summaryrefslogtreecommitdiff
path: root/StdLib/LibC/Softfloat/bits32/softfloat.c
diff options
context:
space:
mode:
Diffstat (limited to 'StdLib/LibC/Softfloat/bits32/softfloat.c')
-rw-r--r--StdLib/LibC/Softfloat/bits32/softfloat.c2355
1 files changed, 0 insertions, 2355 deletions
diff --git a/StdLib/LibC/Softfloat/bits32/softfloat.c b/StdLib/LibC/Softfloat/bits32/softfloat.c
deleted file mode 100644
index a513bf94e1..0000000000
--- a/StdLib/LibC/Softfloat/bits32/softfloat.c
+++ /dev/null
@@ -1,2355 +0,0 @@
-/* $NetBSD: softfloat.c,v 1.3 2013/01/10 08:16:11 matt Exp $ */
-
-/*
- * This version hacked for use with gcc -msoft-float by bjh21.
- * (Mostly a case of #ifdefing out things GCC doesn't need or provides
- * itself).
- */
-
-/*
- * Things you may want to define:
- *
- * SOFTFLOAT_FOR_GCC - build only those functions necessary for GCC (with
- * -msoft-float) to work. Include "softfloat-for-gcc.h" to get them
- * properly renamed.
- */
-
-/*
- * This differs from the standard bits32/softfloat.c in that float64
- * is defined to be a 64-bit integer rather than a structure. The
- * structure is float64s, with translation between the two going via
- * float64u.
- */
-
-/*
-===============================================================================
-
-This C source file is part of the SoftFloat IEC/IEEE Floating-Point
-Arithmetic Package, Release 2a.
-
-Written by John R. Hauser. This work was made possible in part by the
-International Computer Science Institute, located at Suite 600, 1947 Center
-Street, Berkeley, California 94704. Funding was partially provided by the
-National Science Foundation under grant MIP-9311980. The original version
-of this code was written as part of a project to build a fixed-point vector
-processor in collaboration with the University of California at Berkeley,
-overseen by Profs. Nelson Morgan and John Wawrzynek. More information
-is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
-arithmetic/SoftFloat.html'.
-
-THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
-has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
-TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
-PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
-AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
-
-Derivative works are acceptable, even for commercial purposes, so long as
-(1) they include prominent notice that the work is derivative, and (2) they
-include prominent notice akin to these four paragraphs for those parts of
-this code that are retained.
-
-===============================================================================
-*/
-
-#include <sys/cdefs.h>
-#if defined(LIBC_SCCS) && !defined(lint)
-__RCSID("$NetBSD: softfloat.c,v 1.3 2013/01/10 08:16:11 matt Exp $");
-#endif /* LIBC_SCCS and not lint */
-
-#ifdef SOFTFLOAT_FOR_GCC
-#include "softfloat-for-gcc.h"
-#endif
-
-#include "milieu.h"
-#include "softfloat.h"
-
-/*
- * Conversions between floats as stored in memory and floats as
- * SoftFloat uses them
- */
-#ifndef FLOAT64_DEMANGLE
-#define FLOAT64_DEMANGLE(a) (a)
-#endif
-#ifndef FLOAT64_MANGLE
-#define FLOAT64_MANGLE(a) (a)
-#endif
-
-/*
--------------------------------------------------------------------------------
-Floating-point rounding mode and exception flags.
--------------------------------------------------------------------------------
-*/
-#ifndef set_float_rounding_mode
-fp_rnd float_rounding_mode = float_round_nearest_even;
-fp_except float_exception_flags = 0;
-#endif
-#ifndef set_float_exception_inexact_flag
-#define set_float_exception_inexact_flag() \
- ((void)(float_exception_flags |= float_flag_inexact))
-#endif
-
-/*
--------------------------------------------------------------------------------
-Primitive arithmetic functions, including multi-word arithmetic, and
-division and square root approximations. (Can be specialized to target if
-desired.)
--------------------------------------------------------------------------------
-*/
-#include "softfloat-macros"
-
-/*
--------------------------------------------------------------------------------
-Functions and definitions to determine: (1) whether tininess for underflow
-is detected before or after rounding by default, (2) what (if anything)
-happens when exceptions are raised, (3) how signaling NaNs are distinguished
-from quiet NaNs, (4) the default generated quiet NaNs, and (4) how NaNs
-are propagated from function inputs to output. These details are target-
-specific.
--------------------------------------------------------------------------------
-*/
-#include "softfloat-specialize"
-
-/*
--------------------------------------------------------------------------------
-Returns the fraction bits of the single-precision floating-point value `a'.
--------------------------------------------------------------------------------
-*/
-INLINE bits32 extractFloat32Frac( float32 a )
-{
-
- return a & 0x007FFFFF;
-
-}
-
-/*
--------------------------------------------------------------------------------
-Returns the exponent bits of the single-precision floating-point value `a'.
--------------------------------------------------------------------------------
-*/
-INLINE int16 extractFloat32Exp( float32 a )
-{
-
- return ( a>>23 ) & 0xFF;
-
-}
-
-/*
--------------------------------------------------------------------------------
-Returns the sign bit of the single-precision floating-point value `a'.
--------------------------------------------------------------------------------
-*/
-INLINE flag extractFloat32Sign( float32 a )
-{
-
- return a>>31;
-
-}
-
-/*
--------------------------------------------------------------------------------
-Normalizes the subnormal single-precision floating-point value represented
-by the denormalized significand `aSig'. The normalized exponent and
-significand are stored at the locations pointed to by `zExpPtr' and
-`zSigPtr', respectively.
--------------------------------------------------------------------------------
-*/
-static void
- normalizeFloat32Subnormal( bits32 aSig, int16 *zExpPtr, bits32 *zSigPtr )
-{
- int8 shiftCount;
-
- shiftCount = countLeadingZeros32( aSig ) - 8;
- *zSigPtr = aSig<<shiftCount;
- *zExpPtr = 1 - shiftCount;
-
-}
-
-/*
--------------------------------------------------------------------------------
-Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
-single-precision floating-point value, returning the result. After being
-shifted into the proper positions, the three fields are simply added
-together to form the result. This means that any integer portion of `zSig'
-will be added into the exponent. Since a properly normalized significand
-will have an integer portion equal to 1, the `zExp' input should be 1 less
-than the desired result exponent whenever `zSig' is a complete, normalized
-significand.
--------------------------------------------------------------------------------
-*/
-INLINE float32 packFloat32( flag zSign, int16 zExp, bits32 zSig )
-{
-
- return ( ( (bits32) zSign )<<31 ) + ( ( (bits32) zExp )<<23 ) + zSig;
-
-}
-
-/*
--------------------------------------------------------------------------------
-Takes an abstract floating-point value having sign `zSign', exponent `zExp',
-and significand `zSig', and returns the proper single-precision floating-
-point value corresponding to the abstract input. Ordinarily, the abstract
-value is simply rounded and packed into the single-precision format, with
-the inexact exception raised if the abstract input cannot be represented
-exactly. However, if the abstract value is too large, the overflow and
-inexact exceptions are raised and an infinity or maximal finite value is
-returned. If the abstract value is too small, the input value is rounded to
-a subnormal number, and the underflow and inexact exceptions are raised if
-the abstract input cannot be represented exactly as a subnormal single-
-precision floating-point number.
- The input significand `zSig' has its binary point between bits 30
-and 29, which is 7 bits to the left of the usual location. This shifted
-significand must be normalized or smaller. If `zSig' is not normalized,
-`zExp' must be 0; in that case, the result returned is a subnormal number,
-and it must not require rounding. In the usual case that `zSig' is
-normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
-The handling of underflow and overflow follows the IEC/IEEE Standard for
-Binary Floating-Point Arithmetic.
--------------------------------------------------------------------------------
-*/
-static float32 roundAndPackFloat32( flag zSign, int16 zExp, bits32 zSig )
-{
- int8 roundingMode;
- flag roundNearestEven;
- int8 roundIncrement, roundBits;
- flag isTiny;
-
- roundingMode = float_rounding_mode;
- roundNearestEven = roundingMode == float_round_nearest_even;
- roundIncrement = 0x40;
- if ( ! roundNearestEven ) {
- if ( roundingMode == float_round_to_zero ) {
- roundIncrement = 0;
- }
- else {
- roundIncrement = 0x7F;
- if ( zSign ) {
- if ( roundingMode == float_round_up ) roundIncrement = 0;
- }
- else {
- if ( roundingMode == float_round_down ) roundIncrement = 0;
- }
- }
- }
- roundBits = zSig & 0x7F;
- if ( 0xFD <= (bits16) zExp ) {
- if ( ( 0xFD < zExp )
- || ( ( zExp == 0xFD )
- && ( (sbits32) ( zSig + roundIncrement ) < 0 ) )
- ) {
- float_raise( float_flag_overflow | float_flag_inexact );
- return packFloat32( zSign, 0xFF, 0 ) - ( roundIncrement == 0 );
- }
- if ( zExp < 0 ) {
- isTiny =
- ( float_detect_tininess == float_tininess_before_rounding )
- || ( zExp < -1 )
- || ( zSig + roundIncrement < (uint32)0x80000000 );
- shift32RightJamming( zSig, - zExp, &zSig );
- zExp = 0;
- roundBits = zSig & 0x7F;
- if ( isTiny && roundBits ) float_raise( float_flag_underflow );
- }
- }
- if ( roundBits ) set_float_exception_inexact_flag();
- zSig = ( zSig + roundIncrement )>>7;
- zSig &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven );
- if ( zSig == 0 ) zExp = 0;
- return packFloat32( zSign, zExp, zSig );
-
-}
-
-/*
--------------------------------------------------------------------------------
-Takes an abstract floating-point value having sign `zSign', exponent `zExp',
-and significand `zSig', and returns the proper single-precision floating-
-point value corresponding to the abstract input. This routine is just like
-`roundAndPackFloat32' except that `zSig' does not have to be normalized.
-Bit 31 of `zSig' must be zero, and `zExp' must be 1 less than the ``true''
-floating-point exponent.
--------------------------------------------------------------------------------
-*/
-static float32
- normalizeRoundAndPackFloat32( flag zSign, int16 zExp, bits32 zSig )
-{
- int8 shiftCount;
-
- shiftCount = countLeadingZeros32( zSig ) - 1;
- return roundAndPackFloat32( zSign, zExp - shiftCount, zSig<<shiftCount );
-
-}
-
-/*
--------------------------------------------------------------------------------
-Returns the least-significant 32 fraction bits of the double-precision
-floating-point value `a'.
--------------------------------------------------------------------------------
-*/
-INLINE bits32 extractFloat64Frac1( float64 a )
-{
-
- return (bits32)(FLOAT64_DEMANGLE(a) & LIT64(0x00000000FFFFFFFF));
-
-}
-
-/*
--------------------------------------------------------------------------------
-Returns the most-significant 20 fraction bits of the double-precision
-floating-point value `a'.
--------------------------------------------------------------------------------
-*/
-INLINE bits32 extractFloat64Frac0( float64 a )
-{
-
- return (bits32)((FLOAT64_DEMANGLE(a) >> 32) & 0x000FFFFF);
-
-}
-
-/*
--------------------------------------------------------------------------------
-Returns the exponent bits of the double-precision floating-point value `a'.
--------------------------------------------------------------------------------
-*/
-INLINE int16 extractFloat64Exp( float64 a )
-{
-
- return (int16)((FLOAT64_DEMANGLE(a) >> 52) & 0x7FF);
-
-}
-
-/*
--------------------------------------------------------------------------------
-Returns the sign bit of the double-precision floating-point value `a'.
--------------------------------------------------------------------------------
-*/
-INLINE flag extractFloat64Sign( float64 a )
-{
-
- return (flag)(FLOAT64_DEMANGLE(a) >> 63);
-
-}
-
-/*
--------------------------------------------------------------------------------
-Normalizes the subnormal double-precision floating-point value represented
-by the denormalized significand formed by the concatenation of `aSig0' and
-`aSig1'. The normalized exponent is stored at the location pointed to by
-`zExpPtr'. The most significant 21 bits of the normalized significand are
-stored at the location pointed to by `zSig0Ptr', and the least significant
-32 bits of the normalized significand are stored at the location pointed to
-by `zSig1Ptr'.
--------------------------------------------------------------------------------
-*/
-static void
- normalizeFloat64Subnormal(
- bits32 aSig0,
- bits32 aSig1,
- int16 *zExpPtr,
- bits32 *zSig0Ptr,
- bits32 *zSig1Ptr
- )
-{
- int8 shiftCount;
-
- if ( aSig0 == 0 ) {
- shiftCount = countLeadingZeros32( aSig1 ) - 11;
- if ( shiftCount < 0 ) {
- *zSig0Ptr = aSig1>>( - shiftCount );
- *zSig1Ptr = aSig1<<( shiftCount & 31 );
- }
- else {
- *zSig0Ptr = aSig1<<shiftCount;
- *zSig1Ptr = 0;
- }
- *zExpPtr = - shiftCount - 31;
- }
- else {
- shiftCount = countLeadingZeros32( aSig0 ) - 11;
- shortShift64Left( aSig0, aSig1, shiftCount, zSig0Ptr, zSig1Ptr );
- *zExpPtr = 1 - shiftCount;
- }
-
-}
-
-/*
--------------------------------------------------------------------------------
-Packs the sign `zSign', the exponent `zExp', and the significand formed by
-the concatenation of `zSig0' and `zSig1' into a double-precision floating-
-point value, returning the result. After being shifted into the proper
-positions, the three fields `zSign', `zExp', and `zSig0' are simply added
-together to form the most significant 32 bits of the result. This means
-that any integer portion of `zSig0' will be added into the exponent. Since
-a properly normalized significand will have an integer portion equal to 1,
-the `zExp' input should be 1 less than the desired result exponent whenever
-`zSig0' and `zSig1' concatenated form a complete, normalized significand.
--------------------------------------------------------------------------------
-*/
-INLINE float64
- packFloat64( flag zSign, int16 zExp, bits32 zSig0, bits32 zSig1 )
-{
-
- return FLOAT64_MANGLE( ( ( (bits64) zSign )<<63 ) +
- ( ( (bits64) zExp )<<52 ) +
- ( ( (bits64) zSig0 )<<32 ) + zSig1 );
-
-
-}
-
-/*
--------------------------------------------------------------------------------
-Takes an abstract floating-point value having sign `zSign', exponent `zExp',
-and extended significand formed by the concatenation of `zSig0', `zSig1',
-and `zSig2', and returns the proper double-precision floating-point value
-corresponding to the abstract input. Ordinarily, the abstract value is
-simply rounded and packed into the double-precision format, with the inexact
-exception raised if the abstract input cannot be represented exactly.
-However, if the abstract value is too large, the overflow and inexact
-exceptions are raised and an infinity or maximal finite value is returned.
-If the abstract value is too small, the input value is rounded to a
-subnormal number, and the underflow and inexact exceptions are raised if the
-abstract input cannot be represented exactly as a subnormal double-precision
-floating-point number.
- The input significand must be normalized or smaller. If the input
-significand is not normalized, `zExp' must be 0; in that case, the result
-returned is a subnormal number, and it must not require rounding. In the
-usual case that the input significand is normalized, `zExp' must be 1 less
-than the ``true'' floating-point exponent. The handling of underflow and
-overflow follows the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
--------------------------------------------------------------------------------
-*/
-static float64
- roundAndPackFloat64(
- flag zSign, int16 zExp, bits32 zSig0, bits32 zSig1, bits32 zSig2 )
-{
- int8 roundingMode;
- flag roundNearestEven, increment, isTiny;
-
- roundingMode = float_rounding_mode;
- roundNearestEven = ( roundingMode == float_round_nearest_even );
- increment = ( (sbits32) zSig2 < 0 );
- if ( ! roundNearestEven ) {
- if ( roundingMode == float_round_to_zero ) {
- increment = 0;
- }
- else {
- if ( zSign ) {
- increment = ( roundingMode == float_round_down ) && zSig2;
- }
- else {
- increment = ( roundingMode == float_round_up ) && zSig2;
- }
- }
- }
- if ( 0x7FD <= (bits16) zExp ) {
- if ( ( 0x7FD < zExp )
- || ( ( zExp == 0x7FD )
- && eq64( 0x001FFFFF, 0xFFFFFFFF, zSig0, zSig1 )
- && increment
- )
- ) {
- float_raise( float_flag_overflow | float_flag_inexact );
- if ( ( roundingMode == float_round_to_zero )
- || ( zSign && ( roundingMode == float_round_up ) )
- || ( ! zSign && ( roundingMode == float_round_down ) )
- ) {
- return packFloat64( zSign, 0x7FE, 0x000FFFFF, 0xFFFFFFFF );
- }
- return packFloat64( zSign, 0x7FF, 0, 0 );
- }
- if ( zExp < 0 ) {
- isTiny =
- ( float_detect_tininess == float_tininess_before_rounding )
- || ( zExp < -1 )
- || ! increment
- || lt64( zSig0, zSig1, 0x001FFFFF, 0xFFFFFFFF );
- shift64ExtraRightJamming(
- zSig0, zSig1, zSig2, - zExp, &zSig0, &zSig1, &zSig2 );
- zExp = 0;
- if ( isTiny && zSig2 ) float_raise( float_flag_underflow );
- if ( roundNearestEven ) {
- increment = ( (sbits32) zSig2 < 0 );
- }
- else {
- if ( zSign ) {
- increment = ( roundingMode == float_round_down ) && zSig2;
- }
- else {
- increment = ( roundingMode == float_round_up ) && zSig2;
- }
- }
- }
- }
- if ( zSig2 ) set_float_exception_inexact_flag();
- if ( increment ) {
- add64( zSig0, zSig1, 0, 1, &zSig0, &zSig1 );
- zSig1 &= ~ ( ( zSig2 + zSig2 == 0 ) & roundNearestEven );
- }
- else {
- if ( ( zSig0 | zSig1 ) == 0 ) zExp = 0;
- }
- return packFloat64( zSign, zExp, zSig0, zSig1 );
-
-}
-
-/*
--------------------------------------------------------------------------------
-Takes an abstract floating-point value having sign `zSign', exponent `zExp',
-and significand formed by the concatenation of `zSig0' and `zSig1', and
-returns the proper double-precision floating-point value corresponding
-to the abstract input. This routine is just like `roundAndPackFloat64'
-except that the input significand has fewer bits and does not have to be
-normalized. In all cases, `zExp' must be 1 less than the ``true'' floating-
-point exponent.
--------------------------------------------------------------------------------
-*/
-static float64
- normalizeRoundAndPackFloat64(
- flag zSign, int16 zExp, bits32 zSig0, bits32 zSig1 )
-{
- int8 shiftCount;
- bits32 zSig2;
-
- if ( zSig0 == 0 ) {
- zSig0 = zSig1;
- zSig1 = 0;
- zExp -= 32;
- }
- shiftCount = countLeadingZeros32( zSig0 ) - 11;
- if ( 0 <= shiftCount ) {
- zSig2 = 0;
- shortShift64Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
- }
- else {
- shift64ExtraRightJamming(
- zSig0, zSig1, 0, - shiftCount, &zSig0, &zSig1, &zSig2 );
- }
- zExp -= shiftCount;
- return roundAndPackFloat64( zSign, zExp, zSig0, zSig1, zSig2 );
-
-}
-
-/*
--------------------------------------------------------------------------------
-Returns the result of converting the 32-bit two's complement integer `a' to
-the single-precision floating-point format. The conversion is performed
-according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
--------------------------------------------------------------------------------
-*/
-float32 int32_to_float32( int32 a )
-{
- flag zSign;
-
- if ( a == 0 ) return 0;
- if ( a == (sbits32) 0x80000000 ) return packFloat32( 1, 0x9E, 0 );
- zSign = ( a < 0 );
- return normalizeRoundAndPackFloat32(zSign, 0x9C, (uint32)(zSign ? - a : a));
-
-}
-
-/*
--------------------------------------------------------------------------------
-Returns the result of converting the 32-bit two's complement integer `a' to
-the double-precision floating-point format. The conversion is performed
-according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
--------------------------------------------------------------------------------
-*/
-float64 int32_to_float64( int32 a )
-{
- flag zSign;
- bits32 absA;
- int8 shiftCount;
- bits32 zSig0, zSig1;
-
- if ( a == 0 ) return packFloat64( 0, 0, 0, 0 );
- zSign = ( a < 0 );
- absA = zSign ? - a : a;
- shiftCount = countLeadingZeros32( absA ) - 11;
- if ( 0 <= shiftCount ) {
- zSig0 = absA<<shiftCount;
- zSig1 = 0;
- }
- else {
- shift64Right( absA, 0, - shiftCount, &zSig0, &zSig1 );
- }
- return packFloat64( zSign, 0x412 - shiftCount, zSig0, zSig1 );
-
-}
-
-#ifndef SOFTFLOAT_FOR_GCC
-/*
--------------------------------------------------------------------------------
-Returns the result of converting the single-precision floating-point value
-`a' to the 32-bit two's complement integer format. The conversion is
-performed according to the IEC/IEEE Standard for Binary Floating-Point
-Arithmetic---which means in particular that the conversion is rounded
-according to the current rounding mode. If `a' is a NaN, the largest
-positive integer is returned. Otherwise, if the conversion overflows, the
-largest integer with the same sign as `a' is returned.
--------------------------------------------------------------------------------
-*/
-int32 float32_to_int32( float32 a )
-{
- flag aSign;
- int16 aExp, shiftCount;
- bits32 aSig, aSigExtra;
- int32 z;
- int8 roundingMode;
-
- aSig = extractFloat32Frac( a );
- aExp = extractFloat32Exp( a );
- aSign = extractFloat32Sign( a );
- shiftCount = aExp - 0x96;
- if ( 0 <= shiftCount ) {
- if ( 0x9E <= aExp ) {
- if ( a != 0xCF000000 ) {
- float_raise( float_flag_invalid );
- if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) {
- return 0x7FFFFFFF;
- }
- }
- return (sbits32) 0x80000000;
- }
- z = ( aSig | 0x00800000 )<<shiftCount;
- if ( aSign ) z = - z;
- }
- else {
- if ( aExp < 0x7E ) {
- aSigExtra = aExp | aSig;
- z = 0;
- }
- else {
- aSig |= 0x00800000;
- aSigExtra = aSig<<( shiftCount & 31 );
- z = aSig>>( - shiftCount );
- }
- if ( aSigExtra ) set_float_exception_inexact_flag();
- roundingMode = float_rounding_mode;
- if ( roundingMode == float_round_nearest_even ) {
- if ( (sbits32) aSigExtra < 0 ) {
- ++z;
- if ( (bits32) ( aSigExtra<<1 ) == 0 ) z &= ~1;
- }
- if ( aSign ) z = - z;
- }
- else {
- aSigExtra = ( aSigExtra != 0 );
- if ( aSign ) {
- z += ( roundingMode == float_round_down ) & aSigExtra;
- z = - z;
- }
- else {
- z += ( roundingMode == float_round_up ) & aSigExtra;
- }
- }
- }
- return z;
-
-}
-#endif
-
-/*
--------------------------------------------------------------------------------
-Returns the result of converting the single-precision floating-point value
-`a' to the 32-bit two's complement integer format. The conversion is
-performed according to the IEC/IEEE Standard for Binary Floating-Point
-Arithmetic, except that the conversion is always rounded toward zero.
-If `a' is a NaN, the largest positive integer is returned. Otherwise, if
-the conversion overflows, the largest integer with the same sign as `a' is
-returned.
--------------------------------------------------------------------------------
-*/
-int32 float32_to_int32_round_to_zero( float32 a )
-{
- flag aSign;
- int16 aExp, shiftCount;
- bits32 aSig;
- int32 z;
-
- aSig = extractFloat32Frac( a );
- aExp = extractFloat32Exp( a );
- aSign = extractFloat32Sign( a );
- shiftCount = aExp - 0x9E;
- if ( 0 <= shiftCount ) {
- if ( a != 0xCF000000 ) {
- float_raise( float_flag_invalid );
- if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) return 0x7FFFFFFF;
- }
- return (sbits32) 0x80000000;
- }
- else if ( aExp <= 0x7E ) {
- if ( aExp | aSig ) set_float_exception_inexact_flag();
- return 0;
- }
- aSig = ( aSig | 0x00800000 )<<8;
- z = aSig>>( - shiftCount );
- if ( (bits32) ( aSig<<( shiftCount & 31 ) ) ) {
- set_float_exception_inexact_flag();
- }
- if ( aSign ) z = - z;
- return z;
-
-}
-
-/*
--------------------------------------------------------------------------------
-Returns the result of converting the single-precision floating-point value
-`a' to the double-precision floating-point format. The conversion is
-performed according to the IEC/IEEE Standard for Binary Floating-Point
-Arithmetic.
--------------------------------------------------------------------------------
-*/
-float64 float32_to_float64( float32 a )
-{
- flag aSign;
- int16 aExp;
- bits32 aSig, zSig0, zSig1;
-
- aSig = extractFloat32Frac( a );
- aExp = extractFloat32Exp( a );
- aSign = extractFloat32Sign( a );
- if ( aExp == 0xFF ) {
- if ( aSig ) return commonNaNToFloat64( float32ToCommonNaN( a ) );
- return packFloat64( aSign, 0x7FF, 0, 0 );
- }
- if ( aExp == 0 ) {
- if ( aSig == 0 ) return packFloat64( aSign, 0, 0, 0 );
- normalizeFloat32Subnormal( aSig, &aExp, &aSig );
- --aExp;
- }
- shift64Right( aSig, 0, 3, &zSig0, &zSig1 );
- return packFloat64( aSign, aExp + 0x380, zSig0, zSig1 );
-
-}
-
-#ifndef SOFTFLOAT_FOR_GCC
-/*
--------------------------------------------------------------------------------
-Rounds the single-precision floating-point value `a' to an integer,
-and returns the result as a single-precision floating-point value. The
-operation is performed according to the IEC/IEEE Standard for Binary
-Floating-Point Arithmetic.
--------------------------------------------------------------------------------
-*/
-float32 float32_round_to_int( float32 a )
-{
- flag aSign;
- int16 aExp;
- bits32 lastBitMask, roundBitsMask;
- int8 roundingMode;
- float32 z;
-
- aExp = extractFloat32Exp( a );
- if ( 0x96 <= aExp ) {
- if ( ( aExp == 0xFF ) && extractFloat32Frac( a ) ) {
- return propagateFloat32NaN( a, a );
- }
- return a;
- }
- if ( aExp <= 0x7E ) {
- if ( (bits32) ( a<<1 ) == 0 ) return a;
- set_float_exception_inexact_flag();
- aSign = extractFloat32Sign( a );
- switch ( float_rounding_mode ) {
- case float_round_nearest_even:
- if ( ( aExp == 0x7E ) && extractFloat32Frac( a ) ) {
- return packFloat32( aSign, 0x7F, 0 );
- }
- break;
- case float_round_to_zero:
- break;
- case float_round_down:
- return aSign ? 0xBF800000 : 0;
- case float_round_up:
- return aSign ? 0x80000000 : 0x3F800000;
- }
- return packFloat32( aSign, 0, 0 );
- }
- lastBitMask = 1;
- lastBitMask <<= 0x96 - aExp;
- roundBitsMask = lastBitMask - 1;
- z = a;
- roundingMode = float_rounding_mode;
- if ( roundingMode == float_round_nearest_even ) {
- z += lastBitMask>>1;
- if ( ( z & roundBitsMask ) == 0 ) z &= ~ lastBitMask;
- }
- else if ( roundingMode != float_round_to_zero ) {
- if ( extractFloat32Sign( z ) ^ ( roundingMode == float_round_up ) ) {
- z += roundBitsMask;
- }
- }
- z &= ~ roundBitsMask;
- if ( z != a ) set_float_exception_inexact_flag();
- return z;
-
-}
-#endif
-
-/*
--------------------------------------------------------------------------------
-Returns the result of adding the absolute values of the single-precision
-floating-point values `a' and `b'. If `zSign' is 1, the sum is negated
-before being returned. `zSign' is ignored if the result is a NaN.
-The addition is performed according to the IEC/IEEE Standard for Binary
-Floating-Point Arithmetic.
--------------------------------------------------------------------------------
-*/
-static float32 addFloat32Sigs( float32 a, float32 b, flag zSign )
-{
- int16 aExp, bExp, zExp;
- bits32 aSig, bSig, zSig;
- int16 expDiff;
-
- aSig = extractFloat32Frac( a );
- aExp = extractFloat32Exp( a );
- bSig = extractFloat32Frac( b );
- bExp = extractFloat32Exp( b );
- expDiff = aExp - bExp;
- aSig <<= 6;
- bSig <<= 6;
- if ( 0 < expDiff ) {
- if ( aExp == 0xFF ) {
- if ( aSig ) return propagateFloat32NaN( a, b );
- return a;
- }
- if ( bExp == 0 ) {
- --expDiff;
- }
- else {
- bSig |= 0x20000000;
- }
- shift32RightJamming( bSig, expDiff, &bSig );
- zExp = aExp;
- }
- else if ( expDiff < 0 ) {
- if ( bExp == 0xFF ) {
- if ( bSig ) return propagateFloat32NaN( a, b );
- return packFloat32( zSign, 0xFF, 0 );
- }
- if ( aExp == 0 ) {
- ++expDiff;
- }
- else {
- aSig |= 0x20000000;
- }
- shift32RightJamming( aSig, - expDiff, &aSig );
- zExp = bExp;
- }
- else {
- if ( aExp == 0xFF ) {
- if ( aSig | bSig ) return propagateFloat32NaN( a, b );
- return a;
- }
- if ( aExp == 0 ) return packFloat32( zSign, 0, ( aSig + bSig )>>6 );
- zSig = 0x40000000 + aSig + bSig;
- zExp = aExp;
- goto roundAndPack;
- }
- aSig |= 0x20000000;
- zSig = ( aSig + bSig )<<1;
- --zExp;
- if ( (sbits32) zSig < 0 ) {
- zSig = aSig + bSig;
- ++zExp;
- }
- roundAndPack:
- return roundAndPackFloat32( zSign, zExp, zSig );
-
-}
-
-/*
--------------------------------------------------------------------------------
-Returns the result of subtracting the absolute values of the single-
-precision floating-point values `a' and `b'. If `zSign' is 1, the
-difference is negated before being returned. `zSign' is ignored if the
-result is a NaN. The subtraction is performed according to the IEC/IEEE
-Standard for Binary Floating-Point Arithmetic.
--------------------------------------------------------------------------------
-*/
-static float32 subFloat32Sigs( float32 a, float32 b, flag zSign )
-{
- int16 aExp, bExp, zExp;
- bits32 aSig, bSig, zSig;
- int16 expDiff;
-
- aSig = extractFloat32Frac( a );
- aExp = extractFloat32Exp( a );
- bSig = extractFloat32Frac( b );
- bExp = extractFloat32Exp( b );
- expDiff = aExp - bExp;
- aSig <<= 7;
- bSig <<= 7;
- if ( 0 < expDiff ) goto aExpBigger;
- if ( expDiff < 0 ) goto bExpBigger;
- if ( aExp == 0xFF ) {
- if ( aSig | bSig ) return propagateFloat32NaN( a, b );
- float_raise( float_flag_invalid );
- return float32_default_nan;
- }
- if ( aExp == 0 ) {
- aExp = 1;
- bExp = 1;
- }
- if ( bSig < aSig ) goto aBigger;
- if ( aSig < bSig ) goto bBigger;
- return packFloat32( float_rounding_mode == float_round_down, 0, 0 );
- bExpBigger:
- if ( bExp == 0xFF ) {
- if ( bSig ) return propagateFloat32NaN( a, b );
- return packFloat32( zSign ^ 1, 0xFF, 0 );
- }
- if ( aExp == 0 ) {
- ++expDiff;
- }
- else {
- aSig |= 0x40000000;
- }
- shift32RightJamming( aSig, - expDiff, &aSig );
- bSig |= 0x40000000;
- bBigger:
- zSig = bSig - aSig;
- zExp = bExp;
- zSign ^= 1;
- goto normalizeRoundAndPack;
- aExpBigger:
- if ( aExp == 0xFF ) {
- if ( aSig ) return propagateFloat32NaN( a, b );
- return a;
- }
- if ( bExp == 0 ) {
- --expDiff;
- }
- else {
- bSig |= 0x40000000;
- }
- shift32RightJamming( bSig, expDiff, &bSig );
- aSig |= 0x40000000;
- aBigger:
- zSig = aSig - bSig;
- zExp = aExp;
- normalizeRoundAndPack:
- --zExp;
- return normalizeRoundAndPackFloat32( zSign, zExp, zSig );
-
-}
-
-/*
--------------------------------------------------------------------------------
-Returns the result of adding the single-precision floating-point values `a'
-and `b'. The operation is performed according to the IEC/IEEE Standard for
-Binary Floating-Point Arithmetic.
--------------------------------------------------------------------------------
-*/
-float32 float32_add( float32 a, float32 b )
-{
- flag aSign, bSign;
-
- aSign = extractFloat32Sign( a );
- bSign = extractFloat32Sign( b );
- if ( aSign == bSign ) {
- return addFloat32Sigs( a, b, aSign );
- }
- else {
- return subFloat32Sigs( a, b, aSign );
- }
-
-}
-
-/*
--------------------------------------------------------------------------------
-Returns the result of subtracting the single-precision floating-point values
-`a' and `b'. The operation is performed according to the IEC/IEEE Standard
-for Binary Floating-Point Arithmetic.
--------------------------------------------------------------------------------
-*/
-float32 float32_sub( float32 a, float32 b )
-{
- flag aSign, bSign;
-
- aSign = extractFloat32Sign( a );
- bSign = extractFloat32Sign( b );
- if ( aSign == bSign ) {
- return subFloat32Sigs( a, b, aSign );
- }
- else {
- return addFloat32Sigs( a, b, aSign );
- }
-
-}
-
-/*
--------------------------------------------------------------------------------
-Returns the result of multiplying the single-precision floating-point values
-`a' and `b'. The operation is performed according to the IEC/IEEE Standard
-for Binary Floating-Point Arithmetic.
--------------------------------------------------------------------------------
-*/
-float32 float32_mul( float32 a, float32 b )
-{
- flag aSign, bSign, zSign;
- int16 aExp, bExp, zExp;
- bits32 aSig, bSig, zSig0, zSig1;
-
- aSig = extractFloat32Frac( a );
- aExp = extractFloat32Exp( a );
- aSign = extractFloat32Sign( a );
- bSig = extractFloat32Frac( b );
- bExp = extractFloat32Exp( b );
- bSign = extractFloat32Sign( b );
- zSign = aSign ^ bSign;
- if ( aExp == 0xFF ) {
- if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) {
- return propagateFloat32NaN( a, b );
- }
- if ( ( bExp | bSig ) == 0 ) {
- float_raise( float_flag_invalid );
- return float32_default_nan;
- }
- return packFloat32( zSign, 0xFF, 0 );
- }
- if ( bExp == 0xFF ) {
- if ( bSig ) return propagateFloat32NaN( a, b );
- if ( ( aExp | aSig ) == 0 ) {
- float_raise( float_flag_invalid );
- return float32_default_nan;
- }
- return packFloat32( zSign, 0xFF, 0 );
- }
- if ( aExp == 0 ) {
- if ( aSig == 0 ) return packFloat32( zSign, 0, 0 );
- normalizeFloat32Subnormal( aSig, &aExp, &aSig );
- }
- if ( bExp == 0 ) {
- if ( bSig == 0 ) return packFloat32( zSign, 0, 0 );
- normalizeFloat32Subnormal( bSig, &bExp, &bSig );
- }
- zExp = aExp + bExp - 0x7F;
- aSig = ( aSig | 0x00800000 )<<7;
- bSig = ( bSig | 0x00800000 )<<8;
- mul32To64( aSig, bSig, &zSig0, &zSig1 );
- zSig0 |= ( zSig1 != 0 );
- if ( 0 <= (sbits32) ( zSig0<<1 ) ) {
- zSig0 <<= 1;
- --zExp;
- }
- return roundAndPackFloat32( zSign, zExp, zSig0 );
-
-}
-
-/*
--------------------------------------------------------------------------------
-Returns the result of dividing the single-precision floating-point value `a'
-by the corresponding value `b'. The operation is performed according to the
-IEC/IEEE Standard for Binary Floating-Point Arithmetic.
--------------------------------------------------------------------------------
-*/
-float32 float32_div( float32 a, float32 b )
-{
- flag aSign, bSign, zSign;
- int16 aExp, bExp, zExp;
- bits32 aSig, bSig, zSig, rem0, rem1, term0, term1;
-
- aSig = extractFloat32Frac( a );
- aExp = extractFloat32Exp( a );
- aSign = extractFloat32Sign( a );
- bSig = extractFloat32Frac( b );
- bExp = extractFloat32Exp( b );
- bSign = extractFloat32Sign( b );
- zSign = aSign ^ bSign;
- if ( aExp == 0xFF ) {
- if ( aSig ) return propagateFloat32NaN( a, b );
- if ( bExp == 0xFF ) {
- if ( bSig ) return propagateFloat32NaN( a, b );
- float_raise( float_flag_invalid );
- return float32_default_nan;
- }
- return packFloat32( zSign, 0xFF, 0 );
- }
- if ( bExp == 0xFF ) {
- if ( bSig ) return propagateFloat32NaN( a, b );
- return packFloat32( zSign, 0, 0 );
- }
- if ( bExp == 0 ) {
- if ( bSig == 0 ) {
- if ( ( aExp | aSig ) == 0 ) {
- float_raise( float_flag_invalid );
- return float32_default_nan;
- }
- float_raise( float_flag_divbyzero );
- return packFloat32( zSign, 0xFF, 0 );
- }
- normalizeFloat32Subnormal( bSig, &bExp, &bSig );
- }
- if ( aExp == 0 ) {
- if ( aSig == 0 ) return packFloat32( zSign, 0, 0 );
- normalizeFloat32Subnormal( aSig, &aExp, &aSig );
- }
- zExp = aExp - bExp + 0x7D;
- aSig = ( aSig | 0x00800000 )<<7;
- bSig = ( bSig | 0x00800000 )<<8;
- if ( bSig <= ( aSig + aSig ) ) {
- aSig >>= 1;
- ++zExp;
- }
- zSig = estimateDiv64To32( aSig, 0, bSig );
- if ( ( zSig & 0x3F ) <= 2 ) {
- mul32To64( bSig, zSig, &term0, &term1 );
- sub64( aSig, 0, term0, term1, &rem0, &rem1 );
- while ( (sbits32) rem0 < 0 ) {
- --zSig;
- add64( rem0, rem1, 0, bSig, &rem0, &rem1 );
- }
- zSig |= ( rem1 != 0 );
- }
- return roundAndPackFloat32( zSign, zExp, zSig );
-
-}
-
-#ifndef SOFTFLOAT_FOR_GCC
-/*
--------------------------------------------------------------------------------
-Returns the remainder of the single-precision floating-point value `a'
-with respect to the corresponding value `b'. The operation is performed
-according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
--------------------------------------------------------------------------------
-*/
-float32 float32_rem( float32 a, float32 b )
-{
- flag aSign, bSign, zSign;
- int16 aExp, bExp, expDiff;
- bits32 aSig, bSig, q, allZero, alternateASig;
- sbits32 sigMean;
-
- aSig = extractFloat32Frac( a );
- aExp = extractFloat32Exp( a );
- aSign = extractFloat32Sign( a );
- bSig = extractFloat32Frac( b );
- bExp = extractFloat32Exp( b );
- bSign = extractFloat32Sign( b );
- if ( aExp == 0xFF ) {
- if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) {
- return propagateFloat32NaN( a, b );
- }
- float_raise( float_flag_invalid );
- return float32_default_nan;
- }
- if ( bExp == 0xFF ) {
- if ( bSig ) return propagateFloat32NaN( a, b );
- return a;
- }
- if ( bExp == 0 ) {
- if ( bSig == 0 ) {
- float_raise( float_flag_invalid );
- return float32_default_nan;
- }
- normalizeFloat32Subnormal( bSig, &bExp, &bSig );
- }
- if ( aExp == 0 ) {
- if ( aSig == 0 ) return a;
- normalizeFloat32Subnormal( aSig, &aExp, &aSig );
- }
- expDiff = aExp - bExp;
- aSig = ( aSig | 0x00800000 )<<8;
- bSig = ( bSig | 0x00800000 )<<8;
- if ( expDiff < 0 ) {
- if ( expDiff < -1 ) return a;
- aSig >>= 1;
- }
- q = ( bSig <= aSig );
- if ( q ) aSig -= bSig;
- expDiff -= 32;
- while ( 0 < expDiff ) {
- q = estimateDiv64To32( aSig, 0, bSig );
- q = ( 2 < q ) ? q - 2 : 0;
- aSig = - ( ( bSig>>2 ) * q );
- expDiff -= 30;
- }
- expDiff += 32;
- if ( 0 < expDiff ) {
- q = estimateDiv64To32( aSig, 0, bSig );
- q = ( 2 < q ) ? q - 2 : 0;
- q >>= 32 - expDiff;
- bSig >>= 2;
- aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q;
- }
- else {
- aSig >>= 2;
- bSig >>= 2;
- }
- do {
- alternateASig = aSig;
- ++q;
- aSig -= bSig;
- } while ( 0 <= (sbits32) aSig );
- sigMean = aSig + alternateASig;
- if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) {
- aSig = alternateASig;
- }
- zSign = ( (sbits32) aSig < 0 );
- if ( zSign ) aSig = - aSig;
- return normalizeRoundAndPackFloat32( aSign ^ zSign, bExp, aSig );
-
-}
-#endif
-
-#ifndef SOFTFLOAT_FOR_GCC
-/*
--------------------------------------------------------------------------------
-Returns the square root of the single-precision floating-point value `a'.
-The operation is performed according to the IEC/IEEE Standard for Binary
-Floating-Point Arithmetic.
--------------------------------------------------------------------------------
-*/
-float32 float32_sqrt( float32 a )
-{
- flag aSign;
- int16 aExp, zExp;
- bits32 aSig, zSig, rem0, rem1, term0, term1;
-
- aSig = extractFloat32Frac( a );
- aExp = extractFloat32Exp( a );
- aSign = extractFloat32Sign( a );
- if ( aExp == 0xFF ) {
- if ( aSig ) return propagateFloat32NaN( a, 0 );
- if ( ! aSign ) return a;
- float_raise( float_flag_invalid );
- return float32_default_nan;
- }
- if ( aSign ) {
- if ( ( aExp | aSig ) == 0 ) return a;
- float_raise( float_flag_invalid );
- return float32_default_nan;
- }
- if ( aExp == 0 ) {
- if ( aSig == 0 ) return 0;
- normalizeFloat32Subnormal( aSig, &aExp, &aSig );
- }
- zExp = ( ( aExp - 0x7F )>>1 ) + 0x7E;
- aSig = ( aSig | 0x00800000 )<<8;
- zSig = estimateSqrt32( aExp, aSig ) + 2;
- if ( ( zSig & 0x7F ) <= 5 ) {
- if ( zSig < 2 ) {
- zSig = 0x7FFFFFFF;
- goto roundAndPack;
- }
- else {
- aSig >>= aExp & 1;
- mul32To64( zSig, zSig, &term0, &term1 );
- sub64( aSig, 0, term0, term1, &rem0, &rem1 );
- while ( (sbits32) rem0 < 0 ) {
- --zSig;
- shortShift64Left( 0, zSig, 1, &term0, &term1 );
- term1 |= 1;
- add64( rem0, rem1, term0, term1, &rem0, &rem1 );
- }
- zSig |= ( ( rem0 | rem1 ) != 0 );
- }
- }
- shift32RightJamming( zSig, 1, &zSig );
- roundAndPack:
- return roundAndPackFloat32( 0, zExp, zSig );
-
-}
-#endif
-
-/*
--------------------------------------------------------------------------------
-Returns 1 if the single-precision floating-point value `a' is equal to
-the corresponding value `b', and 0 otherwise. The comparison is performed
-according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
--------------------------------------------------------------------------------
-*/
-flag float32_eq( float32 a, float32 b )
-{
-
- if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
- || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
- ) {
- if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) {
- float_raise( float_flag_invalid );
- }
- return 0;
- }
- return ( a == b ) || ( (bits32) ( ( a | b )<<1 ) == 0 );
-
-}
-
-/*
--------------------------------------------------------------------------------
-Returns 1 if the single-precision floating-point value `a' is less than
-or equal to the corresponding value `b', and 0 otherwise. The comparison
-is performed according to the IEC/IEEE Standard for Binary Floating-Point
-Arithmetic.
--------------------------------------------------------------------------------
-*/
-flag float32_le( float32 a, float32 b )
-{
- flag aSign, bSign;
-
- if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
- || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
- ) {
- float_raise( float_flag_invalid );
- return 0;
- }
- aSign = extractFloat32Sign( a );
- bSign = extractFloat32Sign( b );
- if ( aSign != bSign ) return aSign || ( (bits32) ( ( a | b )<<1 ) == 0 );
- return ( a == b ) || ( aSign ^ ( a < b ) );
-
-}
-
-/*
--------------------------------------------------------------------------------
-Returns 1 if the single-precision floating-point value `a' is less than
-the corresponding value `b', and 0 otherwise. The comparison is performed
-according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
--------------------------------------------------------------------------------
-*/
-flag float32_lt( float32 a, float32 b )
-{
- flag aSign, bSign;
-
- if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
- || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
- ) {
- float_raise( float_flag_invalid );
- return 0;
- }
- aSign = extractFloat32Sign( a );
- bSign = extractFloat32Sign( b );
- if ( aSign != bSign ) return aSign && ( (bits32) ( ( a | b )<<1 ) != 0 );
- return ( a != b ) && ( aSign ^ ( a < b ) );
-
-}
-
-#ifndef SOFTFLOAT_FOR_GCC /* Not needed */
-/*
--------------------------------------------------------------------------------
-Returns 1 if the single-precision floating-point value `a' is equal to
-the corresponding value `b', and 0 otherwise. The invalid exception is
-raised if either operand is a NaN. Otherwise, the comparison is performed
-according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
--------------------------------------------------------------------------------
-*/
-flag float32_eq_signaling( float32 a, float32 b )
-{
-
- if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
- || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
- ) {
- float_raise( float_flag_invalid );
- return 0;
- }
- return ( a == b ) || ( (bits32) ( ( a | b )<<1 ) == 0 );
-
-}
-
-/*
--------------------------------------------------------------------------------
-Returns 1 if the single-precision floating-point value `a' is less than or
-equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not
-cause an exception. Otherwise, the comparison is performed according to the
-IEC/IEEE Standard for Binary Floating-Point Arithmetic.
--------------------------------------------------------------------------------
-*/
-flag float32_le_quiet( float32 a, float32 b )
-{
- flag aSign, bSign;
- int16 aExp, bExp;
-
- if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
- || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
- ) {
- if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) {
- float_raise( float_flag_invalid );
- }
- return 0;
- }
- aSign = extractFloat32Sign( a );
- bSign = extractFloat32Sign( b );
- if ( aSign != bSign ) return aSign || ( (bits32) ( ( a | b )<<1 ) == 0 );
- return ( a == b ) || ( aSign ^ ( a < b ) );
-
-}
-
-/*
--------------------------------------------------------------------------------
-Returns 1 if the single-precision floating-point value `a' is less than
-the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an
-exception. Otherwise, the comparison is performed according to the IEC/IEEE
-Standard for Binary Floating-Point Arithmetic.
--------------------------------------------------------------------------------
-*/
-flag float32_lt_quiet( float32 a, float32 b )
-{
- flag aSign, bSign;
-
- if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
- || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
- ) {
- if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) {
- float_raise( float_flag_invalid );
- }
- return 0;
- }
- aSign = extractFloat32Sign( a );
- bSign = extractFloat32Sign( b );
- if ( aSign != bSign ) return aSign && ( (bits32) ( ( a | b )<<1 ) != 0 );
- return ( a != b ) && ( aSign ^ ( a < b ) );
-
-}
-#endif /* !SOFTFLOAT_FOR_GCC */
-
-#ifndef SOFTFLOAT_FOR_GCC /* Not needed */
-/*
--------------------------------------------------------------------------------
-Returns the result of converting the double-precision floating-point value
-`a' to the 32-bit two's complement integer format. The conversion is
-performed according to the IEC/IEEE Standard for Binary Floating-Point
-Arithmetic---which means in particular that the conversion is rounded
-according to the current rounding mode. If `a' is a NaN, the largest
-positive integer is returned. Otherwise, if the conversion overflows, the
-largest integer with the same sign as `a' is returned.
--------------------------------------------------------------------------------
-*/
-int32 float64_to_int32( float64 a )
-{
- flag aSign;
- int16 aExp, shiftCount;
- bits32 aSig0, aSig1, absZ, aSigExtra;
- int32 z;
- int8 roundingMode;
-
- aSig1 = extractFloat64Frac1( a );
- aSig0 = extractFloat64Frac0( a );
- aExp = extractFloat64Exp( a );
- aSign = extractFloat64Sign( a );
- shiftCount = aExp - 0x413;
- if ( 0 <= shiftCount ) {
- if ( 0x41E < aExp ) {
- if ( ( aExp == 0x7FF ) && ( aSig0 | aSig1 ) ) aSign = 0;
- goto invalid;
- }
- shortShift64Left(
- aSig0 | 0x00100000, aSig1, shiftCount, &absZ, &aSigExtra );
- if ( 0x80000000 < absZ ) goto invalid;
- }
- else {
- aSig1 = ( aSig1 != 0 );
- if ( aExp < 0x3FE ) {
- aSigExtra = aExp | aSig0 | aSig1;
- absZ = 0;
- }
- else {
- aSig0 |= 0x00100000;
- aSigExtra = ( aSig0<<( shiftCount & 31 ) ) | aSig1;
- absZ = aSig0>>( - shiftCount );
- }
- }
- roundingMode = float_rounding_mode;
- if ( roundingMode == float_round_nearest_even ) {
- if ( (sbits32) aSigExtra < 0 ) {
- ++absZ;
- if ( (bits32) ( aSigExtra<<1 ) == 0 ) absZ &= ~1;
- }
- z = aSign ? - absZ : absZ;
- }
- else {
- aSigExtra = ( aSigExtra != 0 );
- if ( aSign ) {
- z = - ( absZ
- + ( ( roundingMode == float_round_down ) & aSigExtra ) );
- }
- else {
- z = absZ + ( ( roundingMode == float_round_up ) & aSigExtra );
- }
- }
- if ( ( aSign ^ ( z < 0 ) ) && z ) {
- invalid:
- float_raise( float_flag_invalid );
- return aSign ? (sbits32) 0x80000000 : 0x7FFFFFFF;
- }
- if ( aSigExtra ) set_float_exception_inexact_flag();
- return z;
-
-}
-#endif /* !SOFTFLOAT_FOR_GCC */
-
-/*
--------------------------------------------------------------------------------
-Returns the result of converting the double-precision floating-point value
-`a' to the 32-bit two's complement integer format. The conversion is
-performed according to the IEC/IEEE Standard for Binary Floating-Point
-Arithmetic, except that the conversion is always rounded toward zero.
-If `a' is a NaN, the largest positive integer is returned. Otherwise, if
-the conversion overflows, the largest integer with the same sign as `a' is
-returned.
--------------------------------------------------------------------------------
-*/
-int32 float64_to_int32_round_to_zero( float64 a )
-{
- flag aSign;
- int16 aExp, shiftCount;
- bits32 aSig0, aSig1, absZ, aSigExtra;
- int32 z;
-
- aSig1 = extractFloat64Frac1( a );
- aSig0 = extractFloat64Frac0( a );
- aExp = extractFloat64Exp( a );
- aSign = extractFloat64Sign( a );
- shiftCount = aExp - 0x413;
- if ( 0 <= shiftCount ) {
- if ( 0x41E < aExp ) {
- if ( ( aExp == 0x7FF ) && ( aSig0 | aSig1 ) ) aSign = 0;
- goto invalid;
- }
- shortShift64Left(
- aSig0 | 0x00100000, aSig1, shiftCount, &absZ, &aSigExtra );
- }
- else {
- if ( aExp < 0x3FF ) {
- if ( aExp | aSig0 | aSig1 ) {
- set_float_exception_inexact_flag();
- }
- return 0;
- }
- aSig0 |= 0x00100000;
- aSigExtra = ( aSig0<<( shiftCount & 31 ) ) | aSig1;
- absZ = aSig0>>( - shiftCount );
- }
- z = aSign ? - absZ : absZ;
- if ( ( aSign ^ ( z < 0 ) ) && z ) {
- invalid:
- float_raise( float_flag_invalid );
- return aSign ? (sbits32) 0x80000000 : 0x7FFFFFFF;
- }
- if ( aSigExtra ) set_float_exception_inexact_flag();
- return z;
-
-}
-
-/*
--------------------------------------------------------------------------------
-Returns the result of converting the double-precision floating-point value
-`a' to the single-precision floating-point format. The conversion is
-performed according to the IEC/IEEE Standard for Binary Floating-Point
-Arithmetic.
--------------------------------------------------------------------------------
-*/
-float32 float64_to_float32( float64 a )
-{
- flag aSign;
- int16 aExp;
- bits32 aSig0, aSig1, zSig;
- bits32 allZero;
-
- aSig1 = extractFloat64Frac1( a );
- aSig0 = extractFloat64Frac0( a );
- aExp = extractFloat64Exp( a );
- aSign = extractFloat64Sign( a );
- if ( aExp == 0x7FF ) {
- if ( aSig0 | aSig1 ) {
- return commonNaNToFloat32( float64ToCommonNaN( a ) );
- }
- return packFloat32( aSign, 0xFF, 0 );
- }
- shift64RightJamming( aSig0, aSig1, 22, &allZero, &zSig );
- if ( aExp ) zSig |= 0x40000000;
- return roundAndPackFloat32( aSign, aExp - 0x381, zSig );
-
-}
-
-#ifndef SOFTFLOAT_FOR_GCC
-/*
--------------------------------------------------------------------------------
-Rounds the double-precision floating-point value `a' to an integer,
-and returns the result as a double-precision floating-point value. The
-operation is performed according to the IEC/IEEE Standard for Binary
-Floating-Point Arithmetic.
--------------------------------------------------------------------------------
-*/
-float64 float64_round_to_int( float64 a )
-{
- flag aSign;
- int16 aExp;
- bits32 lastBitMask, roundBitsMask;
- int8 roundingMode;
- float64 z;
-
- aExp = extractFloat64Exp( a );
- if ( 0x413 <= aExp ) {
- if ( 0x433 <= aExp ) {
- if ( ( aExp == 0x7FF )
- && ( extractFloat64Frac0( a ) | extractFloat64Frac1( a ) ) ) {
- return propagateFloat64NaN( a, a );
- }
- return a;
- }
- lastBitMask = 1;
- lastBitMask = ( lastBitMask<<( 0x432 - aExp ) )<<1;
- roundBitsMask = lastBitMask - 1;
- z = a;
- roundingMode = float_rounding_mode;
- if ( roundingMode == float_round_nearest_even ) {
- if ( lastBitMask ) {
- add64( z.high, z.low, 0, lastBitMask>>1, &z.high, &z.low );
- if ( ( z.low & roundBitsMask ) == 0 ) z.low &= ~ lastBitMask;
- }
- else {
- if ( (sbits32) z.low < 0 ) {
- ++z.high;
- if ( (bits32) ( z.low<<1 ) == 0 ) z.high &= ~1;
- }
- }
- }
- else if ( roundingMode != float_round_to_zero ) {
- if ( extractFloat64Sign( z )
- ^ ( roundingMode == float_round_up ) ) {
- add64( z.high, z.low, 0, roundBitsMask, &z.high, &z.low );
- }
- }
- z.low &= ~ roundBitsMask;
- }
- else {
- if ( aExp <= 0x3FE ) {
- if ( ( ( (bits32) ( a.high<<1 ) ) | a.low ) == 0 ) return a;
- set_float_exception_inexact_flag();
- aSign = extractFloat64Sign( a );
- switch ( float_rounding_mode ) {
- case float_round_nearest_even:
- if ( ( aExp == 0x3FE )
- && ( extractFloat64Frac0( a ) | extractFloat64Frac1( a ) )
- ) {
- return packFloat64( aSign, 0x3FF, 0, 0 );
- }
- break;
- case float_round_down:
- return
- aSign ? packFloat64( 1, 0x3FF, 0, 0 )
- : packFloat64( 0, 0, 0, 0 );
- case float_round_up:
- return
- aSign ? packFloat64( 1, 0, 0, 0 )
- : packFloat64( 0, 0x3FF, 0, 0 );
- }
- return packFloat64( aSign, 0, 0, 0 );
- }
- lastBitMask = 1;
- lastBitMask <<= 0x413 - aExp;
- roundBitsMask = lastBitMask - 1;
- z.low = 0;
- z.high = a.high;
- roundingMode = float_rounding_mode;
- if ( roundingMode == float_round_nearest_even ) {
- z.high += lastBitMask>>1;
- if ( ( ( z.high & roundBitsMask ) | a.low ) == 0 ) {
- z.high &= ~ lastBitMask;
- }
- }
- else if ( roundingMode != float_round_to_zero ) {
- if ( extractFloat64Sign( z )
- ^ ( roundingMode == float_round_up ) ) {
- z.high |= ( a.low != 0 );
- z.high += roundBitsMask;
- }
- }
- z.high &= ~ roundBitsMask;
- }
- if ( ( z.low != a.low ) || ( z.high != a.high ) ) {
- set_float_exception_inexact_flag();
- }
- return z;
-
-}
-#endif
-
-/*
--------------------------------------------------------------------------------
-Returns the result of adding the absolute values of the double-precision
-floating-point values `a' and `b'. If `zSign' is 1, the sum is negated
-before being returned. `zSign' is ignored if the result is a NaN.
-The addition is performed according to the IEC/IEEE Standard for Binary
-Floating-Point Arithmetic.
--------------------------------------------------------------------------------
-*/
-static float64 addFloat64Sigs( float64 a, float64 b, flag zSign )
-{
- int16 aExp, bExp, zExp;
- bits32 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2;
- int16 expDiff;
-
- aSig1 = extractFloat64Frac1( a );
- aSig0 = extractFloat64Frac0( a );
- aExp = extractFloat64Exp( a );
- bSig1 = extractFloat64Frac1( b );
- bSig0 = extractFloat64Frac0( b );
- bExp = extractFloat64Exp( b );
- expDiff = aExp - bExp;
- if ( 0 < expDiff ) {
- if ( aExp == 0x7FF ) {
- if ( aSig0 | aSig1 ) return propagateFloat64NaN( a, b );
- return a;
- }
- if ( bExp == 0 ) {
- --expDiff;
- }
- else {
- bSig0 |= 0x00100000;
- }
- shift64ExtraRightJamming(
- bSig0, bSig1, 0, expDiff, &bSig0, &bSig1, &zSig2 );
- zExp = aExp;
- }
- else if ( expDiff < 0 ) {
- if ( bExp == 0x7FF ) {
- if ( bSig0 | bSig1 ) return propagateFloat64NaN( a, b );
- return packFloat64( zSign, 0x7FF, 0, 0 );
- }
- if ( aExp == 0 ) {
- ++expDiff;
- }
- else {
- aSig0 |= 0x00100000;
- }
- shift64ExtraRightJamming(
- aSig0, aSig1, 0, - expDiff, &aSig0, &aSig1, &zSig2 );
- zExp = bExp;
- }
- else {
- if ( aExp == 0x7FF ) {
- if ( aSig0 | aSig1 | bSig0 | bSig1 ) {
- return propagateFloat64NaN( a, b );
- }
- return a;
- }
- add64( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
- if ( aExp == 0 ) return packFloat64( zSign, 0, zSig0, zSig1 );
- zSig2 = 0;
- zSig0 |= 0x00200000;
- zExp = aExp;
- goto shiftRight1;
- }
- aSig0 |= 0x00100000;
- add64( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
- --zExp;
- if ( zSig0 < 0x00200000 ) goto roundAndPack;
- ++zExp;
- shiftRight1:
- shift64ExtraRightJamming( zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 );
- roundAndPack:
- return roundAndPackFloat64( zSign, zExp, zSig0, zSig1, zSig2 );
-
-}
-
-/*
--------------------------------------------------------------------------------
-Returns the result of subtracting the absolute values of the double-
-precision floating-point values `a' and `b'. If `zSign' is 1, the
-difference is negated before being returned. `zSign' is ignored if the
-result is a NaN. The subtraction is performed according to the IEC/IEEE
-Standard for Binary Floating-Point Arithmetic.
--------------------------------------------------------------------------------
-*/
-static float64 subFloat64Sigs( float64 a, float64 b, flag zSign )
-{
- int16 aExp, bExp, zExp;
- bits32 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1;
- int16 expDiff;
-
- aSig1 = extractFloat64Frac1( a );
- aSig0 = extractFloat64Frac0( a );
- aExp = extractFloat64Exp( a );
- bSig1 = extractFloat64Frac1( b );
- bSig0 = extractFloat64Frac0( b );
- bExp = extractFloat64Exp( b );
- expDiff = aExp - bExp;
- shortShift64Left( aSig0, aSig1, 10, &aSig0, &aSig1 );
- shortShift64Left( bSig0, bSig1, 10, &bSig0, &bSig1 );
- if ( 0 < expDiff ) goto aExpBigger;
- if ( expDiff < 0 ) goto bExpBigger;
- if ( aExp == 0x7FF ) {
- if ( aSig0 | aSig1 | bSig0 | bSig1 ) {
- return propagateFloat64NaN( a, b );
- }
- float_raise( float_flag_invalid );
- return float64_default_nan;
- }
- if ( aExp == 0 ) {
- aExp = 1;
- bExp = 1;
- }
- if ( bSig0 < aSig0 ) goto aBigger;
- if ( aSig0 < bSig0 ) goto bBigger;
- if ( bSig1 < aSig1 ) goto aBigger;
- if ( aSig1 < bSig1 ) goto bBigger;
- return packFloat64( float_rounding_mode == float_round_down, 0, 0, 0 );
- bExpBigger:
- if ( bExp == 0x7FF ) {
- if ( bSig0 | bSig1 ) return propagateFloat64NaN( a, b );
- return packFloat64( zSign ^ 1, 0x7FF, 0, 0 );
- }
- if ( aExp == 0 ) {
- ++expDiff;
- }
- else {
- aSig0 |= 0x40000000;
- }
- shift64RightJamming( aSig0, aSig1, - expDiff, &aSig0, &aSig1 );
- bSig0 |= 0x40000000;
- bBigger:
- sub64( bSig0, bSig1, aSig0, aSig1, &zSig0, &zSig1 );
- zExp = bExp;
- zSign ^= 1;
- goto normalizeRoundAndPack;
- aExpBigger:
- if ( aExp == 0x7FF ) {
- if ( aSig0 | aSig1 ) return propagateFloat64NaN( a, b );
- return a;
- }
- if ( bExp == 0 ) {
- --expDiff;
- }
- else {
- bSig0 |= 0x40000000;
- }
- shift64RightJamming( bSig0, bSig1, expDiff, &bSig0, &bSig1 );
- aSig0 |= 0x40000000;
- aBigger:
- sub64( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
- zExp = aExp;
- normalizeRoundAndPack:
- --zExp;
- return normalizeRoundAndPackFloat64( zSign, zExp - 10, zSig0, zSig1 );
-
-}
-
-/*
--------------------------------------------------------------------------------
-Returns the result of adding the double-precision floating-point values `a'
-and `b'. The operation is performed according to the IEC/IEEE Standard for
-Binary Floating-Point Arithmetic.
--------------------------------------------------------------------------------
-*/
-float64 float64_add( float64 a, float64 b )
-{
- flag aSign, bSign;
-
- aSign = extractFloat64Sign( a );
- bSign = extractFloat64Sign( b );
- if ( aSign == bSign ) {
- return addFloat64Sigs( a, b, aSign );
- }
- else {
- return subFloat64Sigs( a, b, aSign );
- }
-
-}
-
-/*
--------------------------------------------------------------------------------
-Returns the result of subtracting the double-precision floating-point values
-`a' and `b'. The operation is performed according to the IEC/IEEE Standard
-for Binary Floating-Point Arithmetic.
--------------------------------------------------------------------------------
-*/
-float64 float64_sub( float64 a, float64 b )
-{
- flag aSign, bSign;
-
- aSign = extractFloat64Sign( a );
- bSign = extractFloat64Sign( b );
- if ( aSign == bSign ) {
- return subFloat64Sigs( a, b, aSign );
- }
- else {
- return addFloat64Sigs( a, b, aSign );
- }
-
-}
-
-/*
--------------------------------------------------------------------------------
-Returns the result of multiplying the double-precision floating-point values
-`a' and `b'. The operation is performed according to the IEC/IEEE Standard
-for Binary Floating-Point Arithmetic.
--------------------------------------------------------------------------------
-*/
-float64 float64_mul( float64 a, float64 b )
-{
- flag aSign, bSign, zSign;
- int16 aExp, bExp, zExp;
- bits32 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2, zSig3;
-
- aSig1 = extractFloat64Frac1( a );
- aSig0 = extractFloat64Frac0( a );
- aExp = extractFloat64Exp( a );
- aSign = extractFloat64Sign( a );
- bSig1 = extractFloat64Frac1( b );
- bSig0 = extractFloat64Frac0( b );
- bExp = extractFloat64Exp( b );
- bSign = extractFloat64Sign( b );
- zSign = aSign ^ bSign;
- if ( aExp == 0x7FF ) {
- if ( ( aSig0 | aSig1 )
- || ( ( bExp == 0x7FF ) && ( bSig0 | bSig1 ) ) ) {
- return propagateFloat64NaN( a, b );
- }
- if ( ( bExp | bSig0 | bSig1 ) == 0 ) goto invalid;
- return packFloat64( zSign, 0x7FF, 0, 0 );
- }
- if ( bExp == 0x7FF ) {
- if ( bSig0 | bSig1 ) return propagateFloat64NaN( a, b );
- if ( ( aExp | aSig0 | aSig1 ) == 0 ) {
- invalid:
- float_raise( float_flag_invalid );
- return float64_default_nan;
- }
- return packFloat64( zSign, 0x7FF, 0, 0 );
- }
- if ( aExp == 0 ) {
- if ( ( aSig0 | aSig1 ) == 0 ) return packFloat64( zSign, 0, 0, 0 );
- normalizeFloat64Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
- }
- if ( bExp == 0 ) {
- if ( ( bSig0 | bSig1 ) == 0 ) return packFloat64( zSign, 0, 0, 0 );
- normalizeFloat64Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
- }
- zExp = aExp + bExp - 0x400;
- aSig0 |= 0x00100000;
- shortShift64Left( bSig0, bSig1, 12, &bSig0, &bSig1 );
- mul64To128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1, &zSig2, &zSig3 );
- add64( zSig0, zSig1, aSig0, aSig1, &zSig0, &zSig1 );
- zSig2 |= ( zSig3 != 0 );
- if ( 0x00200000 <= zSig0 ) {
- shift64ExtraRightJamming(
- zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 );
- ++zExp;
- }
- return roundAndPackFloat64( zSign, zExp, zSig0, zSig1, zSig2 );
-
-}
-
-/*
--------------------------------------------------------------------------------
-Returns the result of dividing the double-precision floating-point value `a'
-by the corresponding value `b'. The operation is performed according to the
-IEC/IEEE Standard for Binary Floating-Point Arithmetic.
--------------------------------------------------------------------------------
-*/
-float64 float64_div( float64 a, float64 b )
-{
- flag aSign, bSign, zSign;
- int16 aExp, bExp, zExp;
- bits32 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2;
- bits32 rem0, rem1, rem2, rem3, term0, term1, term2, term3;
-
- aSig1 = extractFloat64Frac1( a );
- aSig0 = extractFloat64Frac0( a );
- aExp = extractFloat64Exp( a );
- aSign = extractFloat64Sign( a );
- bSig1 = extractFloat64Frac1( b );
- bSig0 = extractFloat64Frac0( b );
- bExp = extractFloat64Exp( b );
- bSign = extractFloat64Sign( b );
- zSign = aSign ^ bSign;
- if ( aExp == 0x7FF ) {
- if ( aSig0 | aSig1 ) return propagateFloat64NaN( a, b );
- if ( bExp == 0x7FF ) {
- if ( bSig0 | bSig1 ) return propagateFloat64NaN( a, b );
- goto invalid;
- }
- return packFloat64( zSign, 0x7FF, 0, 0 );
- }
- if ( bExp == 0x7FF ) {
- if ( bSig0 | bSig1 ) return propagateFloat64NaN( a, b );
- return packFloat64( zSign, 0, 0, 0 );
- }
- if ( bExp == 0 ) {
- if ( ( bSig0 | bSig1 ) == 0 ) {
- if ( ( aExp | aSig0 | aSig1 ) == 0 ) {
- invalid:
- float_raise( float_flag_invalid );
- return float64_default_nan;
- }
- float_raise( float_flag_divbyzero );
- return packFloat64( zSign, 0x7FF, 0, 0 );
- }
- normalizeFloat64Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
- }
- if ( aExp == 0 ) {
- if ( ( aSig0 | aSig1 ) == 0 ) return packFloat64( zSign, 0, 0, 0 );
- normalizeFloat64Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
- }
- zExp = aExp - bExp + 0x3FD;
- shortShift64Left( aSig0 | 0x00100000, aSig1, 11, &aSig0, &aSig1 );
- shortShift64Left( bSig0 | 0x00100000, bSig1, 11, &bSig0, &bSig1 );
- if ( le64( bSig0, bSig1, aSig0, aSig1 ) ) {
- shift64Right( aSig0, aSig1, 1, &aSig0, &aSig1 );
- ++zExp;
- }
- zSig0 = estimateDiv64To32( aSig0, aSig1, bSig0 );
- mul64By32To96( bSig0, bSig1, zSig0, &term0, &term1, &term2 );
- sub96( aSig0, aSig1, 0, term0, term1, term2, &rem0, &rem1, &rem2 );
- while ( (sbits32) rem0 < 0 ) {
- --zSig0;
- add96( rem0, rem1, rem2, 0, bSig0, bSig1, &rem0, &rem1, &rem2 );
- }
- zSig1 = estimateDiv64To32( rem1, rem2, bSig0 );
- if ( ( zSig1 & 0x3FF ) <= 4 ) {
- mul64By32To96( bSig0, bSig1, zSig1, &term1, &term2, &term3 );
- sub96( rem1, rem2, 0, term1, term2, term3, &rem1, &rem2, &rem3 );
- while ( (sbits32) rem1 < 0 ) {
- --zSig1;
- add96( rem1, rem2, rem3, 0, bSig0, bSig1, &rem1, &rem2, &rem3 );
- }
- zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
- }
- shift64ExtraRightJamming( zSig0, zSig1, 0, 11, &zSig0, &zSig1, &zSig2 );
- return roundAndPackFloat64( zSign, zExp, zSig0, zSig1, zSig2 );
-
-}
-
-#ifndef SOFTFLOAT_FOR_GCC
-/*
--------------------------------------------------------------------------------
-Returns the remainder of the double-precision floating-point value `a'
-with respect to the corresponding value `b'. The operation is performed
-according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
--------------------------------------------------------------------------------
-*/
-float64 float64_rem( float64 a, float64 b )
-{
- flag aSign, bSign, zSign;
- int16 aExp, bExp, expDiff;
- bits32 aSig0, aSig1, bSig0, bSig1, q, term0, term1, term2;
- bits32 allZero, alternateASig0, alternateASig1, sigMean1;
- sbits32 sigMean0;
- float64 z;
-
- aSig1 = extractFloat64Frac1( a );
- aSig0 = extractFloat64Frac0( a );
- aExp = extractFloat64Exp( a );
- aSign = extractFloat64Sign( a );
- bSig1 = extractFloat64Frac1( b );
- bSig0 = extractFloat64Frac0( b );
- bExp = extractFloat64Exp( b );
- bSign = extractFloat64Sign( b );
- if ( aExp == 0x7FF ) {
- if ( ( aSig0 | aSig1 )
- || ( ( bExp == 0x7FF ) && ( bSig0 | bSig1 ) ) ) {
- return propagateFloat64NaN( a, b );
- }
- goto invalid;
- }
- if ( bExp == 0x7FF ) {
- if ( bSig0 | bSig1 ) return propagateFloat64NaN( a, b );
- return a;
- }
- if ( bExp == 0 ) {
- if ( ( bSig0 | bSig1 ) == 0 ) {
- invalid:
- float_raise( float_flag_invalid );
- return float64_default_nan;
- }
- normalizeFloat64Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
- }
- if ( aExp == 0 ) {
- if ( ( aSig0 | aSig1 ) == 0 ) return a;
- normalizeFloat64Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
- }
- expDiff = aExp - bExp;
- if ( expDiff < -1 ) return a;
- shortShift64Left(
- aSig0 | 0x00100000, aSig1, 11 - ( expDiff < 0 ), &aSig0, &aSig1 );
- shortShift64Left( bSig0 | 0x00100000, bSig1, 11, &bSig0, &bSig1 );
- q = le64( bSig0, bSig1, aSig0, aSig1 );
- if ( q ) sub64( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 );
- expDiff -= 32;
- while ( 0 < expDiff ) {
- q = estimateDiv64To32( aSig0, aSig1, bSig0 );
- q = ( 4 < q ) ? q - 4 : 0;
- mul64By32To96( bSig0, bSig1, q, &term0, &term1, &term2 );
- shortShift96Left( term0, term1, term2, 29, &term1, &term2, &allZero );
- shortShift64Left( aSig0, aSig1, 29, &aSig0, &allZero );
- sub64( aSig0, 0, term1, term2, &aSig0, &aSig1 );
- expDiff -= 29;
- }
- if ( -32 < expDiff ) {
- q = estimateDiv64To32( aSig0, aSig1, bSig0 );
- q = ( 4 < q ) ? q - 4 : 0;
- q >>= - expDiff;
- shift64Right( bSig0, bSig1, 8, &bSig0, &bSig1 );
- expDiff += 24;
- if ( expDiff < 0 ) {
- shift64Right( aSig0, aSig1, - expDiff, &aSig0, &aSig1 );
- }
- else {
- shortShift64Left( aSig0, aSig1, expDiff, &aSig0, &aSig1 );
- }
- mul64By32To96( bSig0, bSig1, q, &term0, &term1, &term2 );
- sub64( aSig0, aSig1, term1, term2, &aSig0, &aSig1 );
- }
- else {
- shift64Right( aSig0, aSig1, 8, &aSig0, &aSig1 );
- shift64Right( bSig0, bSig1, 8, &bSig0, &bSig1 );
- }
- do {
- alternateASig0 = aSig0;
- alternateASig1 = aSig1;
- ++q;
- sub64( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 );
- } while ( 0 <= (sbits32) aSig0 );
- add64(
- aSig0, aSig1, alternateASig0, alternateASig1, &sigMean0, &sigMean1 );
- if ( ( sigMean0 < 0 )
- || ( ( ( sigMean0 | sigMean1 ) == 0 ) && ( q & 1 ) ) ) {
- aSig0 = alternateASig0;
- aSig1 = alternateASig1;
- }
- zSign = ( (sbits32) aSig0 < 0 );
- if ( zSign ) sub64( 0, 0, aSig0, aSig1, &aSig0, &aSig1 );
- return
- normalizeRoundAndPackFloat64( aSign ^ zSign, bExp - 4, aSig0, aSig1 );
-
-}
-#endif
-
-#ifndef SOFTFLOAT_FOR_GCC
-/*
--------------------------------------------------------------------------------
-Returns the square root of the double-precision floating-point value `a'.
-The operation is performed according to the IEC/IEEE Standard for Binary
-Floating-Point Arithmetic.
--------------------------------------------------------------------------------
-*/
-float64 float64_sqrt( float64 a )
-{
- flag aSign;
- int16 aExp, zExp;
- bits32 aSig0, aSig1, zSig0, zSig1, zSig2, doubleZSig0;
- bits32 rem0, rem1, rem2, rem3, term0, term1, term2, term3;
- float64 z;
-
- aSig1 = extractFloat64Frac1( a );
- aSig0 = extractFloat64Frac0( a );
- aExp = extractFloat64Exp( a );
- aSign = extractFloat64Sign( a );
- if ( aExp == 0x7FF ) {
- if ( aSig0 | aSig1 ) return propagateFloat64NaN( a, a );
- if ( ! aSign ) return a;
- goto invalid;
- }
- if ( aSign ) {
- if ( ( aExp | aSig0 | aSig1 ) == 0 ) return a;
- invalid:
- float_raise( float_flag_invalid );
- return float64_default_nan;
- }
- if ( aExp == 0 ) {
- if ( ( aSig0 | aSig1 ) == 0 ) return packFloat64( 0, 0, 0, 0 );
- normalizeFloat64Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
- }
- zExp = ( ( aExp - 0x3FF )>>1 ) + 0x3FE;
- aSig0 |= 0x00100000;
- shortShift64Left( aSig0, aSig1, 11, &term0, &term1 );
- zSig0 = ( estimateSqrt32( aExp, term0 )>>1 ) + 1;
- if ( zSig0 == 0 ) zSig0 = 0x7FFFFFFF;
- doubleZSig0 = zSig0 + zSig0;
- shortShift64Left( aSig0, aSig1, 9 - ( aExp & 1 ), &aSig0, &aSig1 );
- mul32To64( zSig0, zSig0, &term0, &term1 );
- sub64( aSig0, aSig1, term0, term1, &rem0, &rem1 );
- while ( (sbits32) rem0 < 0 ) {
- --zSig0;
- doubleZSig0 -= 2;
- add64( rem0, rem1, 0, doubleZSig0 | 1, &rem0, &rem1 );
- }
- zSig1 = estimateDiv64To32( rem1, 0, doubleZSig0 );
- if ( ( zSig1 & 0x1FF ) <= 5 ) {
- if ( zSig1 == 0 ) zSig1 = 1;
- mul32To64( doubleZSig0, zSig1, &term1, &term2 );
- sub64( rem1, 0, term1, term2, &rem1, &rem2 );
- mul32To64( zSig1, zSig1, &term2, &term3 );
- sub96( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 );
- while ( (sbits32) rem1 < 0 ) {
- --zSig1;
- shortShift64Left( 0, zSig1, 1, &term2, &term3 );
- term3 |= 1;
- term2 |= doubleZSig0;
- add96( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 );
- }
- zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
- }
- shift64ExtraRightJamming( zSig0, zSig1, 0, 10, &zSig0, &zSig1, &zSig2 );
- return roundAndPackFloat64( 0, zExp, zSig0, zSig1, zSig2 );
-
-}
-#endif
-
-/*
--------------------------------------------------------------------------------
-Returns 1 if the double-precision floating-point value `a' is equal to
-the corresponding value `b', and 0 otherwise. The comparison is performed
-according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
--------------------------------------------------------------------------------
-*/
-flag float64_eq( float64 a, float64 b )
-{
-
- if ( ( ( extractFloat64Exp( a ) == 0x7FF )
- && ( extractFloat64Frac0( a ) | extractFloat64Frac1( a ) ) )
- || ( ( extractFloat64Exp( b ) == 0x7FF )
- && ( extractFloat64Frac0( b ) | extractFloat64Frac1( b ) ) )
- ) {
- if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) {
- float_raise( float_flag_invalid );
- }
- return 0;
- }
- return ( a == b ) ||
- ( (bits64) ( ( FLOAT64_DEMANGLE(a) | FLOAT64_DEMANGLE(b) )<<1 ) == 0 );
-
-}
-
-/*
--------------------------------------------------------------------------------
-Returns 1 if the double-precision floating-point value `a' is less than
-or equal to the corresponding value `b', and 0 otherwise. The comparison
-is performed according to the IEC/IEEE Standard for Binary Floating-Point
-Arithmetic.
--------------------------------------------------------------------------------
-*/
-flag float64_le( float64 a, float64 b )
-{
- flag aSign, bSign;
-
- if ( ( ( extractFloat64Exp( a ) == 0x7FF )
- && ( extractFloat64Frac0( a ) | extractFloat64Frac1( a ) ) )
- || ( ( extractFloat64Exp( b ) == 0x7FF )
- && ( extractFloat64Frac0( b ) | extractFloat64Frac1( b ) ) )
- ) {
- float_raise( float_flag_invalid );
- return 0;
- }
- aSign = extractFloat64Sign( a );
- bSign = extractFloat64Sign( b );
- if ( aSign != bSign )
- return aSign ||
- ( (bits64) ( ( FLOAT64_DEMANGLE(a) | FLOAT64_DEMANGLE(b) )<<1 ) ==
- 0 );
- return ( a == b ) ||
- ( aSign ^ ( FLOAT64_DEMANGLE(a) < FLOAT64_DEMANGLE(b) ) );
-}
-
-/*
--------------------------------------------------------------------------------
-Returns 1 if the double-precision floating-point value `a' is less than
-the corresponding value `b', and 0 otherwise. The comparison is performed
-according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
--------------------------------------------------------------------------------
-*/
-flag float64_lt( float64 a, float64 b )
-{
- flag aSign, bSign;
-
- if ( ( ( extractFloat64Exp( a ) == 0x7FF )
- && ( extractFloat64Frac0( a ) | extractFloat64Frac1( a ) ) )
- || ( ( extractFloat64Exp( b ) == 0x7FF )
- && ( extractFloat64Frac0( b ) | extractFloat64Frac1( b ) ) )
- ) {
- float_raise( float_flag_invalid );
- return 0;
- }
- aSign = extractFloat64Sign( a );
- bSign = extractFloat64Sign( b );
- if ( aSign != bSign )
- return aSign &&
- ( (bits64) ( ( FLOAT64_DEMANGLE(a) | FLOAT64_DEMANGLE(b) )<<1 ) !=
- 0 );
- return ( a != b ) &&
- ( aSign ^ ( FLOAT64_DEMANGLE(a) < FLOAT64_DEMANGLE(b) ) );
-
-}
-
-#ifndef SOFTFLOAT_FOR_GCC
-/*
--------------------------------------------------------------------------------
-Returns 1 if the double-precision floating-point value `a' is equal to
-the corresponding value `b', and 0 otherwise. The invalid exception is
-raised if either operand is a NaN. Otherwise, the comparison is performed
-according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
--------------------------------------------------------------------------------
-*/
-flag float64_eq_signaling( float64 a, float64 b )
-{
-
- if ( ( ( extractFloat64Exp( a ) == 0x7FF )
- && ( extractFloat64Frac0( a ) | extractFloat64Frac1( a ) ) )
- || ( ( extractFloat64Exp( b ) == 0x7FF )
- && ( extractFloat64Frac0( b ) | extractFloat64Frac1( b ) ) )
- ) {
- float_raise( float_flag_invalid );
- return 0;
- }
- return ( a == b ) || ( (bits64) ( ( a | b )<<1 ) == 0 );
-
-}
-
-/*
--------------------------------------------------------------------------------
-Returns 1 if the double-precision floating-point value `a' is less than or
-equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not
-cause an exception. Otherwise, the comparison is performed according to the
-IEC/IEEE Standard for Binary Floating-Point Arithmetic.
--------------------------------------------------------------------------------
-*/
-flag float64_le_quiet( float64 a, float64 b )
-{
- flag aSign, bSign;
-
- if ( ( ( extractFloat64Exp( a ) == 0x7FF )
- && ( extractFloat64Frac0( a ) | extractFloat64Frac1( a ) ) )
- || ( ( extractFloat64Exp( b ) == 0x7FF )
- && ( extractFloat64Frac0( b ) | extractFloat64Frac1( b ) ) )
- ) {
- if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) {
- float_raise( float_flag_invalid );
- }
- return 0;
- }
- aSign = extractFloat64Sign( a );
- bSign = extractFloat64Sign( b );
- if ( aSign != bSign ) return aSign || ( (bits64) ( ( a | b )<<1 ) == 0 );
- return ( a == b ) || ( aSign ^ ( a < b ) );
-
-}
-
-/*
--------------------------------------------------------------------------------
-Returns 1 if the double-precision floating-point value `a' is less than
-the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an
-exception. Otherwise, the comparison is performed according to the IEC/IEEE
-Standard for Binary Floating-Point Arithmetic.
--------------------------------------------------------------------------------
-*/
-flag float64_lt_quiet( float64 a, float64 b )
-{
- flag aSign, bSign;
-
- if ( ( ( extractFloat64Exp( a ) == 0x7FF )
- && ( extractFloat64Frac0( a ) | extractFloat64Frac1( a ) ) )
- || ( ( extractFloat64Exp( b ) == 0x7FF )
- && ( extractFloat64Frac0( b ) | extractFloat64Frac1( b ) ) )
- ) {
- if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) {
- float_raise( float_flag_invalid );
- }
- return 0;
- }
- aSign = extractFloat64Sign( a );
- bSign = extractFloat64Sign( b );
- if ( aSign != bSign ) return aSign && ( (bits64) ( ( a | b )<<1 ) != 0 );
- return ( a != b ) && ( aSign ^ ( a < b ) );
-
-}
-
-#endif