for embedded controllers. Option ROMs for embedded controllers are typically
+ stored in platform-specific storage, and this member function can retrieve it from that storage
+ and return it to the PCI bus driver. The PCI bus driver will call this member function before
+ scanning the ROM that is attached to any controller, which allows a platform to specify a ROM
+ image that is different from the ROM image on a PCI card.
+
+ @param[in] This Pointer to the EFI_PCI_PLATFORM_PROTOCOL instance.
+ @param[in] PciHandle The handle of the PCI device.
+ @param[out] RomImage If the call succeeds, the pointer to the pointer to the option ROM image.
+ Otherwise, this field is undefined. The memory for RomImage is allocated
+ by EFI_PCI_PLATFORM_PROTOCOL.GetPciRom() using the EFI Boot Service AllocatePool().
+ It is the caller's responsibility to free the memory using the EFI Boot Service
+ FreePool(), when the caller is done with the option ROM.
+ @param[out] RomSize If the call succeeds, a pointer to the size of the option ROM size. Otherwise,
+ this field is undefined.
+
+ @retval EFI_SUCCESS The option ROM was available for this device and loaded into memory.
+ @retval EFI_NOT_FOUND No option ROM was available for this device.
+ @retval EFI_OUT_OF_RESOURCES No memory was available to load the option ROM.
+ @retval EFI_DEVICE_ERROR An error occurred in getting the option ROM.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_PCI_PLATFORM_GET_PCI_ROM)(
+ IN EFI_PCI_PLATFORM_PROTOCOL *This,
+ IN EFI_HANDLE PciHandle,
+ OUT VOID **RomImage,
+ OUT UINTN *RomSize
+ );
+
+///
+/// This protocol provides the interface between the PCI bus driver/PCI Host
+/// Bridge Resource Allocation driver and a platform-specific driver to describe
+/// the unique features of a platform.
+///
+struct _EFI_PCI_PLATFORM_PROTOCOL {
+ ///
+ /// The notification from the PCI bus enumerator to the platform that it is about to
+ /// enter a certain phase during the enumeration process.
+ ///
+ EFI_PCI_PLATFORM_PHASE_NOTIFY PlatformNotify;
+ ///
+ /// The notification from the PCI bus enumerator to the platform for each PCI
+ /// controller at several predefined points during PCI controller initialization.
+ ///
+ EFI_PCI_PLATFORM_PREPROCESS_CONTROLLER PlatformPrepController;
+ ///
+ /// Retrieves the platform policy regarding enumeration.
+ ///
+ EFI_PCI_PLATFORM_GET_PLATFORM_POLICY GetPlatformPolicy;
+ ///
+ /// Gets the PCI device’s option ROM from a platform-specific location.
+ ///
+ EFI_PCI_PLATFORM_GET_PCI_ROM GetPciRom;
+};
+
+extern EFI_GUID gEfiPciPlatformProtocolGuid;
+
+#endif
|