/** @file * * Copyright (c) 2011-2015, ARM Limited. All rights reserved. * * This program and the accompanying materials * are licensed and made available under the terms and conditions of the BSD License * which accompanies this distribution. The full text of the license may be found at * http://opensource.org/licenses/bsd-license.php * * THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, * WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. * **/ #include #include #include #include #include "LinuxLoader.h" #define ALIGN(x, a) (((x) + ((a) - 1)) & ~((a) - 1)) #define PALIGN(p, a) ((void *)(ALIGN ((unsigned long)(p), (a)))) #define GET_CELL(p) (p += 4, *((const UINT32 *)(p-4))) STATIC UINTN cpu_to_fdtn (UINTN x) { if (sizeof (UINTN) == sizeof (UINT32)) { return cpu_to_fdt32 (x); } else { return cpu_to_fdt64 (x); } } typedef struct { UINTN Base; UINTN Size; } FDT_REGION; STATIC BOOLEAN IsLinuxReservedRegion ( IN EFI_MEMORY_TYPE MemoryType ) { switch (MemoryType) { case EfiRuntimeServicesCode: case EfiRuntimeServicesData: case EfiUnusableMemory: case EfiACPIReclaimMemory: case EfiACPIMemoryNVS: case EfiReservedMemoryType: return TRUE; default: return FALSE; } } /** ** Relocate the FDT blob to a more appropriate location for the Linux kernel. ** This function will allocate memory for the relocated FDT blob. ** ** @retval EFI_SUCCESS on success. ** @retval EFI_OUT_OF_RESOURCES or EFI_INVALID_PARAMETER on failure. */ STATIC EFI_STATUS RelocateFdt ( EFI_PHYSICAL_ADDRESS SystemMemoryBase, EFI_PHYSICAL_ADDRESS OriginalFdt, UINTN OriginalFdtSize, EFI_PHYSICAL_ADDRESS *RelocatedFdt, UINTN *RelocatedFdtSize, EFI_PHYSICAL_ADDRESS *RelocatedFdtAlloc ) { EFI_STATUS Status; INTN Error; UINT64 FdtAlignment; *RelocatedFdtSize = OriginalFdtSize + FDT_ADDITIONAL_ENTRIES_SIZE; // If FDT load address needs to be aligned, allocate more space. FdtAlignment = PcdGet32 (PcdArmLinuxFdtAlignment); if (FdtAlignment != 0) { *RelocatedFdtSize += FdtAlignment; } // Try below a watermark address. Status = EFI_NOT_FOUND; if (PcdGet32 (PcdArmLinuxFdtMaxOffset) != 0) { *RelocatedFdt = LINUX_FDT_MAX_OFFSET; Status = gBS->AllocatePages (AllocateMaxAddress, EfiBootServicesData, EFI_SIZE_TO_PAGES (*RelocatedFdtSize), RelocatedFdt); if (EFI_ERROR (Status)) { DEBUG ((EFI_D_WARN, "Warning: Failed to load FDT below address 0x%lX (%r). Will try again at a random address anywhere.\n", *RelocatedFdt, Status)); } } // Try anywhere there is available space. if (EFI_ERROR (Status)) { Status = gBS->AllocatePages (AllocateAnyPages, EfiBootServicesData, EFI_SIZE_TO_PAGES (*RelocatedFdtSize), RelocatedFdt); if (EFI_ERROR (Status)) { ASSERT_EFI_ERROR (Status); return EFI_OUT_OF_RESOURCES; } else { DEBUG ((EFI_D_WARN, "WARNING: Loaded FDT at random address 0x%lX.\nWARNING: There is a risk of accidental overwriting by other code/data.\n", *RelocatedFdt)); } } *RelocatedFdtAlloc = *RelocatedFdt; if (FdtAlignment != 0) { *RelocatedFdt = ALIGN (*RelocatedFdt, FdtAlignment); } // Load the Original FDT tree into the new region Error = fdt_open_into ((VOID*)(UINTN) OriginalFdt, (VOID*)(UINTN)(*RelocatedFdt), *RelocatedFdtSize); if (Error) { DEBUG ((EFI_D_ERROR, "fdt_open_into(): %a\n", fdt_strerror (Error))); gBS->FreePages (*RelocatedFdtAlloc, EFI_SIZE_TO_PAGES (*RelocatedFdtSize)); return EFI_INVALID_PARAMETER; } return EFI_SUCCESS; } EFI_STATUS PrepareFdt ( IN EFI_PHYSICAL_ADDRESS SystemMemoryBase, IN CONST CHAR8* CommandLineArguments, IN EFI_PHYSICAL_ADDRESS InitrdImage, IN UINTN InitrdImageSize, IN OUT EFI_PHYSICAL_ADDRESS *FdtBlobBase, IN OUT UINTN *FdtBlobSize ) { EFI_STATUS Status; EFI_PHYSICAL_ADDRESS NewFdtBlobBase; EFI_PHYSICAL_ADDRESS NewFdtBlobAllocation; UINTN NewFdtBlobSize; VOID* fdt; INTN err; INTN node; INTN cpu_node; INT32 lenp; CONST VOID* BootArg; CONST VOID* Method; EFI_PHYSICAL_ADDRESS InitrdImageStart; EFI_PHYSICAL_ADDRESS InitrdImageEnd; FDT_REGION Region; UINTN Index; CHAR8 Name[10]; LIST_ENTRY ResourceList; SYSTEM_MEMORY_RESOURCE *Resource; ARM_PROCESSOR_TABLE *ArmProcessorTable; ARM_CORE_INFO *ArmCoreInfoTable; UINT32 MpId; UINT32 ClusterId; UINT32 CoreId; UINT64 CpuReleaseAddr; UINTN MemoryMapSize; EFI_MEMORY_DESCRIPTOR *MemoryMap; EFI_MEMORY_DESCRIPTOR *MemoryMapPtr; UINTN MapKey; UINTN DescriptorSize; UINT32 DescriptorVersion; UINTN Pages; UINTN OriginalFdtSize; BOOLEAN CpusNodeExist; UINTN CoreMpId; NewFdtBlobAllocation = 0; // // Sanity checks on the original FDT blob. // err = fdt_check_header ((VOID*)(UINTN)(*FdtBlobBase)); if (err != 0) { Print (L"ERROR: Device Tree header not valid (err:%d)\n", err); return EFI_INVALID_PARAMETER; } // The original FDT blob might have been loaded partially. // Check that it is not the case. OriginalFdtSize = (UINTN)fdt_totalsize ((VOID*)(UINTN)(*FdtBlobBase)); if (OriginalFdtSize > *FdtBlobSize) { Print (L"ERROR: Incomplete FDT. Only %d/%d bytes have been loaded.\n", *FdtBlobSize, OriginalFdtSize); return EFI_INVALID_PARAMETER; } // // Relocate the FDT to its final location. // Status = RelocateFdt (SystemMemoryBase, *FdtBlobBase, OriginalFdtSize, &NewFdtBlobBase, &NewFdtBlobSize, &NewFdtBlobAllocation); if (EFI_ERROR (Status)) { goto FAIL_RELOCATE_FDT; } fdt = (VOID*)(UINTN)NewFdtBlobBase; node = fdt_subnode_offset (fdt, 0, "chosen"); if (node < 0) { // The 'chosen' node does not exist, create it node = fdt_add_subnode (fdt, 0, "chosen"); if (node < 0) { DEBUG ((EFI_D_ERROR, "Error on finding 'chosen' node\n")); Status = EFI_INVALID_PARAMETER; goto FAIL_COMPLETE_FDT; } } DEBUG_CODE_BEGIN (); BootArg = fdt_getprop (fdt, node, "bootargs", &lenp); if (BootArg != NULL) { DEBUG ((EFI_D_ERROR, "BootArg: %a\n", BootArg)); } DEBUG_CODE_END (); // // Set Linux CmdLine // if ((CommandLineArguments != NULL) && (AsciiStrLen (CommandLineArguments) > 0)) { err = fdt_setprop (fdt, node, "bootargs", CommandLineArguments, AsciiStrSize (CommandLineArguments)); if (err) { DEBUG ((EFI_D_ERROR, "Fail to set new 'bootarg' (err:%d)\n", err)); } } // // Set Linux Initrd // if (InitrdImageSize != 0) { InitrdImageStart = cpu_to_fdt64 (InitrdImage); err = fdt_setprop (fdt, node, "linux,initrd-start", &InitrdImageStart, sizeof (EFI_PHYSICAL_ADDRESS)); if (err) { DEBUG ((EFI_D_ERROR, "Fail to set new 'linux,initrd-start' (err:%d)\n", err)); } InitrdImageEnd = cpu_to_fdt64 (InitrdImage + InitrdImageSize); err = fdt_setprop (fdt, node, "linux,initrd-end", &InitrdImageEnd, sizeof (EFI_PHYSICAL_ADDRESS)); if (err) { DEBUG ((EFI_D_ERROR, "Fail to set new 'linux,initrd-start' (err:%d)\n", err)); } } // // Set Physical memory setup if does not exist // node = fdt_subnode_offset (fdt, 0, "memory"); if (node < 0) { // The 'memory' node does not exist, create it node = fdt_add_subnode (fdt, 0, "memory"); if (node >= 0) { fdt_setprop_string (fdt, node, "name", "memory"); fdt_setprop_string (fdt, node, "device_type", "memory"); GetSystemMemoryResources (&ResourceList); Resource = (SYSTEM_MEMORY_RESOURCE*)ResourceList.ForwardLink; Region.Base = cpu_to_fdtn ((UINTN)Resource->PhysicalStart); Region.Size = cpu_to_fdtn ((UINTN)Resource->ResourceLength); err = fdt_setprop (fdt, node, "reg", &Region, sizeof (Region)); if (err) { DEBUG ((EFI_D_ERROR, "Fail to set new 'memory region' (err:%d)\n", err)); } } } // // Add the memory regions reserved by the UEFI Firmware // // Retrieve the UEFI Memory Map MemoryMap = NULL; MemoryMapSize = 0; Status = gBS->GetMemoryMap (&MemoryMapSize, MemoryMap, &MapKey, &DescriptorSize, &DescriptorVersion); if (Status == EFI_BUFFER_TOO_SMALL) { // The UEFI specification advises to allocate more memory for the MemoryMap buffer between successive // calls to GetMemoryMap(), since allocation of the new buffer may potentially increase memory map size. Pages = EFI_SIZE_TO_PAGES (MemoryMapSize) + 1; MemoryMap = AllocatePages (Pages); if (MemoryMap == NULL) { Status = EFI_OUT_OF_RESOURCES; goto FAIL_COMPLETE_FDT; } Status = gBS->GetMemoryMap (&MemoryMapSize, MemoryMap, &MapKey, &DescriptorSize, &DescriptorVersion); } // Go through the list and add the reserved region to the Device Tree if (!EFI_ERROR (Status)) { MemoryMapPtr = MemoryMap; for (Index = 0; Index < (MemoryMapSize / DescriptorSize); Index++) { if (IsLinuxReservedRegion ((EFI_MEMORY_TYPE)MemoryMapPtr->Type)) { DEBUG ((DEBUG_VERBOSE, "Reserved region of type %d [0x%lX, 0x%lX]\n", MemoryMapPtr->Type, (UINTN)MemoryMapPtr->PhysicalStart, (UINTN)(MemoryMapPtr->PhysicalStart + MemoryMapPtr->NumberOfPages * EFI_PAGE_SIZE))); err = fdt_add_mem_rsv (fdt, MemoryMapPtr->PhysicalStart, MemoryMapPtr->NumberOfPages * EFI_PAGE_SIZE); if (err != 0) { Print (L"Warning: Fail to add 'memreserve' (err:%d)\n", err); } } MemoryMapPtr = (EFI_MEMORY_DESCRIPTOR*)((UINTN)MemoryMapPtr + DescriptorSize); } } // // Setup Arm Mpcore Info if it is a multi-core or multi-cluster platforms. // // For 'cpus' and 'cpu' device tree nodes bindings, refer to this file // in the kernel documentation: // Documentation/devicetree/bindings/arm/cpus.txt // for (Index = 0; Index < gST->NumberOfTableEntries; Index++) { // Check for correct GUID type if (CompareGuid (&gArmMpCoreInfoGuid, &(gST->ConfigurationTable[Index].VendorGuid))) { MpId = ArmReadMpidr (); ClusterId = GET_CLUSTER_ID (MpId); CoreId = GET_CORE_ID (MpId); node = fdt_subnode_offset (fdt, 0, "cpus"); if (node < 0) { // Create the /cpus node node = fdt_add_subnode (fdt, 0, "cpus"); fdt_setprop_string (fdt, node, "name", "cpus"); fdt_setprop_cell (fdt, node, "#address-cells", sizeof (UINTN) / 4); fdt_setprop_cell (fdt, node, "#size-cells", 0); CpusNodeExist = FALSE; } else { CpusNodeExist = TRUE; } // Get pointer to ARM processor table ArmProcessorTable = (ARM_PROCESSOR_TABLE *)gST->ConfigurationTable[Index].VendorTable; ArmCoreInfoTable = ArmProcessorTable->ArmCpus; for (Index = 0; Index < ArmProcessorTable->NumberOfEntries; Index++) { CoreMpId = (UINTN) GET_MPID (ArmCoreInfoTable[Index].ClusterId, ArmCoreInfoTable[Index].CoreId); AsciiSPrint (Name, 10, "cpu@%x", CoreMpId); // If the 'cpus' node did not exist then create all the 'cpu' nodes. // In case 'cpus' node is provided in the original FDT then we do not add // any 'cpu' node. if (!CpusNodeExist) { cpu_node = fdt_add_subnode (fdt, node, Name); if (cpu_node < 0) { DEBUG ((EFI_D_ERROR, "Error on creating '%s' node\n", Name)); Status = EFI_INVALID_PARAMETER; goto FAIL_COMPLETE_FDT; } fdt_setprop_string (fdt, cpu_node, "device_type", "cpu"); CoreMpId = cpu_to_fdtn (CoreMpId); fdt_setprop (fdt, cpu_node, "reg", &CoreMpId, sizeof (CoreMpId)); } else { cpu_node = fdt_subnode_offset (fdt, node, Name); } if (cpu_node >= 0) { Method = fdt_getprop (fdt, cpu_node, "enable-method", &lenp); // We only care when 'enable-method' == 'spin-table'. If the enable-method is not defined // or defined as 'psci' then we ignore its properties. if ((Method != NULL) && (AsciiStrCmp ((CHAR8 *)Method, "spin-table") == 0)) { // There are two cases; // - UEFI firmware parked the secondary cores and/or UEFI firmware is aware of the CPU // release addresses (PcdArmLinuxSpinTable == TRUE) // - the parking of the secondary cores has been managed before starting UEFI and/or UEFI // does not anything about the CPU release addresses - in this case we do nothing if (FeaturePcdGet (PcdArmLinuxSpinTable)) { CpuReleaseAddr = cpu_to_fdt64 (ArmCoreInfoTable[Index].MailboxSetAddress); fdt_setprop (fdt, cpu_node, "cpu-release-addr", &CpuReleaseAddr, sizeof (CpuReleaseAddr)); // If it is not the primary core than the cpu should be disabled if (((ArmCoreInfoTable[Index].ClusterId != ClusterId) || (ArmCoreInfoTable[Index].CoreId != CoreId))) { fdt_setprop_string (fdt, cpu_node, "status", "disabled"); } } } } } break; } } // If we succeeded to generate the new Device Tree then free the old Device Tree gBS->FreePages (*FdtBlobBase, EFI_SIZE_TO_PAGES (*FdtBlobSize)); // Update the real size of the Device Tree fdt_pack ((VOID*)(UINTN)(NewFdtBlobBase)); *FdtBlobBase = NewFdtBlobBase; *FdtBlobSize = (UINTN)fdt_totalsize ((VOID*)(UINTN)(NewFdtBlobBase)); return EFI_SUCCESS; FAIL_COMPLETE_FDT: gBS->FreePages (NewFdtBlobAllocation, EFI_SIZE_TO_PAGES (NewFdtBlobSize)); FAIL_RELOCATE_FDT: *FdtBlobSize = (UINTN)fdt_totalsize ((VOID*)(UINTN)(*FdtBlobBase)); // Return success even if we failed to update the FDT blob. // The original one is still valid. return EFI_SUCCESS; }