/** @file * * Copyright (c) 2011-2013, ARM Limited. All rights reserved. * * This program and the accompanying materials * are licensed and made available under the terms and conditions of the BSD License * which accompanies this distribution. The full text of the license may be found at * http://opensource.org/licenses/bsd-license.php * * THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, * WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. * **/ #include #include #include #include #include "BdsInternal.h" #include "BdsLinuxLoader.h" #define ALIGN(x, a) (((x) + ((a) - 1)) & ~((a) - 1)) #define PALIGN(p, a) ((void *)(ALIGN((unsigned long)(p), (a)))) #define GET_CELL(p) (p += 4, *((const UINT32 *)(p-4))) STATIC inline UINTN cpu_to_fdtn (UINTN x) { if (sizeof (UINTN) == sizeof (UINT32)) { return cpu_to_fdt32 (x); } else { return cpu_to_fdt64 (x); } } typedef struct { UINTN Base; UINTN Size; } FdtRegion; STATIC UINTN IsPrintableString ( IN CONST VOID* data, IN UINTN len ) { CONST CHAR8 *s = data; CONST CHAR8 *ss; // Zero length is not if (len == 0) { return 0; } // Must terminate with zero if (s[len - 1] != '\0') { return 0; } ss = s; while (*s/* && isprint(*s)*/) { s++; } // Not zero, or not done yet if (*s != '\0' || (s + 1 - ss) < len) { return 0; } return 1; } STATIC VOID PrintData ( IN CONST CHAR8* data, IN UINTN len ) { UINTN i; CONST CHAR8 *p = data; // No data, don't print if (len == 0) return; if (IsPrintableString (data, len)) { Print(L" = \"%a\"", (const char *)data); } else if ((len % 4) == 0) { Print(L" = <"); for (i = 0; i < len; i += 4) { Print(L"0x%08x%a", fdt32_to_cpu(GET_CELL(p)),i < (len - 4) ? " " : ""); } Print(L">"); } else { Print(L" = ["); for (i = 0; i < len; i++) Print(L"%02x%a", *p++, i < len - 1 ? " " : ""); Print(L"]"); } } VOID DebugDumpFdt ( IN VOID* FdtBlob ) { struct fdt_header *bph; UINT32 off_dt; UINT32 off_str; CONST CHAR8* p_struct; CONST CHAR8* p_strings; CONST CHAR8* p; CONST CHAR8* s; CONST CHAR8* t; UINT32 tag; UINTN sz; UINTN depth; UINTN shift; UINT32 version; { // Can 'memreserve' be printed by below code? INTN num = fdt_num_mem_rsv(FdtBlob); INTN i, err; UINT64 addr = 0,size = 0; for (i = 0; i < num; i++) { err = fdt_get_mem_rsv(FdtBlob, i, &addr, &size); if (err) { DEBUG((EFI_D_ERROR, "Error (%d) : Cannot get memreserve section (%d)\n", err, i)); } else { Print(L"/memreserve/ \t0x%lx \t0x%lx;\n",addr,size); } } } depth = 0; shift = 4; bph = FdtBlob; off_dt = fdt32_to_cpu(bph->off_dt_struct); off_str = fdt32_to_cpu(bph->off_dt_strings); p_struct = (CONST CHAR8*)FdtBlob + off_dt; p_strings = (CONST CHAR8*)FdtBlob + off_str; version = fdt32_to_cpu(bph->version); p = p_struct; while ((tag = fdt32_to_cpu(GET_CELL(p))) != FDT_END) { if (tag == FDT_BEGIN_NODE) { s = p; p = PALIGN(p + AsciiStrLen (s) + 1, 4); if (*s == '\0') s = "/"; Print(L"%*s%a {\n", depth * shift, L" ", s); depth++; continue; } if (tag == FDT_END_NODE) { depth--; Print(L"%*s};\n", depth * shift, L" "); continue; } if (tag == FDT_NOP) { Print(L"%*s// [NOP]\n", depth * shift, L" "); continue; } if (tag != FDT_PROP) { Print(L"%*s ** Unknown tag 0x%08x\n", depth * shift, L" ", tag); break; } sz = fdt32_to_cpu(GET_CELL(p)); s = p_strings + fdt32_to_cpu(GET_CELL(p)); if (version < 16 && sz >= 8) p = PALIGN(p, 8); t = p; p = PALIGN(p + sz, 4); Print(L"%*s%a", depth * shift, L" ", s); PrintData(t, sz); Print(L";\n"); } } STATIC BOOLEAN IsLinuxReservedRegion ( IN EFI_MEMORY_TYPE MemoryType ) { switch(MemoryType) { case EfiRuntimeServicesCode: case EfiRuntimeServicesData: case EfiUnusableMemory: case EfiACPIReclaimMemory: case EfiACPIMemoryNVS: return TRUE; default: return FALSE; } } STATIC BOOLEAN IsPsciSmcSupported ( VOID ) { BOOLEAN PsciSmcSupported; UINTN Rx; PsciSmcSupported = FALSE; // Check the SMC response to the Presence SMC Rx = ARM_SMC_ID_PRESENCE; ArmCallSmc (&Rx); if (Rx == 1) { // Check the SMC UID Rx = ARM_SMC_ID_UID; ArmCallSmc (&Rx); if (Rx == ARM_TRUSTZONE_UID_4LETTERID) { Rx = ARM_SMC_ID_UID + 1; ArmCallSmc (&Rx); if (Rx == ARM_TRUSTZONE_ARM_UID) { PsciSmcSupported = TRUE; } } } return PsciSmcSupported; } /** ** Relocate the FDT blob to a more appropriate location for the Linux kernel. ** This function will allocate memory for the relocated FDT blob. ** ** @retval EFI_SUCCESS on success. ** @retval EFI_OUT_OF_RESOURCES or EFI_INVALID_PARAMETER on failure. */ STATIC EFI_STATUS RelocateFdt ( EFI_PHYSICAL_ADDRESS OriginalFdt, UINTN OriginalFdtSize, EFI_PHYSICAL_ADDRESS *RelocatedFdt, UINTN *RelocatedFdtSize, EFI_PHYSICAL_ADDRESS *RelocatedFdtAlloc ) { EFI_STATUS Status; INTN Error; UINT32 FdtAlignment; *RelocatedFdtSize = OriginalFdtSize + FDT_ADDITIONAL_ENTRIES_SIZE; // If FDT load address needs to be aligned, allocate more space. FdtAlignment = PcdGet32 (PcdArmLinuxFdtAlignment); if (FdtAlignment != 0) { *RelocatedFdtSize += FdtAlignment; } // Try below a watermark address. Status = EFI_NOT_FOUND; if (PcdGet32 (PcdArmLinuxFdtMaxOffset) != 0) { *RelocatedFdt = LINUX_FDT_MAX_OFFSET; Status = gBS->AllocatePages (AllocateMaxAddress, EfiBootServicesData, EFI_SIZE_TO_PAGES (*RelocatedFdtSize), RelocatedFdt); if (EFI_ERROR (Status)) { DEBUG ((EFI_D_WARN, "Warning: Failed to load FDT below address 0x%lX (%r). Will try again at a random address anywhere.\n", *RelocatedFdt, Status)); } } // Try anywhere there is available space. if (EFI_ERROR (Status)) { Status = gBS->AllocatePages (AllocateAnyPages, EfiBootServicesData, EFI_SIZE_TO_PAGES (*RelocatedFdtSize), RelocatedFdt); if (EFI_ERROR (Status)) { ASSERT_EFI_ERROR (Status); return EFI_OUT_OF_RESOURCES; } else { DEBUG ((EFI_D_WARN, "WARNING: Loaded FDT at random address 0x%lX.\nWARNING: There is a risk of accidental overwriting by other code/data.\n", *RelocatedFdt)); } } *RelocatedFdtAlloc = *RelocatedFdt; if (FdtAlignment != 0) { *RelocatedFdt = ALIGN (*RelocatedFdt, FdtAlignment); } // Load the Original FDT tree into the new region Error = fdt_open_into ((VOID*)(UINTN) OriginalFdt, (VOID*)(UINTN)(*RelocatedFdt), *RelocatedFdtSize); if (Error) { DEBUG ((EFI_D_ERROR, "fdt_open_into(): %a\n", fdt_strerror (Error))); gBS->FreePages (*RelocatedFdtAlloc, EFI_SIZE_TO_PAGES (*RelocatedFdtSize)); return EFI_INVALID_PARAMETER; } DEBUG_CODE_BEGIN(); //DebugDumpFdt (fdt); DEBUG_CODE_END(); return EFI_SUCCESS; } EFI_STATUS PrepareFdt ( IN CONST CHAR8* CommandLineArguments, IN EFI_PHYSICAL_ADDRESS InitrdImage, IN UINTN InitrdImageSize, IN OUT EFI_PHYSICAL_ADDRESS *FdtBlobBase, IN OUT UINTN *FdtBlobSize ) { EFI_STATUS Status; EFI_PHYSICAL_ADDRESS NewFdtBlobBase; EFI_PHYSICAL_ADDRESS NewFdtBlobAllocation; UINTN NewFdtBlobSize; VOID* fdt; INTN err; INTN node; INTN cpu_node; INTN lenp; CONST VOID* BootArg; CONST VOID* Method; EFI_PHYSICAL_ADDRESS InitrdImageStart; EFI_PHYSICAL_ADDRESS InitrdImageEnd; FdtRegion Region; UINTN Index; CHAR8 Name[10]; LIST_ENTRY ResourceList; BDS_SYSTEM_MEMORY_RESOURCE *Resource; ARM_PROCESSOR_TABLE *ArmProcessorTable; ARM_CORE_INFO *ArmCoreInfoTable; UINT32 MpId; UINT32 ClusterId; UINT32 CoreId; UINT64 CpuReleaseAddr; UINTN MemoryMapSize; EFI_MEMORY_DESCRIPTOR *MemoryMap; UINTN MapKey; UINTN DescriptorSize; UINT32 DescriptorVersion; UINTN Pages; BOOLEAN PsciSmcSupported; UINTN OriginalFdtSize; BOOLEAN CpusNodeExist; UINTN CoreMpId; UINTN Smc; NewFdtBlobAllocation = 0; // // Sanity checks on the original FDT blob. // err = fdt_check_header ((VOID*)(UINTN)(*FdtBlobBase)); if (err != 0) { Print (L"ERROR: Device Tree header not valid (err:%d)\n", err); return EFI_INVALID_PARAMETER; } // The original FDT blob might have been loaded partially. // Check that it is not the case. OriginalFdtSize = (UINTN)fdt_totalsize ((VOID*)(UINTN)(*FdtBlobBase)); if (OriginalFdtSize > *FdtBlobSize) { Print (L"ERROR: Incomplete FDT. Only %d/%d bytes have been loaded.\n", *FdtBlobSize, OriginalFdtSize); return EFI_INVALID_PARAMETER; } // // Relocate the FDT to its final location. // Status = RelocateFdt (*FdtBlobBase, OriginalFdtSize, &NewFdtBlobBase, &NewFdtBlobSize, &NewFdtBlobAllocation); if (EFI_ERROR (Status)) { goto FAIL_RELOCATE_FDT; } // // Ensure the Power State Coordination Interface (PSCI) SMCs are there if supported // PsciSmcSupported = FALSE; if (FeaturePcdGet (PcdArmPsciSupport) == TRUE) { PsciSmcSupported = IsPsciSmcSupported(); if (PsciSmcSupported == FALSE) { DEBUG ((EFI_D_ERROR, "Warning: The Power State Coordination Interface (PSCI) is not supported by your platform Trusted Firmware.\n")); } } fdt = (VOID*)(UINTN)NewFdtBlobBase; node = fdt_subnode_offset (fdt, 0, "chosen"); if (node < 0) { // The 'chosen' node does not exist, create it node = fdt_add_subnode(fdt, 0, "chosen"); if (node < 0) { DEBUG((EFI_D_ERROR,"Error on finding 'chosen' node\n")); Status = EFI_INVALID_PARAMETER; goto FAIL_COMPLETE_FDT; } } DEBUG_CODE_BEGIN(); BootArg = fdt_getprop(fdt, node, "bootargs", &lenp); if (BootArg != NULL) { DEBUG((EFI_D_ERROR,"BootArg: %a\n",BootArg)); } DEBUG_CODE_END(); // // Set Linux CmdLine // if ((CommandLineArguments != NULL) && (AsciiStrLen (CommandLineArguments) > 0)) { err = fdt_setprop(fdt, node, "bootargs", CommandLineArguments, AsciiStrSize(CommandLineArguments)); if (err) { DEBUG((EFI_D_ERROR,"Fail to set new 'bootarg' (err:%d)\n",err)); } } // // Set Linux Initrd // if (InitrdImageSize != 0) { InitrdImageStart = cpu_to_fdt64 (InitrdImage); err = fdt_setprop(fdt, node, "linux,initrd-start", &InitrdImageStart, sizeof(EFI_PHYSICAL_ADDRESS)); if (err) { DEBUG((EFI_D_ERROR,"Fail to set new 'linux,initrd-start' (err:%d)\n",err)); } InitrdImageEnd = cpu_to_fdt64 (InitrdImage + InitrdImageSize); err = fdt_setprop(fdt, node, "linux,initrd-end", &InitrdImageEnd, sizeof(EFI_PHYSICAL_ADDRESS)); if (err) { DEBUG((EFI_D_ERROR,"Fail to set new 'linux,initrd-start' (err:%d)\n",err)); } } // // Set Physical memory setup if does not exist // node = fdt_subnode_offset(fdt, 0, "memory"); if (node < 0) { // The 'memory' node does not exist, create it node = fdt_add_subnode(fdt, 0, "memory"); if (node >= 0) { fdt_setprop_string(fdt, node, "name", "memory"); fdt_setprop_string(fdt, node, "device_type", "memory"); GetSystemMemoryResources (&ResourceList); Resource = (BDS_SYSTEM_MEMORY_RESOURCE*)ResourceList.ForwardLink; Region.Base = cpu_to_fdtn ((UINTN)Resource->PhysicalStart); Region.Size = cpu_to_fdtn ((UINTN)Resource->ResourceLength); err = fdt_setprop(fdt, node, "reg", &Region, sizeof(Region)); if (err) { DEBUG((EFI_D_ERROR,"Fail to set new 'memory region' (err:%d)\n",err)); } } } // // Add the memory regions reserved by the UEFI Firmware // // Retrieve the UEFI Memory Map MemoryMap = NULL; MemoryMapSize = 0; Status = gBS->GetMemoryMap (&MemoryMapSize, MemoryMap, &MapKey, &DescriptorSize, &DescriptorVersion); if (Status == EFI_BUFFER_TOO_SMALL) { Pages = EFI_SIZE_TO_PAGES (MemoryMapSize) + 1; MemoryMap = AllocatePages (Pages); Status = gBS->GetMemoryMap (&MemoryMapSize, MemoryMap, &MapKey, &DescriptorSize, &DescriptorVersion); } // Go through the list and add the reserved region to the Device Tree if (!EFI_ERROR(Status)) { for (Index = 0; Index < (MemoryMapSize / sizeof(EFI_MEMORY_DESCRIPTOR)); Index++) { if (IsLinuxReservedRegion ((EFI_MEMORY_TYPE)MemoryMap[Index].Type)) { DEBUG((DEBUG_VERBOSE, "Reserved region of type %d [0x%X, 0x%X]\n", MemoryMap[Index].Type, (UINTN)MemoryMap[Index].PhysicalStart, (UINTN)(MemoryMap[Index].PhysicalStart + MemoryMap[Index].NumberOfPages * EFI_PAGE_SIZE))); err = fdt_add_mem_rsv(fdt, MemoryMap[Index].PhysicalStart, MemoryMap[Index].NumberOfPages * EFI_PAGE_SIZE); if (err != 0) { Print(L"Warning: Fail to add 'memreserve' (err:%d)\n", err); } } } } // // Setup Arm Mpcore Info if it is a multi-core or multi-cluster platforms. // // For 'cpus' and 'cpu' device tree nodes bindings, refer to this file // in the kernel documentation: // Documentation/devicetree/bindings/arm/cpus.txt // for (Index=0; Index < gST->NumberOfTableEntries; Index++) { // Check for correct GUID type if (CompareGuid (&gArmMpCoreInfoGuid, &(gST->ConfigurationTable[Index].VendorGuid))) { MpId = ArmReadMpidr (); ClusterId = GET_CLUSTER_ID(MpId); CoreId = GET_CORE_ID(MpId); node = fdt_subnode_offset(fdt, 0, "cpus"); if (node < 0) { // Create the /cpus node node = fdt_add_subnode(fdt, 0, "cpus"); fdt_setprop_string(fdt, node, "name", "cpus"); fdt_setprop_cell (fdt, node, "#address-cells", sizeof (UINTN) / 4); fdt_setprop_cell(fdt, node, "#size-cells", 0); CpusNodeExist = FALSE; } else { CpusNodeExist = TRUE; } // Get pointer to ARM processor table ArmProcessorTable = (ARM_PROCESSOR_TABLE *)gST->ConfigurationTable[Index].VendorTable; ArmCoreInfoTable = ArmProcessorTable->ArmCpus; for (Index = 0; Index < ArmProcessorTable->NumberOfEntries; Index++) { AsciiSPrint (Name, 10, "cpu@%d", Index); // If the 'cpus' node did not exist then create all the 'cpu' nodes. // In case 'cpus' node is provided in the original FDT then we do not add // any 'cpu' node. if (!CpusNodeExist) { cpu_node = fdt_add_subnode (fdt, node, Name); if (cpu_node < 0) { DEBUG ((EFI_D_ERROR, "Error on creating '%s' node\n", Name)); Status = EFI_INVALID_PARAMETER; goto FAIL_COMPLETE_FDT; } fdt_setprop_string (fdt, cpu_node, "device_type", "cpu"); CoreMpId = (UINTN) GET_MPID (ArmCoreInfoTable[Index].ClusterId, ArmCoreInfoTable[Index].CoreId); CoreMpId = cpu_to_fdtn (CoreMpId); fdt_setprop (fdt, cpu_node, "reg", &CoreMpId, sizeof (CoreMpId)); if (PsciSmcSupported) { fdt_setprop_string (fdt, cpu_node, "enable-method", "psci"); } } else { cpu_node = fdt_subnode_offset(fdt, node, Name); } // If Power State Coordination Interface (PSCI) is not supported then it is expected the secondary // cores are spinning waiting for the Operating System to release them if ((PsciSmcSupported == FALSE) && (cpu_node >= 0)) { // We as the bootloader are responsible for either creating or updating // these entries. Do not trust the entries in the DT. We only know about // 'spin-table' type. Do not try to update other types if defined. Method = fdt_getprop(fdt, cpu_node, "enable-method", &lenp); if ( (Method == NULL) || (!AsciiStrCmp((CHAR8 *)Method, "spin-table")) ) { fdt_setprop_string(fdt, cpu_node, "enable-method", "spin-table"); CpuReleaseAddr = cpu_to_fdt64(ArmCoreInfoTable[Index].MailboxSetAddress); fdt_setprop(fdt, cpu_node, "cpu-release-addr", &CpuReleaseAddr, sizeof(CpuReleaseAddr)); // If it is not the primary core than the cpu should be disabled if (((ArmCoreInfoTable[Index].ClusterId != ClusterId) || (ArmCoreInfoTable[Index].CoreId != CoreId))) { fdt_setprop_string(fdt, cpu_node, "status", "disabled"); } } else { Print(L"Warning: Unsupported enable-method type for CPU[%d] : %a\n", Index, (CHAR8 *)Method); } } } break; } } // If the Power State Coordination Interface is supported then we signal it in the Device Tree if (PsciSmcSupported == TRUE) { // Before to create it we check if the node is not already defined in the Device Tree node = fdt_subnode_offset(fdt, 0, "psci"); if (node < 0) { // The 'psci' node does not exist, create it node = fdt_add_subnode(fdt, 0, "psci"); if (node < 0) { DEBUG((EFI_D_ERROR,"Error on creating 'psci' node\n")); Status = EFI_INVALID_PARAMETER; goto FAIL_COMPLETE_FDT; } else { fdt_setprop_string (fdt, node, "compatible", "arm,psci"); fdt_setprop_string (fdt, node, "method", "smc"); Smc = cpu_to_fdtn (ARM_SMC_ARM_CPU_SUSPEND); fdt_setprop (fdt, node, "cpu_suspend", &Smc, sizeof (Smc)); Smc = cpu_to_fdtn (ARM_SMC_ARM_CPU_OFF); fdt_setprop (fdt, node, "cpu_off", &Smc, sizeof (Smc)); Smc = cpu_to_fdtn (ARM_SMC_ARM_CPU_ON); fdt_setprop (fdt, node, "cpu_on", &Smc, sizeof (Smc)); Smc = cpu_to_fdtn (ARM_SMC_ARM_MIGRATE); fdt_setprop (fdt, node, "migrate", &Smc, sizeof (Smc)); } } } DEBUG_CODE_BEGIN(); //DebugDumpFdt (fdt); DEBUG_CODE_END(); // If we succeeded to generate the new Device Tree then free the old Device Tree gBS->FreePages (*FdtBlobBase, EFI_SIZE_TO_PAGES (*FdtBlobSize)); *FdtBlobBase = NewFdtBlobBase; *FdtBlobSize = (UINTN)fdt_totalsize ((VOID*)(UINTN)(NewFdtBlobBase)); return EFI_SUCCESS; FAIL_COMPLETE_FDT: gBS->FreePages (NewFdtBlobAllocation, EFI_SIZE_TO_PAGES (NewFdtBlobSize)); FAIL_RELOCATE_FDT: *FdtBlobSize = (UINTN)fdt_totalsize ((VOID*)(UINTN)(*FdtBlobBase)); // Return success even if we failed to update the FDT blob. // The original one is still valid. return EFI_SUCCESS; }