From 4710c53dcad1ebf3755f3efb9e80ac24bd72a9b2 Mon Sep 17 00:00:00 2001 From: darylm503 Date: Mon, 16 Apr 2012 22:12:42 +0000 Subject: AppPkg/Applications/Python: Add Python 2.7.2 sources since the release of Python 2.7.3 made them unavailable from the python.org web site. These files are a subset of the python-2.7.2.tgz distribution from python.org. Changed files from PyMod-2.7.2 have been copied into the corresponding directories of this tree, replacing the original files in the distribution. Signed-off-by: daryl.mcdaniel@intel.com git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@13197 6f19259b-4bc3-4df7-8a09-765794883524 --- .../Python/Python-2.7.2/Lib/test/test_complex.py | 651 +++++++++++++++++++++ 1 file changed, 651 insertions(+) create mode 100644 AppPkg/Applications/Python/Python-2.7.2/Lib/test/test_complex.py (limited to 'AppPkg/Applications/Python/Python-2.7.2/Lib/test/test_complex.py') diff --git a/AppPkg/Applications/Python/Python-2.7.2/Lib/test/test_complex.py b/AppPkg/Applications/Python/Python-2.7.2/Lib/test/test_complex.py new file mode 100644 index 0000000000..8863cd3542 --- /dev/null +++ b/AppPkg/Applications/Python/Python-2.7.2/Lib/test/test_complex.py @@ -0,0 +1,651 @@ +import unittest +from test import test_support + +from random import random +from math import atan2, isnan, copysign + +INF = float("inf") +NAN = float("nan") +# These tests ensure that complex math does the right thing + +class ComplexTest(unittest.TestCase): + + def assertAlmostEqual(self, a, b): + if isinstance(a, complex): + if isinstance(b, complex): + unittest.TestCase.assertAlmostEqual(self, a.real, b.real) + unittest.TestCase.assertAlmostEqual(self, a.imag, b.imag) + else: + unittest.TestCase.assertAlmostEqual(self, a.real, b) + unittest.TestCase.assertAlmostEqual(self, a.imag, 0.) + else: + if isinstance(b, complex): + unittest.TestCase.assertAlmostEqual(self, a, b.real) + unittest.TestCase.assertAlmostEqual(self, 0., b.imag) + else: + unittest.TestCase.assertAlmostEqual(self, a, b) + + def assertCloseAbs(self, x, y, eps=1e-9): + """Return true iff floats x and y "are close\"""" + # put the one with larger magnitude second + if abs(x) > abs(y): + x, y = y, x + if y == 0: + return abs(x) < eps + if x == 0: + return abs(y) < eps + # check that relative difference < eps + self.assertTrue(abs((x-y)/y) < eps) + + def assertFloatsAreIdentical(self, x, y): + """assert that floats x and y are identical, in the sense that: + (1) both x and y are nans, or + (2) both x and y are infinities, with the same sign, or + (3) both x and y are zeros, with the same sign, or + (4) x and y are both finite and nonzero, and x == y + + """ + msg = 'floats {!r} and {!r} are not identical' + + if isnan(x) or isnan(y): + if isnan(x) and isnan(y): + return + elif x == y: + if x != 0.0: + return + # both zero; check that signs match + elif copysign(1.0, x) == copysign(1.0, y): + return + else: + msg += ': zeros have different signs' + self.fail(msg.format(x, y)) + + def assertClose(self, x, y, eps=1e-9): + """Return true iff complexes x and y "are close\"""" + self.assertCloseAbs(x.real, y.real, eps) + self.assertCloseAbs(x.imag, y.imag, eps) + + def check_div(self, x, y): + """Compute complex z=x*y, and check that z/x==y and z/y==x.""" + z = x * y + if x != 0: + q = z / x + self.assertClose(q, y) + q = z.__div__(x) + self.assertClose(q, y) + q = z.__truediv__(x) + self.assertClose(q, y) + if y != 0: + q = z / y + self.assertClose(q, x) + q = z.__div__(y) + self.assertClose(q, x) + q = z.__truediv__(y) + self.assertClose(q, x) + + def test_div(self): + simple_real = [float(i) for i in xrange(-5, 6)] + simple_complex = [complex(x, y) for x in simple_real for y in simple_real] + for x in simple_complex: + for y in simple_complex: + self.check_div(x, y) + + # A naive complex division algorithm (such as in 2.0) is very prone to + # nonsense errors for these (overflows and underflows). + self.check_div(complex(1e200, 1e200), 1+0j) + self.check_div(complex(1e-200, 1e-200), 1+0j) + + # Just for fun. + for i in xrange(100): + self.check_div(complex(random(), random()), + complex(random(), random())) + + self.assertRaises(ZeroDivisionError, complex.__div__, 1+1j, 0+0j) + # FIXME: The following currently crashes on Alpha + # self.assertRaises(OverflowError, pow, 1e200+1j, 1e200+1j) + + def test_truediv(self): + self.assertAlmostEqual(complex.__truediv__(2+0j, 1+1j), 1-1j) + self.assertRaises(ZeroDivisionError, complex.__truediv__, 1+1j, 0+0j) + + def test_floordiv(self): + self.assertAlmostEqual(complex.__floordiv__(3+0j, 1.5+0j), 2) + self.assertRaises(ZeroDivisionError, complex.__floordiv__, 3+0j, 0+0j) + + def test_coerce(self): + self.assertRaises(OverflowError, complex.__coerce__, 1+1j, 1L<<10000) + + def test_no_implicit_coerce(self): + # Python 2.7 removed implicit coercion from the complex type + class A(object): + def __coerce__(self, other): + raise RuntimeError + __hash__ = None + def __cmp__(self, other): + return -1 + + a = A() + self.assertRaises(TypeError, lambda: a + 2.0j) + self.assertTrue(a < 2.0j) + + def test_richcompare(self): + self.assertEqual(complex.__eq__(1+1j, 1L<<10000), False) + self.assertEqual(complex.__lt__(1+1j, None), NotImplemented) + self.assertIs(complex.__eq__(1+1j, 1+1j), True) + self.assertIs(complex.__eq__(1+1j, 2+2j), False) + self.assertIs(complex.__ne__(1+1j, 1+1j), False) + self.assertIs(complex.__ne__(1+1j, 2+2j), True) + self.assertRaises(TypeError, complex.__lt__, 1+1j, 2+2j) + self.assertRaises(TypeError, complex.__le__, 1+1j, 2+2j) + self.assertRaises(TypeError, complex.__gt__, 1+1j, 2+2j) + self.assertRaises(TypeError, complex.__ge__, 1+1j, 2+2j) + + def test_richcompare_boundaries(self): + def check(n, deltas, is_equal, imag = 0.0): + for delta in deltas: + i = n + delta + z = complex(i, imag) + self.assertIs(complex.__eq__(z, i), is_equal(delta)) + self.assertIs(complex.__ne__(z, i), not is_equal(delta)) + # For IEEE-754 doubles the following should hold: + # x in [2 ** (52 + i), 2 ** (53 + i + 1)] -> x mod 2 ** i == 0 + # where the interval is representable, of course. + for i in range(1, 10): + pow = 52 + i + mult = 2 ** i + check(2 ** pow, range(1, 101), lambda delta: delta % mult == 0) + check(2 ** pow, range(1, 101), lambda delta: False, float(i)) + check(2 ** 53, range(-100, 0), lambda delta: True) + + def test_mod(self): + self.assertRaises(ZeroDivisionError, (1+1j).__mod__, 0+0j) + + a = 3.33+4.43j + try: + a % 0 + except ZeroDivisionError: + pass + else: + self.fail("modulo parama can't be 0") + + def test_divmod(self): + self.assertRaises(ZeroDivisionError, divmod, 1+1j, 0+0j) + + def test_pow(self): + self.assertAlmostEqual(pow(1+1j, 0+0j), 1.0) + self.assertAlmostEqual(pow(0+0j, 2+0j), 0.0) + self.assertRaises(ZeroDivisionError, pow, 0+0j, 1j) + self.assertAlmostEqual(pow(1j, -1), 1/1j) + self.assertAlmostEqual(pow(1j, 200), 1) + self.assertRaises(ValueError, pow, 1+1j, 1+1j, 1+1j) + + a = 3.33+4.43j + self.assertEqual(a ** 0j, 1) + self.assertEqual(a ** 0.+0.j, 1) + + self.assertEqual(3j ** 0j, 1) + self.assertEqual(3j ** 0, 1) + + try: + 0j ** a + except ZeroDivisionError: + pass + else: + self.fail("should fail 0.0 to negative or complex power") + + try: + 0j ** (3-2j) + except ZeroDivisionError: + pass + else: + self.fail("should fail 0.0 to negative or complex power") + + # The following is used to exercise certain code paths + self.assertEqual(a ** 105, a ** 105) + self.assertEqual(a ** -105, a ** -105) + self.assertEqual(a ** -30, a ** -30) + + self.assertEqual(0.0j ** 0, 1) + + b = 5.1+2.3j + self.assertRaises(ValueError, pow, a, b, 0) + + def test_boolcontext(self): + for i in xrange(100): + self.assertTrue(complex(random() + 1e-6, random() + 1e-6)) + self.assertTrue(not complex(0.0, 0.0)) + + def test_conjugate(self): + self.assertClose(complex(5.3, 9.8).conjugate(), 5.3-9.8j) + + def test_constructor(self): + class OS: + def __init__(self, value): self.value = value + def __complex__(self): return self.value + class NS(object): + def __init__(self, value): self.value = value + def __complex__(self): return self.value + self.assertEqual(complex(OS(1+10j)), 1+10j) + self.assertEqual(complex(NS(1+10j)), 1+10j) + self.assertRaises(TypeError, complex, OS(None)) + self.assertRaises(TypeError, complex, NS(None)) + + self.assertAlmostEqual(complex("1+10j"), 1+10j) + self.assertAlmostEqual(complex(10), 10+0j) + self.assertAlmostEqual(complex(10.0), 10+0j) + self.assertAlmostEqual(complex(10L), 10+0j) + self.assertAlmostEqual(complex(10+0j), 10+0j) + self.assertAlmostEqual(complex(1,10), 1+10j) + self.assertAlmostEqual(complex(1,10L), 1+10j) + self.assertAlmostEqual(complex(1,10.0), 1+10j) + self.assertAlmostEqual(complex(1L,10), 1+10j) + self.assertAlmostEqual(complex(1L,10L), 1+10j) + self.assertAlmostEqual(complex(1L,10.0), 1+10j) + self.assertAlmostEqual(complex(1.0,10), 1+10j) + self.assertAlmostEqual(complex(1.0,10L), 1+10j) + self.assertAlmostEqual(complex(1.0,10.0), 1+10j) + self.assertAlmostEqual(complex(3.14+0j), 3.14+0j) + self.assertAlmostEqual(complex(3.14), 3.14+0j) + self.assertAlmostEqual(complex(314), 314.0+0j) + self.assertAlmostEqual(complex(314L), 314.0+0j) + self.assertAlmostEqual(complex(3.14+0j, 0j), 3.14+0j) + self.assertAlmostEqual(complex(3.14, 0.0), 3.14+0j) + self.assertAlmostEqual(complex(314, 0), 314.0+0j) + self.assertAlmostEqual(complex(314L, 0L), 314.0+0j) + self.assertAlmostEqual(complex(0j, 3.14j), -3.14+0j) + self.assertAlmostEqual(complex(0.0, 3.14j), -3.14+0j) + self.assertAlmostEqual(complex(0j, 3.14), 3.14j) + self.assertAlmostEqual(complex(0.0, 3.14), 3.14j) + self.assertAlmostEqual(complex("1"), 1+0j) + self.assertAlmostEqual(complex("1j"), 1j) + self.assertAlmostEqual(complex(), 0) + self.assertAlmostEqual(complex("-1"), -1) + self.assertAlmostEqual(complex("+1"), +1) + self.assertAlmostEqual(complex("(1+2j)"), 1+2j) + self.assertAlmostEqual(complex("(1.3+2.2j)"), 1.3+2.2j) + self.assertAlmostEqual(complex("3.14+1J"), 3.14+1j) + self.assertAlmostEqual(complex(" ( +3.14-6J )"), 3.14-6j) + self.assertAlmostEqual(complex(" ( +3.14-J )"), 3.14-1j) + self.assertAlmostEqual(complex(" ( +3.14+j )"), 3.14+1j) + self.assertAlmostEqual(complex("J"), 1j) + self.assertAlmostEqual(complex("( j )"), 1j) + self.assertAlmostEqual(complex("+J"), 1j) + self.assertAlmostEqual(complex("( -j)"), -1j) + self.assertAlmostEqual(complex('1e-500'), 0.0 + 0.0j) + self.assertAlmostEqual(complex('-1e-500j'), 0.0 - 0.0j) + self.assertAlmostEqual(complex('-1e-500+1e-500j'), -0.0 + 0.0j) + + class complex2(complex): pass + self.assertAlmostEqual(complex(complex2(1+1j)), 1+1j) + self.assertAlmostEqual(complex(real=17, imag=23), 17+23j) + self.assertAlmostEqual(complex(real=17+23j), 17+23j) + self.assertAlmostEqual(complex(real=17+23j, imag=23), 17+46j) + self.assertAlmostEqual(complex(real=1+2j, imag=3+4j), -3+5j) + + # check that the sign of a zero in the real or imaginary part + # is preserved when constructing from two floats. (These checks + # are harmless on systems without support for signed zeros.) + def split_zeros(x): + """Function that produces different results for 0. and -0.""" + return atan2(x, -1.) + + self.assertEqual(split_zeros(complex(1., 0.).imag), split_zeros(0.)) + self.assertEqual(split_zeros(complex(1., -0.).imag), split_zeros(-0.)) + self.assertEqual(split_zeros(complex(0., 1.).real), split_zeros(0.)) + self.assertEqual(split_zeros(complex(-0., 1.).real), split_zeros(-0.)) + + c = 3.14 + 1j + self.assertTrue(complex(c) is c) + del c + + self.assertRaises(TypeError, complex, "1", "1") + self.assertRaises(TypeError, complex, 1, "1") + + if test_support.have_unicode: + self.assertEqual(complex(unicode(" 3.14+J ")), 3.14+1j) + + # SF bug 543840: complex(string) accepts strings with \0 + # Fixed in 2.3. + self.assertRaises(ValueError, complex, '1+1j\0j') + + self.assertRaises(TypeError, int, 5+3j) + self.assertRaises(TypeError, long, 5+3j) + self.assertRaises(TypeError, float, 5+3j) + self.assertRaises(ValueError, complex, "") + self.assertRaises(TypeError, complex, None) + self.assertRaises(ValueError, complex, "\0") + self.assertRaises(ValueError, complex, "3\09") + self.assertRaises(TypeError, complex, "1", "2") + self.assertRaises(TypeError, complex, "1", 42) + self.assertRaises(TypeError, complex, 1, "2") + self.assertRaises(ValueError, complex, "1+") + self.assertRaises(ValueError, complex, "1+1j+1j") + self.assertRaises(ValueError, complex, "--") + self.assertRaises(ValueError, complex, "(1+2j") + self.assertRaises(ValueError, complex, "1+2j)") + self.assertRaises(ValueError, complex, "1+(2j)") + self.assertRaises(ValueError, complex, "(1+2j)123") + if test_support.have_unicode: + self.assertRaises(ValueError, complex, unicode("x")) + self.assertRaises(ValueError, complex, "1j+2") + self.assertRaises(ValueError, complex, "1e1ej") + self.assertRaises(ValueError, complex, "1e++1ej") + self.assertRaises(ValueError, complex, ")1+2j(") + # the following three are accepted by Python 2.6 + self.assertRaises(ValueError, complex, "1..1j") + self.assertRaises(ValueError, complex, "1.11.1j") + self.assertRaises(ValueError, complex, "1e1.1j") + + if test_support.have_unicode: + # check that complex accepts long unicode strings + self.assertEqual(type(complex(unicode("1"*500))), complex) + + class EvilExc(Exception): + pass + + class evilcomplex: + def __complex__(self): + raise EvilExc + + self.assertRaises(EvilExc, complex, evilcomplex()) + + class float2: + def __init__(self, value): + self.value = value + def __float__(self): + return self.value + + self.assertAlmostEqual(complex(float2(42.)), 42) + self.assertAlmostEqual(complex(real=float2(17.), imag=float2(23.)), 17+23j) + self.assertRaises(TypeError, complex, float2(None)) + + class complex0(complex): + """Test usage of __complex__() when inheriting from 'complex'""" + def __complex__(self): + return 42j + + class complex1(complex): + """Test usage of __complex__() with a __new__() method""" + def __new__(self, value=0j): + return complex.__new__(self, 2*value) + def __complex__(self): + return self + + class complex2(complex): + """Make sure that __complex__() calls fail if anything other than a + complex is returned""" + def __complex__(self): + return None + + self.assertAlmostEqual(complex(complex0(1j)), 42j) + self.assertAlmostEqual(complex(complex1(1j)), 2j) + self.assertRaises(TypeError, complex, complex2(1j)) + + def test_subclass(self): + class xcomplex(complex): + def __add__(self,other): + return xcomplex(complex(self) + other) + __radd__ = __add__ + + def __sub__(self,other): + return xcomplex(complex(self) + other) + __rsub__ = __sub__ + + def __mul__(self,other): + return xcomplex(complex(self) * other) + __rmul__ = __mul__ + + def __div__(self,other): + return xcomplex(complex(self) / other) + + def __rdiv__(self,other): + return xcomplex(other / complex(self)) + + __truediv__ = __div__ + __rtruediv__ = __rdiv__ + + def __floordiv__(self,other): + return xcomplex(complex(self) // other) + + def __rfloordiv__(self,other): + return xcomplex(other // complex(self)) + + def __pow__(self,other): + return xcomplex(complex(self) ** other) + + def __rpow__(self,other): + return xcomplex(other ** complex(self) ) + + def __mod__(self,other): + return xcomplex(complex(self) % other) + + def __rmod__(self,other): + return xcomplex(other % complex(self)) + + infix_binops = ('+', '-', '*', '**', '%', '//', '/') + xcomplex_values = (xcomplex(1), xcomplex(123.0), + xcomplex(-10+2j), xcomplex(3+187j), + xcomplex(3-78j)) + test_values = (1, 123.0, 10-19j, xcomplex(1+2j), + xcomplex(1+87j), xcomplex(10+90j)) + + for op in infix_binops: + for x in xcomplex_values: + for y in test_values: + a = 'x %s y' % op + b = 'y %s x' % op + self.assertTrue(type(eval(a)) is type(eval(b)) is xcomplex) + + def test_hash(self): + for x in xrange(-30, 30): + self.assertEqual(hash(x), hash(complex(x, 0))) + x /= 3.0 # now check against floating point + self.assertEqual(hash(x), hash(complex(x, 0.))) + + def test_abs(self): + nums = [complex(x/3., y/7.) for x in xrange(-9,9) for y in xrange(-9,9)] + for num in nums: + self.assertAlmostEqual((num.real**2 + num.imag**2) ** 0.5, abs(num)) + + def test_repr(self): + self.assertEqual(repr(1+6j), '(1+6j)') + self.assertEqual(repr(1-6j), '(1-6j)') + + self.assertNotEqual(repr(-(1+0j)), '(-1+-0j)') + + self.assertEqual(1-6j,complex(repr(1-6j))) + self.assertEqual(1+6j,complex(repr(1+6j))) + self.assertEqual(-6j,complex(repr(-6j))) + self.assertEqual(6j,complex(repr(6j))) + + self.assertEqual(repr(complex(1., INF)), "(1+infj)") + self.assertEqual(repr(complex(1., -INF)), "(1-infj)") + self.assertEqual(repr(complex(INF, 1)), "(inf+1j)") + self.assertEqual(repr(complex(-INF, INF)), "(-inf+infj)") + self.assertEqual(repr(complex(NAN, 1)), "(nan+1j)") + self.assertEqual(repr(complex(1, NAN)), "(1+nanj)") + self.assertEqual(repr(complex(NAN, NAN)), "(nan+nanj)") + + self.assertEqual(repr(complex(0, INF)), "infj") + self.assertEqual(repr(complex(0, -INF)), "-infj") + self.assertEqual(repr(complex(0, NAN)), "nanj") + + def test_neg(self): + self.assertEqual(-(1+6j), -1-6j) + + def test_file(self): + a = 3.33+4.43j + b = 5.1+2.3j + + fo = None + try: + fo = open(test_support.TESTFN, "wb") + print >>fo, a, b + fo.close() + fo = open(test_support.TESTFN, "rb") + self.assertEqual(fo.read(), "%s %s\n" % (a, b)) + finally: + if (fo is not None) and (not fo.closed): + fo.close() + test_support.unlink(test_support.TESTFN) + + def test_getnewargs(self): + self.assertEqual((1+2j).__getnewargs__(), (1.0, 2.0)) + self.assertEqual((1-2j).__getnewargs__(), (1.0, -2.0)) + self.assertEqual((2j).__getnewargs__(), (0.0, 2.0)) + self.assertEqual((-0j).__getnewargs__(), (0.0, -0.0)) + self.assertEqual(complex(0, INF).__getnewargs__(), (0.0, INF)) + self.assertEqual(complex(INF, 0).__getnewargs__(), (INF, 0.0)) + + if float.__getformat__("double").startswith("IEEE"): + def test_plus_minus_0j(self): + # test that -0j and 0j literals are not identified + z1, z2 = 0j, -0j + self.assertEqual(atan2(z1.imag, -1.), atan2(0., -1.)) + self.assertEqual(atan2(z2.imag, -1.), atan2(-0., -1.)) + + @unittest.skipUnless(float.__getformat__("double").startswith("IEEE"), + "test requires IEEE 754 doubles") + def test_overflow(self): + self.assertEqual(complex("1e500"), complex(INF, 0.0)) + self.assertEqual(complex("-1e500j"), complex(0.0, -INF)) + self.assertEqual(complex("-1e500+1.8e308j"), complex(-INF, INF)) + + @unittest.skipUnless(float.__getformat__("double").startswith("IEEE"), + "test requires IEEE 754 doubles") + def test_repr_roundtrip(self): + vals = [0.0, 1e-500, 1e-315, 1e-200, 0.0123, 3.1415, 1e50, INF, NAN] + vals += [-v for v in vals] + + # complex(repr(z)) should recover z exactly, even for complex + # numbers involving an infinity, nan, or negative zero + for x in vals: + for y in vals: + z = complex(x, y) + roundtrip = complex(repr(z)) + self.assertFloatsAreIdentical(z.real, roundtrip.real) + self.assertFloatsAreIdentical(z.imag, roundtrip.imag) + + # if we predefine some constants, then eval(repr(z)) should + # also work, except that it might change the sign of zeros + inf, nan = float('inf'), float('nan') + infj, nanj = complex(0.0, inf), complex(0.0, nan) + for x in vals: + for y in vals: + z = complex(x, y) + roundtrip = eval(repr(z)) + # adding 0.0 has no effect beside changing -0.0 to 0.0 + self.assertFloatsAreIdentical(0.0 + z.real, + 0.0 + roundtrip.real) + self.assertFloatsAreIdentical(0.0 + z.imag, + 0.0 + roundtrip.imag) + + def test_format(self): + # empty format string is same as str() + self.assertEqual(format(1+3j, ''), str(1+3j)) + self.assertEqual(format(1.5+3.5j, ''), str(1.5+3.5j)) + self.assertEqual(format(3j, ''), str(3j)) + self.assertEqual(format(3.2j, ''), str(3.2j)) + self.assertEqual(format(3+0j, ''), str(3+0j)) + self.assertEqual(format(3.2+0j, ''), str(3.2+0j)) + + # empty presentation type should still be analogous to str, + # even when format string is nonempty (issue #5920). + self.assertEqual(format(3.2+0j, '-'), str(3.2+0j)) + self.assertEqual(format(3.2+0j, '<'), str(3.2+0j)) + z = 4/7. - 100j/7. + self.assertEqual(format(z, ''), str(z)) + self.assertEqual(format(z, '-'), str(z)) + self.assertEqual(format(z, '<'), str(z)) + self.assertEqual(format(z, '10'), str(z)) + z = complex(0.0, 3.0) + self.assertEqual(format(z, ''), str(z)) + self.assertEqual(format(z, '-'), str(z)) + self.assertEqual(format(z, '<'), str(z)) + self.assertEqual(format(z, '2'), str(z)) + z = complex(-0.0, 2.0) + self.assertEqual(format(z, ''), str(z)) + self.assertEqual(format(z, '-'), str(z)) + self.assertEqual(format(z, '<'), str(z)) + self.assertEqual(format(z, '3'), str(z)) + + self.assertEqual(format(1+3j, 'g'), '1+3j') + self.assertEqual(format(3j, 'g'), '0+3j') + self.assertEqual(format(1.5+3.5j, 'g'), '1.5+3.5j') + + self.assertEqual(format(1.5+3.5j, '+g'), '+1.5+3.5j') + self.assertEqual(format(1.5-3.5j, '+g'), '+1.5-3.5j') + self.assertEqual(format(1.5-3.5j, '-g'), '1.5-3.5j') + self.assertEqual(format(1.5+3.5j, ' g'), ' 1.5+3.5j') + self.assertEqual(format(1.5-3.5j, ' g'), ' 1.5-3.5j') + self.assertEqual(format(-1.5+3.5j, ' g'), '-1.5+3.5j') + self.assertEqual(format(-1.5-3.5j, ' g'), '-1.5-3.5j') + + self.assertEqual(format(-1.5-3.5e-20j, 'g'), '-1.5-3.5e-20j') + self.assertEqual(format(-1.5-3.5j, 'f'), '-1.500000-3.500000j') + self.assertEqual(format(-1.5-3.5j, 'F'), '-1.500000-3.500000j') + self.assertEqual(format(-1.5-3.5j, 'e'), '-1.500000e+00-3.500000e+00j') + self.assertEqual(format(-1.5-3.5j, '.2e'), '-1.50e+00-3.50e+00j') + self.assertEqual(format(-1.5-3.5j, '.2E'), '-1.50E+00-3.50E+00j') + self.assertEqual(format(-1.5e10-3.5e5j, '.2G'), '-1.5E+10-3.5E+05j') + + self.assertEqual(format(1.5+3j, '<20g'), '1.5+3j ') + self.assertEqual(format(1.5+3j, '*<20g'), '1.5+3j**************') + self.assertEqual(format(1.5+3j, '>20g'), ' 1.5+3j') + self.assertEqual(format(1.5+3j, '^20g'), ' 1.5+3j ') + self.assertEqual(format(1.5+3j, '<20'), '(1.5+3j) ') + self.assertEqual(format(1.5+3j, '>20'), ' (1.5+3j)') + self.assertEqual(format(1.5+3j, '^20'), ' (1.5+3j) ') + self.assertEqual(format(1.123-3.123j, '^20.2'), ' (1.1-3.1j) ') + + self.assertEqual(format(1.5+3j, '20.2f'), ' 1.50+3.00j') + self.assertEqual(format(1.5+3j, '>20.2f'), ' 1.50+3.00j') + self.assertEqual(format(1.5+3j, '<20.2f'), '1.50+3.00j ') + self.assertEqual(format(1.5e20+3j, '<20.2f'), '150000000000000000000.00+3.00j') + self.assertEqual(format(1.5e20+3j, '>40.2f'), ' 150000000000000000000.00+3.00j') + self.assertEqual(format(1.5e20+3j, '^40,.2f'), ' 150,000,000,000,000,000,000.00+3.00j ') + self.assertEqual(format(1.5e21+3j, '^40,.2f'), ' 1,500,000,000,000,000,000,000.00+3.00j ') + self.assertEqual(format(1.5e21+3000j, ',.2f'), '1,500,000,000,000,000,000,000.00+3,000.00j') + + # alternate is invalid + self.assertRaises(ValueError, (1.5+0.5j).__format__, '#f') + + # zero padding is invalid + self.assertRaises(ValueError, (1.5+0.5j).__format__, '010f') + + # '=' alignment is invalid + self.assertRaises(ValueError, (1.5+3j).__format__, '=20') + + # integer presentation types are an error + for t in 'bcdoxX': + self.assertRaises(ValueError, (1.5+0.5j).__format__, t) + + # make sure everything works in ''.format() + self.assertEqual('*{0:.3f}*'.format(3.14159+2.71828j), '*3.142+2.718j*') + + # issue 3382: 'f' and 'F' with inf's and nan's + self.assertEqual('{0:f}'.format(INF+0j), 'inf+0.000000j') + self.assertEqual('{0:F}'.format(INF+0j), 'INF+0.000000j') + self.assertEqual('{0:f}'.format(-INF+0j), '-inf+0.000000j') + self.assertEqual('{0:F}'.format(-INF+0j), '-INF+0.000000j') + self.assertEqual('{0:f}'.format(complex(INF, INF)), 'inf+infj') + self.assertEqual('{0:F}'.format(complex(INF, INF)), 'INF+INFj') + self.assertEqual('{0:f}'.format(complex(INF, -INF)), 'inf-infj') + self.assertEqual('{0:F}'.format(complex(INF, -INF)), 'INF-INFj') + self.assertEqual('{0:f}'.format(complex(-INF, INF)), '-inf+infj') + self.assertEqual('{0:F}'.format(complex(-INF, INF)), '-INF+INFj') + self.assertEqual('{0:f}'.format(complex(-INF, -INF)), '-inf-infj') + self.assertEqual('{0:F}'.format(complex(-INF, -INF)), '-INF-INFj') + + self.assertEqual('{0:f}'.format(complex(NAN, 0)), 'nan+0.000000j') + self.assertEqual('{0:F}'.format(complex(NAN, 0)), 'NAN+0.000000j') + self.assertEqual('{0:f}'.format(complex(NAN, NAN)), 'nan+nanj') + self.assertEqual('{0:F}'.format(complex(NAN, NAN)), 'NAN+NANj') + +def test_main(): + with test_support.check_warnings(("complex divmod.., // and % are " + "deprecated", DeprecationWarning)): + test_support.run_unittest(ComplexTest) + +if __name__ == "__main__": + test_main() -- cgit v1.2.3