/** @file NorFlashDxe.c
Copyright (c) 2011 - 2014, ARM Ltd. All rights reserved.
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#include
#include
#include
#include
#include
#include "NorFlashDxe.h"
STATIC EFI_EVENT mNorFlashVirtualAddrChangeEvent;
//
// Global variable declarations
//
NOR_FLASH_INSTANCE **mNorFlashInstances;
UINT32 mNorFlashDeviceCount;
NOR_FLASH_INSTANCE mNorFlashInstanceTemplate = {
NOR_FLASH_SIGNATURE, // Signature
NULL, // Handle ... NEED TO BE FILLED
FALSE, // Initialized
NULL, // Initialize
0, // DeviceBaseAddress ... NEED TO BE FILLED
0, // RegionBaseAddress ... NEED TO BE FILLED
0, // Size ... NEED TO BE FILLED
0, // StartLba
{
EFI_BLOCK_IO_PROTOCOL_REVISION2, // Revision
NULL, // Media ... NEED TO BE FILLED
NorFlashBlockIoReset, // Reset;
NorFlashBlockIoReadBlocks, // ReadBlocks
NorFlashBlockIoWriteBlocks, // WriteBlocks
NorFlashBlockIoFlushBlocks // FlushBlocks
}, // BlockIoProtocol
{
0, // MediaId ... NEED TO BE FILLED
FALSE, // RemovableMedia
TRUE, // MediaPresent
FALSE, // LogicalPartition
FALSE, // ReadOnly
FALSE, // WriteCaching;
0, // BlockSize ... NEED TO BE FILLED
4, // IoAlign
0, // LastBlock ... NEED TO BE FILLED
0, // LowestAlignedLba
1, // LogicalBlocksPerPhysicalBlock
}, //Media;
{
EFI_DISK_IO_PROTOCOL_REVISION, // Revision
NorFlashDiskIoReadDisk, // ReadDisk
NorFlashDiskIoWriteDisk // WriteDisk
},
FALSE, // SupportFvb ... NEED TO BE FILLED
{
FvbGetAttributes, // GetAttributes
FvbSetAttributes, // SetAttributes
FvbGetPhysicalAddress, // GetPhysicalAddress
FvbGetBlockSize, // GetBlockSize
FvbRead, // Read
FvbWrite, // Write
FvbEraseBlocks, // EraseBlocks
NULL, //ParentHandle
}, // FvbProtoccol;
NULL, // ShadowBuffer
{
{
{
HARDWARE_DEVICE_PATH,
HW_VENDOR_DP,
{ (UINT8)sizeof(VENDOR_DEVICE_PATH), (UINT8)((sizeof(VENDOR_DEVICE_PATH)) >> 8) }
},
{ 0x0, 0x0, 0x0, { 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0 } }, // GUID ... NEED TO BE FILLED
},
{
END_DEVICE_PATH_TYPE,
END_ENTIRE_DEVICE_PATH_SUBTYPE,
{ sizeof (EFI_DEVICE_PATH_PROTOCOL), 0 }
}
} // DevicePath
};
EFI_STATUS
NorFlashCreateInstance (
IN UINTN NorFlashDeviceBase,
IN UINTN NorFlashRegionBase,
IN UINTN NorFlashSize,
IN UINT32 MediaId,
IN UINT32 BlockSize,
IN BOOLEAN SupportFvb,
IN CONST GUID *NorFlashGuid,
OUT NOR_FLASH_INSTANCE** NorFlashInstance
)
{
EFI_STATUS Status;
NOR_FLASH_INSTANCE* Instance;
ASSERT(NorFlashInstance != NULL);
Instance = AllocateRuntimeCopyPool (sizeof(NOR_FLASH_INSTANCE),&mNorFlashInstanceTemplate);
if (Instance == NULL) {
return EFI_OUT_OF_RESOURCES;
}
Instance->DeviceBaseAddress = NorFlashDeviceBase;
Instance->RegionBaseAddress = NorFlashRegionBase;
Instance->Size = NorFlashSize;
Instance->BlockIoProtocol.Media = &Instance->Media;
Instance->Media.MediaId = MediaId;
Instance->Media.BlockSize = BlockSize;
Instance->Media.LastBlock = (NorFlashSize / BlockSize)-1;
CopyGuid (&Instance->DevicePath.Vendor.Guid, NorFlashGuid);
Instance->ShadowBuffer = AllocateRuntimePool (BlockSize);;
if (Instance->ShadowBuffer == NULL) {
return EFI_OUT_OF_RESOURCES;
}
if (SupportFvb) {
Instance->SupportFvb = TRUE;
Instance->Initialize = NorFlashFvbInitialize;
Status = gBS->InstallMultipleProtocolInterfaces (
&Instance->Handle,
&gEfiDevicePathProtocolGuid, &Instance->DevicePath,
&gEfiBlockIoProtocolGuid, &Instance->BlockIoProtocol,
&gEfiFirmwareVolumeBlockProtocolGuid, &Instance->FvbProtocol,
NULL
);
if (EFI_ERROR(Status)) {
FreePool (Instance);
return Status;
}
} else {
Instance->Initialized = TRUE;
Status = gBS->InstallMultipleProtocolInterfaces (
&Instance->Handle,
&gEfiDevicePathProtocolGuid, &Instance->DevicePath,
&gEfiBlockIoProtocolGuid, &Instance->BlockIoProtocol,
&gEfiDiskIoProtocolGuid, &Instance->DiskIoProtocol,
NULL
);
if (EFI_ERROR(Status)) {
FreePool (Instance);
return Status;
}
}
*NorFlashInstance = Instance;
return Status;
}
UINT32
NorFlashReadStatusRegister (
IN NOR_FLASH_INSTANCE *Instance,
IN UINTN SR_Address
)
{
// Prepare to read the status register
SEND_NOR_COMMAND (Instance->DeviceBaseAddress, 0, P30_CMD_READ_STATUS_REGISTER);
return MmioRead32 (Instance->DeviceBaseAddress);
}
STATIC
BOOLEAN
NorFlashBlockIsLocked (
IN NOR_FLASH_INSTANCE *Instance,
IN UINTN BlockAddress
)
{
UINT32 LockStatus;
// Send command for reading device id
SEND_NOR_COMMAND (BlockAddress, 2, P30_CMD_READ_DEVICE_ID);
// Read block lock status
LockStatus = MmioRead32 (CREATE_NOR_ADDRESS(BlockAddress, 2));
// Decode block lock status
LockStatus = FOLD_32BIT_INTO_16BIT(LockStatus);
if ((LockStatus & 0x2) != 0) {
DEBUG((EFI_D_ERROR, "NorFlashBlockIsLocked: WARNING: Block LOCKED DOWN\n"));
}
return ((LockStatus & 0x1) != 0);
}
STATIC
EFI_STATUS
NorFlashUnlockSingleBlock (
IN NOR_FLASH_INSTANCE *Instance,
IN UINTN BlockAddress
)
{
UINT32 LockStatus;
// Raise the Task Priority Level to TPL_NOTIFY to serialise all its operations
// and to protect shared data structures.
if (FeaturePcdGet (PcdNorFlashCheckBlockLocked) == TRUE) {
do {
// Request a lock setup
SEND_NOR_COMMAND (BlockAddress, 0, P30_CMD_LOCK_BLOCK_SETUP);
// Request an unlock
SEND_NOR_COMMAND (BlockAddress, 0, P30_CMD_UNLOCK_BLOCK);
// Send command for reading device id
SEND_NOR_COMMAND (BlockAddress, 2, P30_CMD_READ_DEVICE_ID);
// Read block lock status
LockStatus = MmioRead32 (CREATE_NOR_ADDRESS(BlockAddress, 2));
// Decode block lock status
LockStatus = FOLD_32BIT_INTO_16BIT(LockStatus);
} while ((LockStatus & 0x1) == 1);
} else {
// Request a lock setup
SEND_NOR_COMMAND (BlockAddress, 0, P30_CMD_LOCK_BLOCK_SETUP);
// Request an unlock
SEND_NOR_COMMAND (BlockAddress, 0, P30_CMD_UNLOCK_BLOCK);
// Wait until the status register gives us the all clear
do {
LockStatus = NorFlashReadStatusRegister (Instance, BlockAddress);
} while ((LockStatus & P30_SR_BIT_WRITE) != P30_SR_BIT_WRITE);
}
// Put device back into Read Array mode
SEND_NOR_COMMAND (BlockAddress, 0, P30_CMD_READ_ARRAY);
DEBUG((DEBUG_BLKIO, "UnlockSingleBlock: BlockAddress=0x%08x\n", BlockAddress));
return EFI_SUCCESS;
}
STATIC
EFI_STATUS
NorFlashUnlockSingleBlockIfNecessary (
IN NOR_FLASH_INSTANCE *Instance,
IN UINTN BlockAddress
)
{
EFI_STATUS Status;
Status = EFI_SUCCESS;
if (NorFlashBlockIsLocked (Instance, BlockAddress) == TRUE) {
Status = NorFlashUnlockSingleBlock (Instance, BlockAddress);
}
return Status;
}
/**
* The following function presumes that the block has already been unlocked.
**/
STATIC
EFI_STATUS
NorFlashEraseSingleBlock (
IN NOR_FLASH_INSTANCE *Instance,
IN UINTN BlockAddress
)
{
EFI_STATUS Status;
UINT32 StatusRegister;
Status = EFI_SUCCESS;
// Request a block erase and then confirm it
SEND_NOR_COMMAND(BlockAddress, 0, P30_CMD_BLOCK_ERASE_SETUP);
SEND_NOR_COMMAND(BlockAddress, 0, P30_CMD_BLOCK_ERASE_CONFIRM);
// Wait until the status register gives us the all clear
do {
StatusRegister = NorFlashReadStatusRegister (Instance, BlockAddress);
} while ((StatusRegister & P30_SR_BIT_WRITE) != P30_SR_BIT_WRITE);
if (StatusRegister & P30_SR_BIT_VPP) {
DEBUG((EFI_D_ERROR,"EraseSingleBlock(BlockAddress=0x%08x: VPP Range Error\n", BlockAddress));
Status = EFI_DEVICE_ERROR;
}
if ((StatusRegister & (P30_SR_BIT_ERASE | P30_SR_BIT_PROGRAM)) == (P30_SR_BIT_ERASE | P30_SR_BIT_PROGRAM)) {
DEBUG((EFI_D_ERROR,"EraseSingleBlock(BlockAddress=0x%08x: Command Sequence Error\n", BlockAddress));
Status = EFI_DEVICE_ERROR;
}
if (StatusRegister & P30_SR_BIT_ERASE) {
DEBUG((EFI_D_ERROR,"EraseSingleBlock(BlockAddress=0x%08x: Block Erase Error StatusRegister:0x%X\n", BlockAddress, StatusRegister));
Status = EFI_DEVICE_ERROR;
}
if (StatusRegister & P30_SR_BIT_BLOCK_LOCKED) {
// The debug level message has been reduced because a device lock might happen. In this case we just retry it ...
DEBUG((EFI_D_INFO,"EraseSingleBlock(BlockAddress=0x%08x: Block Locked Error\n", BlockAddress));
Status = EFI_WRITE_PROTECTED;
}
if (EFI_ERROR(Status)) {
// Clear the Status Register
SEND_NOR_COMMAND (Instance->DeviceBaseAddress, 0, P30_CMD_CLEAR_STATUS_REGISTER);
}
// Put device back into Read Array mode
SEND_NOR_COMMAND (Instance->DeviceBaseAddress, 0, P30_CMD_READ_ARRAY);
return Status;
}
/**
* This function unlock and erase an entire NOR Flash block.
**/
EFI_STATUS
NorFlashUnlockAndEraseSingleBlock (
IN NOR_FLASH_INSTANCE *Instance,
IN UINTN BlockAddress
)
{
EFI_STATUS Status;
UINTN Index;
EFI_TPL OriginalTPL;
if (!EfiAtRuntime ()) {
// Raise TPL to TPL_HIGH to stop anyone from interrupting us.
OriginalTPL = gBS->RaiseTPL (TPL_HIGH_LEVEL);
} else {
// This initialization is only to prevent the compiler to complain about the
// use of uninitialized variables
OriginalTPL = TPL_HIGH_LEVEL;
}
Index = 0;
// The block erase might fail a first time (SW bug ?). Retry it ...
do {
// Unlock the block if we have to
Status = NorFlashUnlockSingleBlockIfNecessary (Instance, BlockAddress);
if (EFI_ERROR (Status)) {
break;
}
Status = NorFlashEraseSingleBlock (Instance, BlockAddress);
Index++;
} while ((Index < NOR_FLASH_ERASE_RETRY) && (Status == EFI_WRITE_PROTECTED));
if (Index == NOR_FLASH_ERASE_RETRY) {
DEBUG((EFI_D_ERROR,"EraseSingleBlock(BlockAddress=0x%08x: Block Locked Error (try to erase %d times)\n", BlockAddress,Index));
}
if (!EfiAtRuntime ()) {
// Interruptions can resume.
gBS->RestoreTPL (OriginalTPL);
}
return Status;
}
STATIC
EFI_STATUS
NorFlashWriteSingleWord (
IN NOR_FLASH_INSTANCE *Instance,
IN UINTN WordAddress,
IN UINT32 WriteData
)
{
EFI_STATUS Status;
UINT32 StatusRegister;
Status = EFI_SUCCESS;
// Request a write single word command
SEND_NOR_COMMAND(WordAddress, 0, P30_CMD_WORD_PROGRAM_SETUP);
// Store the word into NOR Flash;
MmioWrite32 (WordAddress, WriteData);
// Wait for the write to complete and then check for any errors; i.e. check the Status Register
do {
// Prepare to read the status register
StatusRegister = NorFlashReadStatusRegister (Instance, WordAddress);
// The chip is busy while the WRITE bit is not asserted
} while ((StatusRegister & P30_SR_BIT_WRITE) != P30_SR_BIT_WRITE);
// Perform a full status check:
// Mask the relevant bits of Status Register.
// Everything should be zero, if not, we have a problem
if (StatusRegister & P30_SR_BIT_VPP) {
DEBUG((EFI_D_ERROR,"NorFlashWriteSingleWord(WordAddress:0x%X): VPP Range Error\n",WordAddress));
Status = EFI_DEVICE_ERROR;
}
if (StatusRegister & P30_SR_BIT_PROGRAM) {
DEBUG((EFI_D_ERROR,"NorFlashWriteSingleWord(WordAddress:0x%X): Program Error\n",WordAddress));
Status = EFI_DEVICE_ERROR;
}
if (StatusRegister & P30_SR_BIT_BLOCK_LOCKED) {
DEBUG((EFI_D_ERROR,"NorFlashWriteSingleWord(WordAddress:0x%X): Device Protect Error\n",WordAddress));
Status = EFI_DEVICE_ERROR;
}
if (!EFI_ERROR(Status)) {
// Clear the Status Register
SEND_NOR_COMMAND (Instance->DeviceBaseAddress, 0, P30_CMD_CLEAR_STATUS_REGISTER);
}
// Put device back into Read Array mode
SEND_NOR_COMMAND (Instance->DeviceBaseAddress, 0, P30_CMD_READ_ARRAY);
return Status;
}
/*
* Writes data to the NOR Flash using the Buffered Programming method.
*
* The maximum size of the on-chip buffer is 32-words, because of hardware restrictions.
* Therefore this function will only handle buffers up to 32 words or 128 bytes.
* To deal with larger buffers, call this function again.
*
* This function presumes that both the TargetAddress and the TargetAddress+BufferSize
* exist entirely within the NOR Flash. Therefore these conditions will not be checked here.
*
* In buffered programming, if the target address not at the beginning of a 32-bit word boundary,
* then programming time is doubled and power consumption is increased.
* Therefore, it is a requirement to align buffer writes to 32-bit word boundaries.
* i.e. the last 4 bits of the target start address must be zero: 0x......00
*/
EFI_STATUS
NorFlashWriteBuffer (
IN NOR_FLASH_INSTANCE *Instance,
IN UINTN TargetAddress,
IN UINTN BufferSizeInBytes,
IN UINT32 *Buffer
)
{
EFI_STATUS Status;
UINTN BufferSizeInWords;
UINTN Count;
volatile UINT32 *Data;
UINTN WaitForBuffer;
BOOLEAN BufferAvailable;
UINT32 StatusRegister;
WaitForBuffer = MAX_BUFFERED_PROG_ITERATIONS;
BufferAvailable = FALSE;
// Check that the target address does not cross a 32-word boundary.
if ((TargetAddress & BOUNDARY_OF_32_WORDS) != 0) {
return EFI_INVALID_PARAMETER;
}
// Check there are some data to program
if (BufferSizeInBytes == 0) {
return EFI_BUFFER_TOO_SMALL;
}
// Check that the buffer size does not exceed the maximum hardware buffer size on chip.
if (BufferSizeInBytes > P30_MAX_BUFFER_SIZE_IN_BYTES) {
return EFI_BAD_BUFFER_SIZE;
}
// Check that the buffer size is a multiple of 32-bit words
if ((BufferSizeInBytes % 4) != 0) {
return EFI_BAD_BUFFER_SIZE;
}
// Pre-programming conditions checked, now start the algorithm.
// Prepare the data destination address
Data = (UINT32 *)TargetAddress;
// Check the availability of the buffer
do {
// Issue the Buffered Program Setup command
SEND_NOR_COMMAND(TargetAddress, 0, P30_CMD_BUFFERED_PROGRAM_SETUP);
// Read back the status register bit#7 from the same address
if (((*Data) & P30_SR_BIT_WRITE) == P30_SR_BIT_WRITE) {
BufferAvailable = TRUE;
}
// Update the loop counter
WaitForBuffer--;
} while ((WaitForBuffer > 0) && (BufferAvailable == FALSE));
// The buffer was not available for writing
if (WaitForBuffer == 0) {
Status = EFI_DEVICE_ERROR;
goto EXIT;
}
// From now on we work in 32-bit words
BufferSizeInWords = BufferSizeInBytes / (UINTN)4;
// Write the word count, which is (buffer_size_in_words - 1),
// because word count 0 means one word.
SEND_NOR_COMMAND(TargetAddress, 0, (BufferSizeInWords - 1));
// Write the data to the NOR Flash, advancing each address by 4 bytes
for(Count=0; Count < BufferSizeInWords; Count++, Data++, Buffer++) {
*Data = *Buffer;
}
// Issue the Buffered Program Confirm command, to start the programming operation
SEND_NOR_COMMAND (Instance->DeviceBaseAddress, 0, P30_CMD_BUFFERED_PROGRAM_CONFIRM);
// Wait for the write to complete and then check for any errors; i.e. check the Status Register
do {
StatusRegister = NorFlashReadStatusRegister (Instance, TargetAddress);
// The chip is busy while the WRITE bit is not asserted
} while ((StatusRegister & P30_SR_BIT_WRITE) != P30_SR_BIT_WRITE);
// Perform a full status check:
// Mask the relevant bits of Status Register.
// Everything should be zero, if not, we have a problem
Status = EFI_SUCCESS;
if (StatusRegister & P30_SR_BIT_VPP) {
DEBUG((EFI_D_ERROR,"NorFlashWriteBuffer(TargetAddress:0x%X): VPP Range Error\n", TargetAddress));
Status = EFI_DEVICE_ERROR;
}
if (StatusRegister & P30_SR_BIT_PROGRAM) {
DEBUG((EFI_D_ERROR,"NorFlashWriteBuffer(TargetAddress:0x%X): Program Error\n", TargetAddress));
Status = EFI_DEVICE_ERROR;
}
if (StatusRegister & P30_SR_BIT_BLOCK_LOCKED) {
DEBUG((EFI_D_ERROR,"NorFlashWriteBuffer(TargetAddress:0x%X): Device Protect Error\n",TargetAddress));
Status = EFI_DEVICE_ERROR;
}
if (!EFI_ERROR(Status)) {
// Clear the Status Register
SEND_NOR_COMMAND (Instance->DeviceBaseAddress, 0, P30_CMD_CLEAR_STATUS_REGISTER);
}
EXIT:
// Put device back into Read Array mode
SEND_NOR_COMMAND (Instance->DeviceBaseAddress, 0, P30_CMD_READ_ARRAY);
return Status;
}
STATIC
EFI_STATUS
NorFlashWriteFullBlock (
IN NOR_FLASH_INSTANCE *Instance,
IN EFI_LBA Lba,
IN UINT32 *DataBuffer,
IN UINT32 BlockSizeInWords
)
{
EFI_STATUS Status;
UINTN WordAddress;
UINT32 WordIndex;
UINTN BufferIndex;
UINTN BlockAddress;
UINTN BuffersInBlock;
UINTN RemainingWords;
EFI_TPL OriginalTPL;
UINTN Cnt;
Status = EFI_SUCCESS;
// Get the physical address of the block
BlockAddress = GET_NOR_BLOCK_ADDRESS (Instance->RegionBaseAddress, Lba, BlockSizeInWords * 4);
// Start writing from the first address at the start of the block
WordAddress = BlockAddress;
if (!EfiAtRuntime ()) {
// Raise TPL to TPL_HIGH to stop anyone from interrupting us.
OriginalTPL = gBS->RaiseTPL (TPL_HIGH_LEVEL);
} else {
// This initialization is only to prevent the compiler to complain about the
// use of uninitialized variables
OriginalTPL = TPL_HIGH_LEVEL;
}
Status = NorFlashUnlockAndEraseSingleBlock (Instance, BlockAddress);
if (EFI_ERROR(Status)) {
DEBUG((EFI_D_ERROR, "WriteSingleBlock: ERROR - Failed to Unlock and Erase the single block at 0x%X\n", BlockAddress));
goto EXIT;
}
// To speed up the programming operation, NOR Flash is programmed using the Buffered Programming method.
// Check that the address starts at a 32-word boundary, i.e. last 7 bits must be zero
if ((WordAddress & BOUNDARY_OF_32_WORDS) == 0x00) {
// First, break the entire block into buffer-sized chunks.
BuffersInBlock = (UINTN)(BlockSizeInWords * 4) / P30_MAX_BUFFER_SIZE_IN_BYTES;
// Then feed each buffer chunk to the NOR Flash
// If a buffer does not contain any data, don't write it.
for(BufferIndex=0;
BufferIndex < BuffersInBlock;
BufferIndex++, WordAddress += P30_MAX_BUFFER_SIZE_IN_BYTES, DataBuffer += P30_MAX_BUFFER_SIZE_IN_WORDS
) {
// Check the buffer to see if it contains any data (not set all 1s).
for (Cnt = 0; Cnt < P30_MAX_BUFFER_SIZE_IN_WORDS; Cnt++) {
if (~DataBuffer[Cnt] != 0 ) {
// Some data found, write the buffer.
Status = NorFlashWriteBuffer (Instance, WordAddress, P30_MAX_BUFFER_SIZE_IN_BYTES,
DataBuffer);
if (EFI_ERROR(Status)) {
goto EXIT;
}
break;
}
}
}
// Finally, finish off any remaining words that are less than the maximum size of the buffer
RemainingWords = BlockSizeInWords % P30_MAX_BUFFER_SIZE_IN_WORDS;
if(RemainingWords != 0) {
Status = NorFlashWriteBuffer (Instance, WordAddress, (RemainingWords * 4), DataBuffer);
if (EFI_ERROR(Status)) {
goto EXIT;
}
}
} else {
// For now, use the single word programming algorithm
// It is unlikely that the NOR Flash will exist in an address which falls within a 32 word boundary range,
// i.e. which ends in the range 0x......01 - 0x......7F.
for(WordIndex=0; WordIndexRestoreTPL (OriginalTPL);
}
if (EFI_ERROR(Status)) {
DEBUG((EFI_D_ERROR, "NOR FLASH Programming [WriteSingleBlock] failed at address 0x%08x. Exit Status = \"%r\".\n", WordAddress, Status));
}
return Status;
}
EFI_STATUS
NorFlashWriteBlocks (
IN NOR_FLASH_INSTANCE *Instance,
IN EFI_LBA Lba,
IN UINTN BufferSizeInBytes,
IN VOID *Buffer
)
{
UINT32 *pWriteBuffer;
EFI_STATUS Status = EFI_SUCCESS;
EFI_LBA CurrentBlock;
UINT32 BlockSizeInWords;
UINT32 NumBlocks;
UINT32 BlockCount;
// The buffer must be valid
if (Buffer == NULL) {
return EFI_INVALID_PARAMETER;
}
if(Instance->Media.ReadOnly == TRUE) {
return EFI_WRITE_PROTECTED;
}
// We must have some bytes to read
DEBUG((DEBUG_BLKIO, "NorFlashWriteBlocks: BufferSizeInBytes=0x%x\n", BufferSizeInBytes));
if(BufferSizeInBytes == 0) {
return EFI_BAD_BUFFER_SIZE;
}
// The size of the buffer must be a multiple of the block size
DEBUG((DEBUG_BLKIO, "NorFlashWriteBlocks: BlockSize in bytes =0x%x\n", Instance->Media.BlockSize));
if ((BufferSizeInBytes % Instance->Media.BlockSize) != 0) {
return EFI_BAD_BUFFER_SIZE;
}
// All blocks must be within the device
NumBlocks = ((UINT32)BufferSizeInBytes) / Instance->Media.BlockSize ;
DEBUG((DEBUG_BLKIO, "NorFlashWriteBlocks: NumBlocks=%d, LastBlock=%ld, Lba=%ld.\n", NumBlocks, Instance->Media.LastBlock, Lba));
if ((Lba + NumBlocks) > (Instance->Media.LastBlock + 1)) {
DEBUG((EFI_D_ERROR, "NorFlashWriteBlocks: ERROR - Write will exceed last block.\n"));
return EFI_INVALID_PARAMETER;
}
BlockSizeInWords = Instance->Media.BlockSize / 4;
// Because the target *Buffer is a pointer to VOID, we must put all the data into a pointer
// to a proper data type, so use *ReadBuffer
pWriteBuffer = (UINT32 *)Buffer;
CurrentBlock = Lba;
for (BlockCount=0; BlockCount < NumBlocks; BlockCount++, CurrentBlock++, pWriteBuffer = pWriteBuffer + BlockSizeInWords) {
DEBUG((DEBUG_BLKIO, "NorFlashWriteBlocks: Writing block #%d\n", (UINTN)CurrentBlock));
Status = NorFlashWriteFullBlock (Instance, CurrentBlock, pWriteBuffer, BlockSizeInWords);
if (EFI_ERROR(Status)) {
break;
}
}
DEBUG((DEBUG_BLKIO, "NorFlashWriteBlocks: Exit Status = \"%r\".\n", Status));
return Status;
}
EFI_STATUS
NorFlashReadBlocks (
IN NOR_FLASH_INSTANCE *Instance,
IN EFI_LBA Lba,
IN UINTN BufferSizeInBytes,
OUT VOID *Buffer
)
{
UINT32 NumBlocks;
UINTN StartAddress;
DEBUG((DEBUG_BLKIO, "NorFlashReadBlocks: BufferSize=0x%xB BlockSize=0x%xB LastBlock=%ld, Lba=%ld.\n",
BufferSizeInBytes, Instance->Media.BlockSize, Instance->Media.LastBlock, Lba));
// The buffer must be valid
if (Buffer == NULL) {
return EFI_INVALID_PARAMETER;
}
// Return if we have not any byte to read
if (BufferSizeInBytes == 0) {
return EFI_SUCCESS;
}
// The size of the buffer must be a multiple of the block size
if ((BufferSizeInBytes % Instance->Media.BlockSize) != 0) {
return EFI_BAD_BUFFER_SIZE;
}
// All blocks must be within the device
NumBlocks = ((UINT32)BufferSizeInBytes) / Instance->Media.BlockSize ;
if ((Lba + NumBlocks) > (Instance->Media.LastBlock + 1)) {
DEBUG((EFI_D_ERROR, "NorFlashReadBlocks: ERROR - Read will exceed last block\n"));
return EFI_INVALID_PARAMETER;
}
// Get the address to start reading from
StartAddress = GET_NOR_BLOCK_ADDRESS (Instance->RegionBaseAddress,
Lba,
Instance->Media.BlockSize
);
// Put the device into Read Array mode
SEND_NOR_COMMAND (Instance->DeviceBaseAddress, 0, P30_CMD_READ_ARRAY);
// Readout the data
CopyMem(Buffer, (UINTN *)StartAddress, BufferSizeInBytes);
return EFI_SUCCESS;
}
EFI_STATUS
NorFlashRead (
IN NOR_FLASH_INSTANCE *Instance,
IN EFI_LBA Lba,
IN UINTN Offset,
IN UINTN BufferSizeInBytes,
OUT VOID *Buffer
)
{
UINT32 NumBlocks;
UINTN StartAddress;
// The buffer must be valid
if (Buffer == NULL) {
return EFI_INVALID_PARAMETER;
}
// Return if we have not any byte to read
if (BufferSizeInBytes == 0) {
return EFI_SUCCESS;
}
// All blocks must be within the device
NumBlocks = ((UINT32)BufferSizeInBytes) / Instance->Media.BlockSize ;
if ((Lba + NumBlocks) > (Instance->Media.LastBlock + 1)) {
DEBUG ((EFI_D_ERROR, "NorFlashRead: ERROR - Read will exceed last block\n"));
return EFI_INVALID_PARAMETER;
}
if (Offset + BufferSizeInBytes >= Instance->Size) {
DEBUG ((EFI_D_ERROR, "NorFlashRead: ERROR - Read will exceed device size.\n"));
return EFI_INVALID_PARAMETER;
}
// Get the address to start reading from
StartAddress = GET_NOR_BLOCK_ADDRESS (Instance->RegionBaseAddress,
Lba,
Instance->Media.BlockSize
);
// Put the device into Read Array mode
SEND_NOR_COMMAND (Instance->DeviceBaseAddress, 0, P30_CMD_READ_ARRAY);
// Readout the data
CopyMem (Buffer, (UINTN *)(StartAddress + Offset), BufferSizeInBytes);
return EFI_SUCCESS;
}
/*
Write a full or portion of a block. It must not span block boundaries; that is,
Offset + *NumBytes <= Instance->Media.BlockSize.
*/
EFI_STATUS
NorFlashWriteSingleBlock (
IN NOR_FLASH_INSTANCE *Instance,
IN EFI_LBA Lba,
IN UINTN Offset,
IN OUT UINTN *NumBytes,
IN UINT8 *Buffer
)
{
EFI_STATUS TempStatus;
UINT32 Tmp;
UINT32 TmpBuf;
UINT32 WordToWrite;
UINT32 Mask;
BOOLEAN DoErase;
UINTN BytesToWrite;
UINTN CurOffset;
UINTN WordAddr;
UINTN BlockSize;
UINTN BlockAddress;
UINTN PrevBlockAddress;
PrevBlockAddress = 0;
if (!Instance->Initialized && Instance->Initialize) {
Instance->Initialize(Instance);
}
DEBUG ((DEBUG_BLKIO, "NorFlashWriteSingleBlock(Parameters: Lba=%ld, Offset=0x%x, *NumBytes=0x%x, Buffer @ 0x%08x)\n", Lba, Offset, *NumBytes, Buffer));
// Detect WriteDisabled state
if (Instance->Media.ReadOnly == TRUE) {
DEBUG ((EFI_D_ERROR, "NorFlashWriteSingleBlock: ERROR - Can not write: Device is in WriteDisabled state.\n"));
// It is in WriteDisabled state, return an error right away
return EFI_ACCESS_DENIED;
}
// Cache the block size to avoid de-referencing pointers all the time
BlockSize = Instance->Media.BlockSize;
// The write must not span block boundaries.
// We need to check each variable individually because adding two large values together overflows.
if ( ( Offset >= BlockSize ) ||
( *NumBytes > BlockSize ) ||
( (Offset + *NumBytes) > BlockSize ) ) {
DEBUG ((EFI_D_ERROR, "NorFlashWriteSingleBlock: ERROR - EFI_BAD_BUFFER_SIZE: (Offset=0x%x + NumBytes=0x%x) > BlockSize=0x%x\n", Offset, *NumBytes, BlockSize ));
return EFI_BAD_BUFFER_SIZE;
}
// We must have some bytes to write
if (*NumBytes == 0) {
DEBUG ((EFI_D_ERROR, "NorFlashWriteSingleBlock: ERROR - EFI_BAD_BUFFER_SIZE: (Offset=0x%x + NumBytes=0x%x) > BlockSize=0x%x\n", Offset, *NumBytes, BlockSize ));
return EFI_BAD_BUFFER_SIZE;
}
// Pick 128bytes as a good start for word operations as opposed to erasing the
// block and writing the data regardless if an erase is really needed.
// It looks like most individual NV variable writes are smaller than 128bytes.
if (*NumBytes <= 128) {
// Check to see if we need to erase before programming the data into NOR.
// If the destination bits are only changing from 1s to 0s we can just write.
// After a block is erased all bits in the block is set to 1.
// If any byte requires us to erase we just give up and rewrite all of it.
DoErase = FALSE;
BytesToWrite = *NumBytes;
CurOffset = Offset;
while (BytesToWrite > 0) {
// Read full word from NOR, splice as required. A word is the smallest
// unit we can write.
TempStatus = NorFlashRead (Instance, Lba, CurOffset & ~(0x3), sizeof(Tmp), &Tmp);
if (EFI_ERROR (TempStatus)) {
return EFI_DEVICE_ERROR;
}
// Physical address of word in NOR to write.
WordAddr = (CurOffset & ~(0x3)) + GET_NOR_BLOCK_ADDRESS (Instance->RegionBaseAddress,
Lba, BlockSize);
// The word of data that is to be written.
TmpBuf = *((UINT32*)(Buffer + (*NumBytes - BytesToWrite)));
// First do word aligned chunks.
if ((CurOffset & 0x3) == 0) {
if (BytesToWrite >= 4) {
// Is the destination still in 'erased' state?
if (~Tmp != 0) {
// Check to see if we are only changing bits to zero.
if ((Tmp ^ TmpBuf) & TmpBuf) {
DoErase = TRUE;
break;
}
}
// Write this word to NOR
WordToWrite = TmpBuf;
CurOffset += sizeof(TmpBuf);
BytesToWrite -= sizeof(TmpBuf);
} else {
// BytesToWrite < 4. Do small writes and left-overs
Mask = ~((~0) << (BytesToWrite * 8));
// Mask out the bytes we want.
TmpBuf &= Mask;
// Is the destination still in 'erased' state?
if ((Tmp & Mask) != Mask) {
// Check to see if we are only changing bits to zero.
if ((Tmp ^ TmpBuf) & TmpBuf) {
DoErase = TRUE;
break;
}
}
// Merge old and new data. Write merged word to NOR
WordToWrite = (Tmp & ~Mask) | TmpBuf;
CurOffset += BytesToWrite;
BytesToWrite = 0;
}
} else {
// Do multiple words, but starting unaligned.
if (BytesToWrite > (4 - (CurOffset & 0x3))) {
Mask = ((~0) << ((CurOffset & 0x3) * 8));
// Mask out the bytes we want.
TmpBuf &= Mask;
// Is the destination still in 'erased' state?
if ((Tmp & Mask) != Mask) {
// Check to see if we are only changing bits to zero.
if ((Tmp ^ TmpBuf) & TmpBuf) {
DoErase = TRUE;
break;
}
}
// Merge old and new data. Write merged word to NOR
WordToWrite = (Tmp & ~Mask) | TmpBuf;
BytesToWrite -= (4 - (CurOffset & 0x3));
CurOffset += (4 - (CurOffset & 0x3));
} else {
// Unaligned and fits in one word.
Mask = (~((~0) << (BytesToWrite * 8))) << ((CurOffset & 0x3) * 8);
// Mask out the bytes we want.
TmpBuf = (TmpBuf << ((CurOffset & 0x3) * 8)) & Mask;
// Is the destination still in 'erased' state?
if ((Tmp & Mask) != Mask) {
// Check to see if we are only changing bits to zero.
if ((Tmp ^ TmpBuf) & TmpBuf) {
DoErase = TRUE;
break;
}
}
// Merge old and new data. Write merged word to NOR
WordToWrite = (Tmp & ~Mask) | TmpBuf;
CurOffset += BytesToWrite;
BytesToWrite = 0;
}
}
//
// Write the word to NOR.
//
BlockAddress = GET_NOR_BLOCK_ADDRESS (Instance->RegionBaseAddress, Lba, BlockSize);
if (BlockAddress != PrevBlockAddress) {
TempStatus = NorFlashUnlockSingleBlockIfNecessary (Instance, BlockAddress);
if (EFI_ERROR (TempStatus)) {
return EFI_DEVICE_ERROR;
}
PrevBlockAddress = BlockAddress;
}
TempStatus = NorFlashWriteSingleWord (Instance, WordAddr, WordToWrite);
if (EFI_ERROR (TempStatus)) {
return EFI_DEVICE_ERROR;
}
}
// Exit if we got here and could write all the data. Otherwise do the
// Erase-Write cycle.
if (!DoErase) {
return EFI_SUCCESS;
}
}
// Check we did get some memory. Buffer is BlockSize.
if (Instance->ShadowBuffer == NULL) {
DEBUG ((EFI_D_ERROR, "FvbWrite: ERROR - Buffer not ready\n"));
return EFI_DEVICE_ERROR;
}
// Read NOR Flash data into shadow buffer
TempStatus = NorFlashReadBlocks (Instance, Lba, BlockSize, Instance->ShadowBuffer);
if (EFI_ERROR (TempStatus)) {
// Return one of the pre-approved error statuses
return EFI_DEVICE_ERROR;
}
// Put the data at the appropriate location inside the buffer area
CopyMem ((VOID*)((UINTN)Instance->ShadowBuffer + Offset), Buffer, *NumBytes);
// Write the modified buffer back to the NorFlash
TempStatus = NorFlashWriteBlocks (Instance, Lba, BlockSize, Instance->ShadowBuffer);
if (EFI_ERROR (TempStatus)) {
// Return one of the pre-approved error statuses
return EFI_DEVICE_ERROR;
}
return EFI_SUCCESS;
}
/*
Although DiskIoDxe will automatically install the DiskIO protocol whenever
we install the BlockIO protocol, its implementation is sub-optimal as it reads
and writes entire blocks using the BlockIO protocol. In fact we can access
NOR flash with a finer granularity than that, so we can improve performance
by directly producing the DiskIO protocol.
*/
/**
Read BufferSize bytes from Offset into Buffer.
@param This Protocol instance pointer.
@param MediaId Id of the media, changes every time the media is replaced.
@param Offset The starting byte offset to read from
@param BufferSize Size of Buffer
@param Buffer Buffer containing read data
@retval EFI_SUCCESS The data was read correctly from the device.
@retval EFI_DEVICE_ERROR The device reported an error while performing the read.
@retval EFI_NO_MEDIA There is no media in the device.
@retval EFI_MEDIA_CHNAGED The MediaId does not matched the current device.
@retval EFI_INVALID_PARAMETER The read request contains device addresses that are not
valid for the device.
**/
EFI_STATUS
EFIAPI
NorFlashDiskIoReadDisk (
IN EFI_DISK_IO_PROTOCOL *This,
IN UINT32 MediaId,
IN UINT64 DiskOffset,
IN UINTN BufferSize,
OUT VOID *Buffer
)
{
NOR_FLASH_INSTANCE *Instance;
UINT32 BlockSize;
UINT32 BlockOffset;
EFI_LBA Lba;
Instance = INSTANCE_FROM_DISKIO_THIS(This);
if (MediaId != Instance->Media.MediaId) {
return EFI_MEDIA_CHANGED;
}
BlockSize = Instance->Media.BlockSize;
Lba = (EFI_LBA) DivU64x32Remainder (DiskOffset, BlockSize, &BlockOffset);
return NorFlashRead (Instance, Lba, BlockOffset, BufferSize, Buffer);
}
/**
Writes a specified number of bytes to a device.
@param This Indicates a pointer to the calling context.
@param MediaId ID of the medium to be written.
@param Offset The starting byte offset on the logical block I/O device to write.
@param BufferSize The size in bytes of Buffer. The number of bytes to write to the device.
@param Buffer A pointer to the buffer containing the data to be written.
@retval EFI_SUCCESS The data was written correctly to the device.
@retval EFI_WRITE_PROTECTED The device can not be written to.
@retval EFI_DEVICE_ERROR The device reported an error while performing the write.
@retval EFI_NO_MEDIA There is no media in the device.
@retval EFI_MEDIA_CHNAGED The MediaId does not matched the current device.
@retval EFI_INVALID_PARAMETER The write request contains device addresses that are not
valid for the device.
**/
EFI_STATUS
EFIAPI
NorFlashDiskIoWriteDisk (
IN EFI_DISK_IO_PROTOCOL *This,
IN UINT32 MediaId,
IN UINT64 DiskOffset,
IN UINTN BufferSize,
IN VOID *Buffer
)
{
NOR_FLASH_INSTANCE *Instance;
UINT32 BlockSize;
UINT32 BlockOffset;
EFI_LBA Lba;
UINTN RemainingBytes;
UINTN WriteSize;
EFI_STATUS Status;
Instance = INSTANCE_FROM_DISKIO_THIS(This);
if (MediaId != Instance->Media.MediaId) {
return EFI_MEDIA_CHANGED;
}
BlockSize = Instance->Media.BlockSize;
Lba = (EFI_LBA) DivU64x32Remainder (DiskOffset, BlockSize, &BlockOffset);
RemainingBytes = BufferSize;
// Write either all the remaining bytes, or the number of bytes that bring
// us up to a block boundary, whichever is less.
// (DiskOffset | (BlockSize - 1)) + 1) rounds DiskOffset up to the next
// block boundary (even if it is already on one).
WriteSize = MIN (RemainingBytes, ((DiskOffset | (BlockSize - 1)) + 1) - DiskOffset);
do {
if (WriteSize == BlockSize) {
// Write a full block
Status = NorFlashWriteFullBlock (Instance, Lba, Buffer, BlockSize / sizeof (UINT32));
} else {
// Write a partial block
Status = NorFlashWriteSingleBlock (Instance, Lba, BlockOffset, &WriteSize, Buffer);
}
if (EFI_ERROR (Status)) {
return Status;
}
// Now continue writing either all the remaining bytes or single blocks.
RemainingBytes -= WriteSize;
Buffer = (UINT8 *) Buffer + WriteSize;
Lba++;
BlockOffset = 0;
WriteSize = MIN (RemainingBytes, BlockSize);
} while (RemainingBytes);
return Status;
}
EFI_STATUS
NorFlashReset (
IN NOR_FLASH_INSTANCE *Instance
)
{
// As there is no specific RESET to perform, ensure that the devices is in the default Read Array mode
SEND_NOR_COMMAND (Instance->DeviceBaseAddress, 0, P30_CMD_READ_ARRAY);
return EFI_SUCCESS;
}
/**
Fixup internal data so that EFI can be call in virtual mode.
Call the passed in Child Notify event and convert any pointers in
lib to virtual mode.
@param[in] Event The Event that is being processed
@param[in] Context Event Context
**/
VOID
EFIAPI
NorFlashVirtualNotifyEvent (
IN EFI_EVENT Event,
IN VOID *Context
)
{
UINTN Index;
for (Index = 0; Index < mNorFlashDeviceCount; Index++) {
EfiConvertPointer (0x0, (VOID**)&mNorFlashInstances[Index]->DeviceBaseAddress);
EfiConvertPointer (0x0, (VOID**)&mNorFlashInstances[Index]->RegionBaseAddress);
// Convert BlockIo protocol
EfiConvertPointer (0x0, (VOID**)&mNorFlashInstances[Index]->BlockIoProtocol.FlushBlocks);
EfiConvertPointer (0x0, (VOID**)&mNorFlashInstances[Index]->BlockIoProtocol.ReadBlocks);
EfiConvertPointer (0x0, (VOID**)&mNorFlashInstances[Index]->BlockIoProtocol.Reset);
EfiConvertPointer (0x0, (VOID**)&mNorFlashInstances[Index]->BlockIoProtocol.WriteBlocks);
// Convert Fvb
EfiConvertPointer (0x0, (VOID**)&mNorFlashInstances[Index]->FvbProtocol.EraseBlocks);
EfiConvertPointer (0x0, (VOID**)&mNorFlashInstances[Index]->FvbProtocol.GetAttributes);
EfiConvertPointer (0x0, (VOID**)&mNorFlashInstances[Index]->FvbProtocol.GetBlockSize);
EfiConvertPointer (0x0, (VOID**)&mNorFlashInstances[Index]->FvbProtocol.GetPhysicalAddress);
EfiConvertPointer (0x0, (VOID**)&mNorFlashInstances[Index]->FvbProtocol.Read);
EfiConvertPointer (0x0, (VOID**)&mNorFlashInstances[Index]->FvbProtocol.SetAttributes);
EfiConvertPointer (0x0, (VOID**)&mNorFlashInstances[Index]->FvbProtocol.Write);
if (mNorFlashInstances[Index]->ShadowBuffer != NULL) {
EfiConvertPointer (0x0, (VOID**)&mNorFlashInstances[Index]->ShadowBuffer);
}
}
return;
}
EFI_STATUS
EFIAPI
NorFlashInitialise (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
)
{
EFI_STATUS Status;
UINT32 Index;
NOR_FLASH_DESCRIPTION* NorFlashDevices;
BOOLEAN ContainVariableStorage;
Status = NorFlashPlatformInitialization ();
if (EFI_ERROR(Status)) {
DEBUG((EFI_D_ERROR,"NorFlashInitialise: Fail to initialize Nor Flash devices\n"));
return Status;
}
Status = NorFlashPlatformGetDevices (&NorFlashDevices, &mNorFlashDeviceCount);
if (EFI_ERROR(Status)) {
DEBUG((EFI_D_ERROR,"NorFlashInitialise: Fail to get Nor Flash devices\n"));
return Status;
}
mNorFlashInstances = AllocateRuntimePool (sizeof(NOR_FLASH_INSTANCE*) * mNorFlashDeviceCount);
for (Index = 0; Index < mNorFlashDeviceCount; Index++) {
// Check if this NOR Flash device contain the variable storage region
ContainVariableStorage =
(NorFlashDevices[Index].RegionBaseAddress <= PcdGet32 (PcdFlashNvStorageVariableBase)) &&
(PcdGet32 (PcdFlashNvStorageVariableBase) + PcdGet32 (PcdFlashNvStorageVariableSize) <= NorFlashDevices[Index].RegionBaseAddress + NorFlashDevices[Index].Size);
Status = NorFlashCreateInstance (
NorFlashDevices[Index].DeviceBaseAddress,
NorFlashDevices[Index].RegionBaseAddress,
NorFlashDevices[Index].Size,
Index,
NorFlashDevices[Index].BlockSize,
ContainVariableStorage,
&NorFlashDevices[Index].Guid,
&mNorFlashInstances[Index]
);
if (EFI_ERROR(Status)) {
DEBUG((EFI_D_ERROR,"NorFlashInitialise: Fail to create instance for NorFlash[%d]\n",Index));
}
}
//
// Register for the virtual address change event
//
Status = gBS->CreateEventEx (
EVT_NOTIFY_SIGNAL,
TPL_NOTIFY,
NorFlashVirtualNotifyEvent,
NULL,
&gEfiEventVirtualAddressChangeGuid,
&mNorFlashVirtualAddrChangeEvent
);
ASSERT_EFI_ERROR (Status);
return Status;
}