/** @file * Device tree enumeration DXE driver for ARM Virtual Machines * * Copyright (c) 2014, Linaro Ltd. All rights reserved.
* * This program and the accompanying materials are * licensed and made available under the terms and conditions of the BSD License * which accompanies this distribution. The full text of the license may be found at * http://opensource.org/licenses/bsd-license.php * * THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, * WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. * **/ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #pragma pack (1) typedef struct { VENDOR_DEVICE_PATH Vendor; UINT64 PhysBase; EFI_DEVICE_PATH_PROTOCOL End; } VIRTIO_TRANSPORT_DEVICE_PATH; #pragma pack () typedef enum { PropertyTypeUnknown, PropertyTypeGic, PropertyTypeRtc, PropertyTypeVirtio, PropertyTypeUart, PropertyTypeTimer, PropertyTypePsci, PropertyTypeFwCfg, } PROPERTY_TYPE; typedef struct { PROPERTY_TYPE Type; CHAR8 Compatible[20]; } PROPERTY; STATIC CONST PROPERTY CompatibleProperties[] = { { PropertyTypeGic, "arm,cortex-a15-gic" }, { PropertyTypeRtc, "arm,pl031" }, { PropertyTypeVirtio, "virtio,mmio" }, { PropertyTypeUart, "arm,pl011" }, { PropertyTypeTimer, "arm,armv7-timer" }, { PropertyTypeTimer, "arm,armv8-timer" }, { PropertyTypePsci, "arm,psci-0.2" }, { PropertyTypeFwCfg, "qemu,fw-cfg-mmio" }, { PropertyTypeUnknown, "" } }; typedef struct { UINT32 Type; UINT32 Number; UINT32 Flags; } INTERRUPT_PROPERTY; STATIC PROPERTY_TYPE GetTypeFromNode ( IN CONST CHAR8 *NodeType, IN UINTN Size ) { CONST CHAR8 *Compatible; CONST PROPERTY *CompatibleProperty; // // A 'compatible' node may contain a sequence of NULL terminated // compatible strings so check each one // for (Compatible = NodeType; Compatible < NodeType + Size && *Compatible; Compatible += 1 + AsciiStrLen (Compatible)) { for (CompatibleProperty = CompatibleProperties; CompatibleProperty->Compatible[0]; CompatibleProperty++) { if (AsciiStrCmp (CompatibleProperty->Compatible, Compatible) == 0) { return CompatibleProperty->Type; } } } return PropertyTypeUnknown; } EFI_STATUS EFIAPI InitializeVirtFdtDxe ( IN EFI_HANDLE ImageHandle, IN EFI_SYSTEM_TABLE *SystemTable ) { VOID *DeviceTreeBase; INT32 Node, Prev; INT32 RtcNode; EFI_STATUS Status; CONST CHAR8 *Type; INT32 Len; PROPERTY_TYPE PropType; CONST VOID *RegProp; VIRTIO_TRANSPORT_DEVICE_PATH *DevicePath; EFI_HANDLE Handle; UINT64 RegBase; UINT64 DistBase, CpuBase; CONST INTERRUPT_PROPERTY *InterruptProp; INT32 SecIntrNum, IntrNum, VirtIntrNum, HypIntrNum; CONST CHAR8 *PsciMethod; UINT64 FwCfgSelectorAddress; UINT64 FwCfgSelectorSize; UINT64 FwCfgDataAddress; UINT64 FwCfgDataSize; DeviceTreeBase = (VOID *)(UINTN)PcdGet64 (PcdDeviceTreeBaseAddress); ASSERT (DeviceTreeBase != NULL); if (fdt_check_header (DeviceTreeBase) != 0) { DEBUG ((EFI_D_ERROR, "%a: No DTB found @ 0x%p\n", __FUNCTION__, DeviceTreeBase)); return EFI_NOT_FOUND; } Status = gBS->InstallConfigurationTable (&gFdtTableGuid, DeviceTreeBase); ASSERT_EFI_ERROR (Status); DEBUG ((EFI_D_INFO, "%a: DTB @ 0x%p\n", __FUNCTION__, DeviceTreeBase)); RtcNode = -1; // // Now enumerate the nodes and install peripherals that we are interested in, // i.e., GIC, RTC and virtio MMIO nodes // for (Prev = 0;; Prev = Node) { Node = fdt_next_node (DeviceTreeBase, Prev, NULL); if (Node < 0) { break; } Type = fdt_getprop (DeviceTreeBase, Node, "compatible", &Len); if (Type == NULL) { continue; } PropType = GetTypeFromNode (Type, Len); if (PropType == PropertyTypeUnknown) { continue; } // // Get the 'reg' property of this node. For now, we will assume // 8 byte quantities for base and size, respectively. // TODO use #cells root properties instead // RegProp = fdt_getprop (DeviceTreeBase, Node, "reg", &Len); ASSERT ((RegProp != NULL) || (PropType == PropertyTypeTimer) || (PropType == PropertyTypePsci)); switch (PropType) { case PropertyTypeFwCfg: ASSERT (Len == 2 * sizeof (UINT64)); FwCfgDataAddress = fdt64_to_cpu (((UINT64 *)RegProp)[0]); FwCfgDataSize = 8; FwCfgSelectorAddress = FwCfgDataAddress + FwCfgDataSize; FwCfgSelectorSize = 2; // // The following ASSERT()s express // // Address + Size - 1 <= MAX_UINTN // // for both registers, that is, that the last byte in each MMIO range is // expressible as a MAX_UINTN. The form below is mathematically // equivalent, and it also prevents any unsigned overflow before the // comparison. // ASSERT (FwCfgSelectorAddress <= MAX_UINTN - FwCfgSelectorSize + 1); ASSERT (FwCfgDataAddress <= MAX_UINTN - FwCfgDataSize + 1); PcdSet64 (PcdFwCfgSelectorAddress, FwCfgSelectorAddress); PcdSet64 (PcdFwCfgDataAddress, FwCfgDataAddress); DEBUG ((EFI_D_INFO, "Found FwCfg @ 0x%Lx/0x%Lx\n", FwCfgSelectorAddress, FwCfgDataAddress)); break; case PropertyTypeVirtio: ASSERT (Len == 16); // // Create a unique device path for this transport on the fly // RegBase = fdt64_to_cpu (((UINT64 *)RegProp)[0]); DevicePath = (VIRTIO_TRANSPORT_DEVICE_PATH *)CreateDeviceNode ( HARDWARE_DEVICE_PATH, HW_VENDOR_DP, sizeof (VIRTIO_TRANSPORT_DEVICE_PATH)); if (DevicePath == NULL) { DEBUG ((EFI_D_ERROR, "%a: Out of memory\n", __FUNCTION__)); break; } CopyMem (&DevicePath->Vendor.Guid, &gVirtioMmioTransportGuid, sizeof (EFI_GUID)); DevicePath->PhysBase = RegBase; SetDevicePathNodeLength (&DevicePath->Vendor, sizeof (*DevicePath) - sizeof (DevicePath->End)); SetDevicePathEndNode (&DevicePath->End); Handle = NULL; Status = gBS->InstallProtocolInterface (&Handle, &gEfiDevicePathProtocolGuid, EFI_NATIVE_INTERFACE, DevicePath); if (EFI_ERROR (Status)) { DEBUG ((EFI_D_ERROR, "%a: Failed to install the EFI_DEVICE_PATH " "protocol on a new handle (Status == %r)\n", __FUNCTION__, Status)); FreePool (DevicePath); break; } Status = VirtioMmioInstallDevice (RegBase, Handle); if (EFI_ERROR (Status)) { DEBUG ((EFI_D_ERROR, "%a: Failed to install VirtIO transport @ 0x%Lx " "on handle %p (Status == %r)\n", __FUNCTION__, RegBase, Handle, Status)); Status = gBS->UninstallProtocolInterface (Handle, &gEfiDevicePathProtocolGuid, DevicePath); ASSERT_EFI_ERROR (Status); FreePool (DevicePath); } break; case PropertyTypeGic: ASSERT (Len == 32); DistBase = fdt64_to_cpu (((UINT64 *)RegProp)[0]); CpuBase = fdt64_to_cpu (((UINT64 *)RegProp)[2]); ASSERT (DistBase < MAX_UINT32); ASSERT (CpuBase < MAX_UINT32); PcdSet32 (PcdGicDistributorBase, (UINT32)DistBase); PcdSet32 (PcdGicInterruptInterfaceBase, (UINT32)CpuBase); DEBUG ((EFI_D_INFO, "Found GIC @ 0x%Lx/0x%Lx\n", DistBase, CpuBase)); break; case PropertyTypeRtc: ASSERT (Len == 16); RegBase = fdt64_to_cpu (((UINT64 *)RegProp)[0]); ASSERT (RegBase < MAX_UINT32); PcdSet32 (PcdPL031RtcBase, (UINT32)RegBase); DEBUG ((EFI_D_INFO, "Found PL031 RTC @ 0x%Lx\n", RegBase)); RtcNode = Node; break; case PropertyTypeTimer: // // - interrupts : Interrupt list for secure, non-secure, virtual and // hypervisor timers, in that order. // InterruptProp = fdt_getprop (DeviceTreeBase, Node, "interrupts", &Len); ASSERT (Len == 48); SecIntrNum = fdt32_to_cpu (InterruptProp[0].Number) + (InterruptProp[0].Type ? 16 : 0); IntrNum = fdt32_to_cpu (InterruptProp[1].Number) + (InterruptProp[1].Type ? 16 : 0); VirtIntrNum = fdt32_to_cpu (InterruptProp[2].Number) + (InterruptProp[2].Type ? 16 : 0); HypIntrNum = fdt32_to_cpu (InterruptProp[3].Number) + (InterruptProp[3].Type ? 16 : 0); DEBUG ((EFI_D_INFO, "Found Timer interrupts %d, %d, %d, %d\n", SecIntrNum, IntrNum, VirtIntrNum, HypIntrNum)); PcdSet32 (PcdArmArchTimerSecIntrNum, SecIntrNum); PcdSet32 (PcdArmArchTimerIntrNum, IntrNum); PcdSet32 (PcdArmArchTimerVirtIntrNum, VirtIntrNum); PcdSet32 (PcdArmArchTimerHypIntrNum, HypIntrNum); break; case PropertyTypePsci: PsciMethod = fdt_getprop (DeviceTreeBase, Node, "method", &Len); if (PsciMethod && AsciiStrnCmp (PsciMethod, "hvc", 3) == 0) { PcdSet32 (PcdArmPsciMethod, 1); } else if (PsciMethod && AsciiStrnCmp (PsciMethod, "smc", 3) == 0) { PcdSet32 (PcdArmPsciMethod, 2); } else { DEBUG ((EFI_D_ERROR, "%a: Unknown PSCI method \"%a\"\n", __FUNCTION__, PsciMethod)); } break; default: break; } } // // UEFI takes ownership of the RTC hardware, and exposes its functionality // through the UEFI Runtime Services GetTime, SetTime, etc. This means we // need to disable it in the device tree to prevent the OS from attaching its // device driver as well. // if ((RtcNode != -1) && fdt_setprop_string (DeviceTreeBase, RtcNode, "status", "disabled") != 0) { DEBUG ((EFI_D_WARN, "Failed to set PL031 status to 'disabled'\n")); } return EFI_SUCCESS; }