/* NOLINT(build/header_guard) */ /* Copyright 2010 Google Inc. All Rights Reserved. Distributed under MIT license. See file LICENSE for detail or copy at https://opensource.org/licenses/MIT */ /* template parameters: FN, BUCKET_BITS, BLOCK_BITS, NUM_LAST_DISTANCES_TO_CHECK */ /* A (forgetful) hash table to the data seen by the compressor, to help create backward references to previous data. This is a hash map of fixed size (BUCKET_SIZE) to a ring buffer of fixed size (BLOCK_SIZE). The ring buffer contains the last BLOCK_SIZE index positions of the given hash key in the compressed data. */ #define HashLongestMatch HASHER() /* Number of hash buckets. */ #define BUCKET_SIZE (1 << BUCKET_BITS) /* Only BLOCK_SIZE newest backward references are kept, and the older are forgotten. */ #define BLOCK_SIZE (1u << BLOCK_BITS) /* Mask for accessing entries in a block (in a ringbuffer manner). */ #define BLOCK_MASK ((1 << BLOCK_BITS) - 1) #define HASH_MAP_SIZE (2 << BUCKET_BITS) static BROTLI_INLINE size_t FN(HashTypeLength)(void) { return 4; } static BROTLI_INLINE size_t FN(StoreLookahead)(void) { return 4; } /* HashBytes is the function that chooses the bucket to place the address in. The HashLongestMatch and HashLongestMatchQuickly classes have separate, different implementations of hashing. */ static uint32_t FN(HashBytes)(const uint8_t *data) { uint32_t h = BROTLI_UNALIGNED_LOAD32(data) * kHashMul32; /* The higher bits contain more mixture from the multiplication, so we take our results from there. */ return h >> (32 - BUCKET_BITS); } typedef struct HashLongestMatch { /* Number of entries in a particular bucket. */ uint16_t num_[BUCKET_SIZE]; /* Buckets containing BLOCK_SIZE of backward references. */ uint32_t buckets_[BLOCK_SIZE << BUCKET_BITS]; /* True if num_ array needs to be initialized. */ BROTLI_BOOL is_dirty_; DictionarySearchStatictics dict_search_stats_; } HashLongestMatch; static void FN(Reset)(HashLongestMatch* self) { self->is_dirty_ = BROTLI_TRUE; DictionarySearchStaticticsReset(&self->dict_search_stats_); } static void FN(InitEmpty)(HashLongestMatch* self) { if (self->is_dirty_) { memset(self->num_, 0, sizeof(self->num_)); self->is_dirty_ = BROTLI_FALSE; } } static void FN(InitForData)(HashLongestMatch* self, const uint8_t* data, size_t num) { size_t i; for (i = 0; i < num; ++i) { const uint32_t key = FN(HashBytes)(&data[i]); self->num_[key] = 0; } if (num != 0) { self->is_dirty_ = BROTLI_FALSE; } } static void FN(Init)( MemoryManager* m, HashLongestMatch* self, const uint8_t* data, const BrotliEncoderParams* params, size_t position, size_t bytes, BROTLI_BOOL is_last) { /* Choose which init method is faster. Init() is about 100 times faster than InitForData(). */ const size_t kMaxBytesForPartialHashInit = HASH_MAP_SIZE >> 7; BROTLI_UNUSED(m); BROTLI_UNUSED(params); if (position == 0 && is_last && bytes <= kMaxBytesForPartialHashInit) { FN(InitForData)(self, data, bytes); } else { FN(InitEmpty)(self); } } /* Look at 4 bytes at &data[ix & mask]. Compute a hash from these, and store the value of ix at that position. */ static BROTLI_INLINE void FN(Store)(HashLongestMatch* self, const uint8_t *data, const size_t mask, const size_t ix) { const uint32_t key = FN(HashBytes)(&data[ix & mask]); const size_t minor_ix = self->num_[key] & BLOCK_MASK; self->buckets_[minor_ix + (key << BLOCK_BITS)] = (uint32_t)ix; ++self->num_[key]; } static BROTLI_INLINE void FN(StoreRange)(HashLongestMatch* self, const uint8_t *data, const size_t mask, const size_t ix_start, const size_t ix_end) { size_t i; for (i = ix_start; i < ix_end; ++i) { FN(Store)(self, data, mask, i); } } static BROTLI_INLINE void FN(StitchToPreviousBlock)(HashLongestMatch* self, size_t num_bytes, size_t position, const uint8_t* ringbuffer, size_t ringbuffer_mask) { if (num_bytes >= FN(HashTypeLength)() - 1 && position >= 3) { /* Prepare the hashes for three last bytes of the last write. These could not be calculated before, since they require knowledge of both the previous and the current block. */ FN(Store)(self, ringbuffer, ringbuffer_mask, position - 3); FN(Store)(self, ringbuffer, ringbuffer_mask, position - 2); FN(Store)(self, ringbuffer, ringbuffer_mask, position - 1); } } /* Find a longest backward match of &data[cur_ix] up to the length of max_length and stores the position cur_ix in the hash table. Does not look for matches longer than max_length. Does not look for matches further away than max_backward. Writes the best match into |out|. Returns true when match is found, otherwise false. */ static BROTLI_INLINE BROTLI_BOOL FN(FindLongestMatch)(HashLongestMatch* self, const uint8_t* BROTLI_RESTRICT data, const size_t ring_buffer_mask, const int* BROTLI_RESTRICT distance_cache, const size_t cur_ix, const size_t max_length, const size_t max_backward, HasherSearchResult* BROTLI_RESTRICT out) { const size_t cur_ix_masked = cur_ix & ring_buffer_mask; BROTLI_BOOL is_match_found = BROTLI_FALSE; /* Don't accept a short copy from far away. */ score_t best_score = out->score; size_t best_len = out->len; size_t i; out->len = 0; out->len_x_code = 0; /* Try last distance first. */ for (i = 0; i < NUM_LAST_DISTANCES_TO_CHECK; ++i) { const size_t idx = kDistanceCacheIndex[i]; const size_t backward = (size_t)(distance_cache[idx] + kDistanceCacheOffset[i]); size_t prev_ix = (size_t)(cur_ix - backward); if (prev_ix >= cur_ix) { continue; } if (PREDICT_FALSE(backward > max_backward)) { continue; } prev_ix &= ring_buffer_mask; if (cur_ix_masked + best_len > ring_buffer_mask || prev_ix + best_len > ring_buffer_mask || data[cur_ix_masked + best_len] != data[prev_ix + best_len]) { continue; } { const size_t len = FindMatchLengthWithLimit(&data[prev_ix], &data[cur_ix_masked], max_length); if (len >= 3 || (len == 2 && i < 2)) { /* Comparing for >= 2 does not change the semantics, but just saves for a few unnecessary binary logarithms in backward reference score, since we are not interested in such short matches. */ score_t score = BackwardReferenceScoreUsingLastDistance(len, i); if (best_score < score) { best_score = score; best_len = len; out->len = best_len; out->distance = backward; out->score = best_score; is_match_found = BROTLI_TRUE; } } } } { const uint32_t key = FN(HashBytes)(&data[cur_ix_masked]); uint32_t* BROTLI_RESTRICT bucket = &self->buckets_[key << BLOCK_BITS]; const size_t down = (self->num_[key] > BLOCK_SIZE) ? (self->num_[key] - BLOCK_SIZE) : 0u; for (i = self->num_[key]; i > down;) { size_t prev_ix = bucket[--i & BLOCK_MASK]; const size_t backward = cur_ix - prev_ix; if (PREDICT_FALSE(backward > max_backward)) { break; } prev_ix &= ring_buffer_mask; if (cur_ix_masked + best_len > ring_buffer_mask || prev_ix + best_len > ring_buffer_mask || data[cur_ix_masked + best_len] != data[prev_ix + best_len]) { continue; } { const size_t len = FindMatchLengthWithLimit(&data[prev_ix], &data[cur_ix_masked], max_length); if (len >= 4) { /* Comparing for >= 3 does not change the semantics, but just saves for a few unnecessary binary logarithms in backward reference score, since we are not interested in such short matches. */ score_t score = BackwardReferenceScore(len, backward); if (best_score < score) { best_score = score; best_len = len; out->len = best_len; out->distance = backward; out->score = best_score; is_match_found = BROTLI_TRUE; } } } } bucket[self->num_[key] & BLOCK_MASK] = (uint32_t)cur_ix; ++self->num_[key]; } if (!is_match_found) { is_match_found = SearchInStaticDictionary(&self->dict_search_stats_, &data[cur_ix_masked], max_length, max_backward, out, BROTLI_FALSE); } return is_match_found; } #undef HASH_MAP_SIZE #undef BLOCK_MASK #undef BLOCK_SIZE #undef BUCKET_SIZE #undef HashLongestMatch