From 4710c53dcad1ebf3755f3efb9e80ac24bd72a9b2 Mon Sep 17 00:00:00 2001 From: darylm503 Date: Mon, 16 Apr 2012 22:12:42 +0000 Subject: AppPkg/Applications/Python: Add Python 2.7.2 sources since the release of Python 2.7.3 made them unavailable from the python.org web site. These files are a subset of the python-2.7.2.tgz distribution from python.org. Changed files from PyMod-2.7.2 have been copied into the corresponding directories of this tree, replacing the original files in the distribution. Signed-off-by: daryl.mcdaniel@intel.com git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@13197 6f19259b-4bc3-4df7-8a09-765794883524 --- .../Python-2.7.2/Lib/test/test_long_future.py | 221 +++++++++++++++++++++ 1 file changed, 221 insertions(+) create mode 100644 AppPkg/Applications/Python/Python-2.7.2/Lib/test/test_long_future.py (limited to 'AppPkg/Applications/Python/Python-2.7.2/Lib/test/test_long_future.py') diff --git a/AppPkg/Applications/Python/Python-2.7.2/Lib/test/test_long_future.py b/AppPkg/Applications/Python/Python-2.7.2/Lib/test/test_long_future.py new file mode 100644 index 0000000000..832aea9768 --- /dev/null +++ b/AppPkg/Applications/Python/Python-2.7.2/Lib/test/test_long_future.py @@ -0,0 +1,221 @@ +from __future__ import division +# When true division is the default, get rid of this and add it to +# test_long.py instead. In the meantime, it's too obscure to try to +# trick just part of test_long into using future division. + +import sys +import random +import math +import unittest +from test.test_support import run_unittest + +# decorator for skipping tests on non-IEEE 754 platforms +requires_IEEE_754 = unittest.skipUnless( + float.__getformat__("double").startswith("IEEE"), + "test requires IEEE 754 doubles") + +DBL_MAX = sys.float_info.max +DBL_MAX_EXP = sys.float_info.max_exp +DBL_MIN_EXP = sys.float_info.min_exp +DBL_MANT_DIG = sys.float_info.mant_dig +DBL_MIN_OVERFLOW = 2**DBL_MAX_EXP - 2**(DBL_MAX_EXP - DBL_MANT_DIG - 1) + +# pure Python version of correctly-rounded true division +def truediv(a, b): + """Correctly-rounded true division for integers.""" + negative = a^b < 0 + a, b = abs(a), abs(b) + + # exceptions: division by zero, overflow + if not b: + raise ZeroDivisionError("division by zero") + if a >= DBL_MIN_OVERFLOW * b: + raise OverflowError("int/int too large to represent as a float") + + # find integer d satisfying 2**(d - 1) <= a/b < 2**d + d = a.bit_length() - b.bit_length() + if d >= 0 and a >= 2**d * b or d < 0 and a * 2**-d >= b: + d += 1 + + # compute 2**-exp * a / b for suitable exp + exp = max(d, DBL_MIN_EXP) - DBL_MANT_DIG + a, b = a << max(-exp, 0), b << max(exp, 0) + q, r = divmod(a, b) + + # round-half-to-even: fractional part is r/b, which is > 0.5 iff + # 2*r > b, and == 0.5 iff 2*r == b. + if 2*r > b or 2*r == b and q % 2 == 1: + q += 1 + + result = math.ldexp(float(q), exp) + return -result if negative else result + +class TrueDivisionTests(unittest.TestCase): + def test(self): + huge = 1L << 40000 + mhuge = -huge + self.assertEqual(huge / huge, 1.0) + self.assertEqual(mhuge / mhuge, 1.0) + self.assertEqual(huge / mhuge, -1.0) + self.assertEqual(mhuge / huge, -1.0) + self.assertEqual(1 / huge, 0.0) + self.assertEqual(1L / huge, 0.0) + self.assertEqual(1 / mhuge, 0.0) + self.assertEqual(1L / mhuge, 0.0) + self.assertEqual((666 * huge + (huge >> 1)) / huge, 666.5) + self.assertEqual((666 * mhuge + (mhuge >> 1)) / mhuge, 666.5) + self.assertEqual((666 * huge + (huge >> 1)) / mhuge, -666.5) + self.assertEqual((666 * mhuge + (mhuge >> 1)) / huge, -666.5) + self.assertEqual(huge / (huge << 1), 0.5) + self.assertEqual((1000000 * huge) / huge, 1000000) + + namespace = {'huge': huge, 'mhuge': mhuge} + + for overflow in ["float(huge)", "float(mhuge)", + "huge / 1", "huge / 2L", "huge / -1", "huge / -2L", + "mhuge / 100", "mhuge / 100L"]: + # If the "eval" does not happen in this module, + # true division is not enabled + with self.assertRaises(OverflowError): + eval(overflow, namespace) + + for underflow in ["1 / huge", "2L / huge", "-1 / huge", "-2L / huge", + "100 / mhuge", "100L / mhuge"]: + result = eval(underflow, namespace) + self.assertEqual(result, 0.0, 'expected underflow to 0 ' + 'from {!r}'.format(underflow)) + + for zero in ["huge / 0", "huge / 0L", "mhuge / 0", "mhuge / 0L"]: + with self.assertRaises(ZeroDivisionError): + eval(zero, namespace) + + def check_truediv(self, a, b, skip_small=True): + """Verify that the result of a/b is correctly rounded, by + comparing it with a pure Python implementation of correctly + rounded division. b should be nonzero.""" + + a, b = long(a), long(b) + + # skip check for small a and b: in this case, the current + # implementation converts the arguments to float directly and + # then applies a float division. This can give doubly-rounded + # results on x87-using machines (particularly 32-bit Linux). + if skip_small and max(abs(a), abs(b)) < 2**DBL_MANT_DIG: + return + + try: + # use repr so that we can distinguish between -0.0 and 0.0 + expected = repr(truediv(a, b)) + except OverflowError: + expected = 'overflow' + except ZeroDivisionError: + expected = 'zerodivision' + + try: + got = repr(a / b) + except OverflowError: + got = 'overflow' + except ZeroDivisionError: + got = 'zerodivision' + + self.assertEqual(expected, got, "Incorrectly rounded division {}/{}: " + "expected {}, got {}".format(a, b, expected, got)) + + @requires_IEEE_754 + def test_correctly_rounded_true_division(self): + # more stringent tests than those above, checking that the + # result of true division of ints is always correctly rounded. + # This test should probably be considered CPython-specific. + + # Exercise all the code paths not involving Gb-sized ints. + # ... divisions involving zero + self.check_truediv(123, 0) + self.check_truediv(-456, 0) + self.check_truediv(0, 3) + self.check_truediv(0, -3) + self.check_truediv(0, 0) + # ... overflow or underflow by large margin + self.check_truediv(671 * 12345 * 2**DBL_MAX_EXP, 12345) + self.check_truediv(12345, 345678 * 2**(DBL_MANT_DIG - DBL_MIN_EXP)) + # ... a much larger or smaller than b + self.check_truediv(12345*2**100, 98765) + self.check_truediv(12345*2**30, 98765*7**81) + # ... a / b near a boundary: one of 1, 2**DBL_MANT_DIG, 2**DBL_MIN_EXP, + # 2**DBL_MAX_EXP, 2**(DBL_MIN_EXP-DBL_MANT_DIG) + bases = (0, DBL_MANT_DIG, DBL_MIN_EXP, + DBL_MAX_EXP, DBL_MIN_EXP - DBL_MANT_DIG) + for base in bases: + for exp in range(base - 15, base + 15): + self.check_truediv(75312*2**max(exp, 0), 69187*2**max(-exp, 0)) + self.check_truediv(69187*2**max(exp, 0), 75312*2**max(-exp, 0)) + + # overflow corner case + for m in [1, 2, 7, 17, 12345, 7**100, + -1, -2, -5, -23, -67891, -41**50]: + for n in range(-10, 10): + self.check_truediv(m*DBL_MIN_OVERFLOW + n, m) + self.check_truediv(m*DBL_MIN_OVERFLOW + n, -m) + + # check detection of inexactness in shifting stage + for n in range(250): + # (2**DBL_MANT_DIG+1)/(2**DBL_MANT_DIG) lies halfway + # between two representable floats, and would usually be + # rounded down under round-half-to-even. The tiniest of + # additions to the numerator should cause it to be rounded + # up instead. + self.check_truediv((2**DBL_MANT_DIG + 1)*12345*2**200 + 2**n, + 2**DBL_MANT_DIG*12345) + + # 1/2731 is one of the smallest division cases that's subject + # to double rounding on IEEE 754 machines working internally with + # 64-bit precision. On such machines, the next check would fail, + # were it not explicitly skipped in check_truediv. + self.check_truediv(1, 2731) + + # a particularly bad case for the old algorithm: gives an + # error of close to 3.5 ulps. + self.check_truediv(295147931372582273023, 295147932265116303360) + for i in range(1000): + self.check_truediv(10**(i+1), 10**i) + self.check_truediv(10**i, 10**(i+1)) + + # test round-half-to-even behaviour, normal result + for m in [1, 2, 4, 7, 8, 16, 17, 32, 12345, 7**100, + -1, -2, -5, -23, -67891, -41**50]: + for n in range(-10, 10): + self.check_truediv(2**DBL_MANT_DIG*m + n, m) + + # test round-half-to-even, subnormal result + for n in range(-20, 20): + self.check_truediv(n, 2**1076) + + # largeish random divisions: a/b where |a| <= |b| <= + # 2*|a|; |ans| is between 0.5 and 1.0, so error should + # always be bounded by 2**-54 with equality possible only + # if the least significant bit of q=ans*2**53 is zero. + for M in [10**10, 10**100, 10**1000]: + for i in range(1000): + a = random.randrange(1, M) + b = random.randrange(a, 2*a+1) + self.check_truediv(a, b) + self.check_truediv(-a, b) + self.check_truediv(a, -b) + self.check_truediv(-a, -b) + + # and some (genuinely) random tests + for _ in range(10000): + a_bits = random.randrange(1000) + b_bits = random.randrange(1, 1000) + x = random.randrange(2**a_bits) + y = random.randrange(1, 2**b_bits) + self.check_truediv(x, y) + self.check_truediv(x, -y) + self.check_truediv(-x, y) + self.check_truediv(-x, -y) + + +def test_main(): + run_unittest(TrueDivisionTests) + +if __name__ == "__main__": + test_main() -- cgit v1.2.3