/** @file PKCS#7 SignedData Verification Wrapper Implementation over OpenSSL. Copyright (c) 2009 - 2012, Intel Corporation. All rights reserved.
This program and the accompanying materials are licensed and made available under the terms and conditions of the BSD License which accompanies this distribution. The full text of the license may be found at http://opensource.org/licenses/bsd-license.php THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. **/ #include "InternalCryptLib.h" #include #include #include UINT8 mOidValue[9] = { 0x2A, 0x86, 0x48, 0x86, 0xF7, 0x0D, 0x01, 0x07, 0x02 }; /** Verification callback function to override any existing callbacks in OpenSSL for intermediate certificate supports. @param[in] Status Original status before calling this callback. @param[in] Context X509 store context. @retval 1 Current X509 certificate is verified successfully. @retval 0 Verification failed. **/ int X509VerifyCb ( IN int Status, IN X509_STORE_CTX *Context ) { X509_OBJECT *Obj; INTN Error; INTN Index; INTN Count; Obj = NULL; Error = (INTN) X509_STORE_CTX_get_error (Context); // // X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT and X509_V_ERR_UNABLE_TO_GET_ISSUER_ // CERT_LOCALLY mean a X509 certificate is not self signed and its issuer // can not be found in X509_verify_cert of X509_vfy.c. // In order to support intermediate certificate node, we override the // errors if the certification is obtained from X509 store, i.e. it is // a trusted ceritifcate node that is enrolled by user. // Besides,X509_V_ERR_CERT_UNTRUSTED and X509_V_ERR_UNABLE_TO_VERIFY_LEAF_SIGNATURE // are also ignored to enable such feature. // if ((Error == X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT) || (Error == X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT_LOCALLY)) { Obj = (X509_OBJECT *) malloc (sizeof (X509_OBJECT)); if (Obj == NULL) { return 0; } Obj->type = X509_LU_X509; Obj->data.x509 = Context->current_cert; CRYPTO_w_lock (CRYPTO_LOCK_X509_STORE); if (X509_OBJECT_retrieve_match (Context->ctx->objs, Obj)) { Status = 1; } else { // // If any certificate in the chain is enrolled as trusted certificate, // pass the certificate verification. // if (Error == X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT_LOCALLY) { Count = (INTN) sk_X509_num (Context->chain); for (Index = 0; Index < Count; Index++) { Obj->data.x509 = sk_X509_value (Context->chain, (int) Index); if (X509_OBJECT_retrieve_match (Context->ctx->objs, Obj)) { Status = 1; break; } } } } CRYPTO_w_unlock (CRYPTO_LOCK_X509_STORE); } if ((Error == X509_V_ERR_CERT_UNTRUSTED) || (Error == X509_V_ERR_UNABLE_TO_VERIFY_LEAF_SIGNATURE)) { Status = 1; } if (Obj != NULL) { OPENSSL_free (Obj); } return Status; } /** Creates a PKCS#7 signedData as described in "PKCS #7: Cryptographic Message Syntax Standard, version 1.5". This interface is only intended to be used for application to perform PKCS#7 functionality validation. @param[in] PrivateKey Pointer to the PEM-formatted private key data for data signing. @param[in] PrivateKeySize Size of the PEM private key data in bytes. @param[in] KeyPassword NULL-terminated passphrase used for encrypted PEM key data. @param[in] InData Pointer to the content to be signed. @param[in] InDataSize Size of InData in bytes. @param[in] SignCert Pointer to signer's DER-encoded certificate to sign with. @param[in] OtherCerts Pointer to an optional additional set of certificates to include in the PKCS#7 signedData (e.g. any intermediate CAs in the chain). @param[out] SignedData Pointer to output PKCS#7 signedData. @param[out] SignedDataSize Size of SignedData in bytes. @retval TRUE PKCS#7 data signing succeeded. @retval FALSE PKCS#7 data signing failed. **/ BOOLEAN EFIAPI Pkcs7Sign ( IN CONST UINT8 *PrivateKey, IN UINTN PrivateKeySize, IN CONST UINT8 *KeyPassword, IN UINT8 *InData, IN UINTN InDataSize, IN UINT8 *SignCert, IN UINT8 *OtherCerts OPTIONAL, OUT UINT8 **SignedData, OUT UINTN *SignedDataSize ) { BOOLEAN Status; EVP_PKEY *Key; BIO *DataBio; PKCS7 *Pkcs7; UINT8 *RsaContext; UINT8 *P7Data; UINTN P7DataSize; UINT8 *Tmp; // // Check input parameters. // if (PrivateKey == NULL || KeyPassword == NULL || InData == NULL || SignCert == NULL || SignedData == NULL || SignedDataSize == NULL || InDataSize > INT_MAX) { return FALSE; } RsaContext = NULL; Key = NULL; Pkcs7 = NULL; DataBio = NULL; Status = FALSE; // // Retrieve RSA private key from PEM data. // Status = RsaGetPrivateKeyFromPem ( PrivateKey, PrivateKeySize, (CONST CHAR8 *) KeyPassword, (VOID **) &RsaContext ); if (!Status) { return Status; } // // Register & Initialize necessary digest algorithms and PRNG for PKCS#7 Handling // EVP_add_digest (EVP_md5()); EVP_add_digest (EVP_sha1()); EVP_add_digest (EVP_sha256()); RandomSeed (NULL, 0); // // Construct OpenSSL EVP_PKEY for private key. // Key = EVP_PKEY_new (); if (Key == NULL) { Status = FALSE; goto _Exit; } Key->save_type = EVP_PKEY_RSA; Key->type = EVP_PKEY_type (EVP_PKEY_RSA); Key->pkey.rsa = (RSA *) RsaContext; // // Convert the data to be signed to BIO format. // DataBio = BIO_new (BIO_s_mem ()); BIO_write (DataBio, InData, (int) InDataSize); // // Create the PKCS#7 signedData structure. // Pkcs7 = PKCS7_sign ( (X509 *) SignCert, Key, (STACK_OF(X509) *) OtherCerts, DataBio, PKCS7_BINARY | PKCS7_NOATTR | PKCS7_DETACHED ); if (Pkcs7 == NULL) { Status = FALSE; goto _Exit; } // // Convert PKCS#7 signedData structure into DER-encoded buffer. // P7DataSize = i2d_PKCS7 (Pkcs7, NULL); if (P7DataSize <= 19) { Status = FALSE; goto _Exit; } P7Data = malloc (P7DataSize); if (P7Data == NULL) { Status = FALSE; goto _Exit; } Tmp = P7Data; P7DataSize = i2d_PKCS7 (Pkcs7, (unsigned char **) &Tmp); // // Strip ContentInfo to content only for signeddata. The data be trimmed off // is totally 19 bytes. // *SignedDataSize = P7DataSize - 19; *SignedData = malloc (*SignedDataSize); if (*SignedData == NULL) { Status = FALSE; OPENSSL_free (P7Data); goto _Exit; } CopyMem (*SignedData, P7Data + 19, *SignedDataSize); OPENSSL_free (P7Data); Status = TRUE; _Exit: // // Release Resources // if (RsaContext != NULL) { RsaFree (RsaContext); if (Key != NULL) { Key->pkey.rsa = NULL; } } if (Key != NULL) { EVP_PKEY_free (Key); } if (DataBio != NULL) { BIO_free (DataBio); } if (Pkcs7 != NULL) { PKCS7_free (Pkcs7); } return Status; } /** Check input P7Data is a wrapped ContentInfo structure or not. If not construct a new structure to wrap P7Data. @param[in] P7Data Pointer to the PKCS#7 message to verify. @param[in] P7Length Length of the PKCS#7 message in bytes. @param[out] WrapFlag If TRUE P7Data is a ContentInfo structure, otherwise return FALSE. @param[out] WrapData If return status of this function is TRUE: 1) when WrapFlag is TRUE, pointer to P7Data. 2) when WrapFlag is FALSE, pointer to a new ContentInfo structure. It's caller's responsibility to free this buffer. @param[out] WrapDataSize Length of ContentInfo structure in bytes. @retval TRUE The operation is finished successfully. @retval FALSE The operation is failed due to lack of resources. **/ BOOLEAN WrapPkcs7Data ( IN CONST UINT8 *P7Data, IN UINTN P7Length, OUT BOOLEAN *WrapFlag, OUT UINT8 **WrapData, OUT UINTN *WrapDataSize ) { BOOLEAN Wrapped; UINT8 *SignedData; // // Check whether input P7Data is a wrapped ContentInfo structure or not. // Wrapped = FALSE; if ((P7Data[4] == 0x06) && (P7Data[5] == 0x09)) { if (CompareMem (P7Data + 6, mOidValue, sizeof (mOidValue)) == 0) { if ((P7Data[15] == 0xA0) && (P7Data[16] == 0x82)) { Wrapped = TRUE; } } } if (Wrapped) { *WrapData = (UINT8 *) P7Data; *WrapDataSize = P7Length; } else { // // Wrap PKCS#7 signeddata to a ContentInfo structure - add a header in 19 bytes. // *WrapDataSize = P7Length + 19; *WrapData = malloc (*WrapDataSize); if (*WrapData == NULL) { *WrapFlag = Wrapped; return FALSE; } SignedData = *WrapData; // // Part1: 0x30, 0x82. // SignedData[0] = 0x30; SignedData[1] = 0x82; // // Part2: Length1 = P7Length + 19 - 4, in big endian. // SignedData[2] = (UINT8) (((UINT16) (*WrapDataSize - 4)) >> 8); SignedData[3] = (UINT8) (((UINT16) (*WrapDataSize - 4)) & 0xff); // // Part3: 0x06, 0x09. // SignedData[4] = 0x06; SignedData[5] = 0x09; // // Part4: OID value -- 0x2A 0x86 0x48 0x86 0xF7 0x0D 0x01 0x07 0x02. // CopyMem (SignedData + 6, mOidValue, sizeof (mOidValue)); // // Part5: 0xA0, 0x82. // SignedData[15] = 0xA0; SignedData[16] = 0x82; // // Part6: Length2 = P7Length, in big endian. // SignedData[17] = (UINT8) (((UINT16) P7Length) >> 8); SignedData[18] = (UINT8) (((UINT16) P7Length) & 0xff); // // Part7: P7Data. // CopyMem (SignedData + 19, P7Data, P7Length); } *WrapFlag = Wrapped; return TRUE; } /** Get the signer's certificates from PKCS#7 signed data as described in "PKCS #7: Cryptographic Message Syntax Standard". The input signed data could be wrapped in a ContentInfo structure. If P7Data, CertStack, StackLength, TrustedCert or CertLength is NULL, then return FALSE. If P7Length overflow, then return FAlSE. @param[in] P7Data Pointer to the PKCS#7 message to verify. @param[in] P7Length Length of the PKCS#7 message in bytes. @param[out] CertStack Pointer to Signer's certificates retrieved from P7Data. It's caller's responsiblity to free the buffer. @param[out] StackLength Length of signer's certificates in bytes. @param[out] TrustedCert Pointer to a trusted certificate from Signer's certificates. It's caller's responsiblity to free the buffer. @param[out] CertLength Length of the trusted certificate in bytes. @retval TRUE The operation is finished successfully. @retval FALSE Error occurs during the operation. **/ BOOLEAN EFIAPI Pkcs7GetSigners ( IN CONST UINT8 *P7Data, IN UINTN P7Length, OUT UINT8 **CertStack, OUT UINTN *StackLength, OUT UINT8 **TrustedCert, OUT UINTN *CertLength ) { PKCS7 *Pkcs7; BOOLEAN Status; UINT8 *SignedData; UINT8 *Temp; UINTN SignedDataSize; BOOLEAN Wrapped; STACK_OF(X509) *Stack; UINT8 Index; UINT8 *CertBuf; UINT8 *OldBuf; UINTN BufferSize; UINTN OldSize; UINT8 *SingleCert; UINTN SingleCertSize; if ((P7Data == NULL) || (CertStack == NULL) || (StackLength == NULL) || (TrustedCert == NULL) || (CertLength == NULL) || (P7Length > INT_MAX)) { return FALSE; } Status = WrapPkcs7Data (P7Data, P7Length, &Wrapped, &SignedData, &SignedDataSize); if (!Status) { return Status; } Status = FALSE; Pkcs7 = NULL; Stack = NULL; CertBuf = NULL; OldBuf = NULL; SingleCert = NULL; // // Retrieve PKCS#7 Data (DER encoding) // if (SignedDataSize > INT_MAX) { goto _Exit; } Temp = SignedData; Pkcs7 = d2i_PKCS7 (NULL, (const unsigned char **) &Temp, (int) SignedDataSize); if (Pkcs7 == NULL) { goto _Exit; } // // Check if it's PKCS#7 Signed Data (for Authenticode Scenario) // if (!PKCS7_type_is_signed (Pkcs7)) { goto _Exit; } Stack = PKCS7_get0_signers(Pkcs7, NULL, PKCS7_BINARY); if (Stack == NULL) { goto _Exit; } // // Convert CertStack to buffer in following format: // UINT8 CertNumber; // UINT32 Cert1Length; // UINT8 Cert1[]; // UINT32 Cert2Length; // UINT8 Cert2[]; // ... // UINT32 CertnLength; // UINT8 Certn[]; // BufferSize = sizeof (UINT8); OldSize = BufferSize; for (Index = 0; ; Index++) { Status = X509PopCertificate (Stack, &SingleCert, &SingleCertSize); if (!Status) { break; } OldSize = BufferSize; OldBuf = CertBuf; BufferSize = OldSize + SingleCertSize + sizeof (UINT32); CertBuf = malloc (BufferSize); if (CertBuf == NULL) { goto _Exit; } if (OldBuf != NULL) { CopyMem (CertBuf, OldBuf, OldSize); free (OldBuf); OldBuf = NULL; } WriteUnaligned32 ((UINT32 *) (CertBuf + OldSize), (UINT32) SingleCertSize); CopyMem (CertBuf + OldSize + sizeof (UINT32), SingleCert, SingleCertSize); free (SingleCert); SingleCert = NULL; } if (CertBuf != NULL) { // // Update CertNumber. // CertBuf[0] = Index; *CertLength = BufferSize - OldSize - sizeof (UINT32); *TrustedCert = malloc (*CertLength); if (*TrustedCert == NULL) { goto _Exit; } CopyMem (*TrustedCert, CertBuf + OldSize + sizeof (UINT32), *CertLength); *CertStack = CertBuf; *StackLength = BufferSize; Status = TRUE; } _Exit: // // Release Resources // if (!Wrapped) { free (SignedData); } if (Pkcs7 != NULL) { PKCS7_free (Pkcs7); } if (Stack != NULL) { sk_X509_pop_free(Stack, X509_free); } if (SingleCert != NULL) { free (SingleCert); } if (!Status && (CertBuf != NULL)) { free (CertBuf); *CertStack = NULL; } if (OldBuf != NULL) { free (OldBuf); } return Status; } /** Wrap function to use free() to free allocated memory for certificates. @param[in] Certs Pointer to the certificates to be freed. **/ VOID EFIAPI Pkcs7FreeSigners ( IN UINT8 *Certs ) { if (Certs == NULL) { return; } free (Certs); } /** Verifies the validility of a PKCS#7 signed data as described in "PKCS #7: Cryptographic Message Syntax Standard". The input signed data could be wrapped in a ContentInfo structure. If P7Data, TrustedCert or InData is NULL, then return FALSE. If P7Length, CertLength or DataLength overflow, then return FAlSE. @param[in] P7Data Pointer to the PKCS#7 message to verify. @param[in] P7Length Length of the PKCS#7 message in bytes. @param[in] TrustedCert Pointer to a trusted/root certificate encoded in DER, which is used for certificate chain verification. @param[in] CertLength Length of the trusted certificate in bytes. @param[in] InData Pointer to the content to be verified. @param[in] DataLength Length of InData in bytes. @retval TRUE The specified PKCS#7 signed data is valid. @retval FALSE Invalid PKCS#7 signed data. **/ BOOLEAN EFIAPI Pkcs7Verify ( IN CONST UINT8 *P7Data, IN UINTN P7Length, IN CONST UINT8 *TrustedCert, IN UINTN CertLength, IN CONST UINT8 *InData, IN UINTN DataLength ) { PKCS7 *Pkcs7; BIO *CertBio; BIO *DataBio; BOOLEAN Status; X509 *Cert; X509_STORE *CertStore; UINT8 *SignedData; UINT8 *Temp; UINTN SignedDataSize; BOOLEAN Wrapped; // // Check input parameters. // if (P7Data == NULL || TrustedCert == NULL || InData == NULL || P7Length > INT_MAX || CertLength > INT_MAX || DataLength > INT_MAX) { return FALSE; } Pkcs7 = NULL; CertBio = NULL; DataBio = NULL; Cert = NULL; CertStore = NULL; // // Register & Initialize necessary digest algorithms for PKCS#7 Handling // EVP_add_digest (EVP_md5()); EVP_add_digest (EVP_sha1()); EVP_add_digest_alias (SN_sha1WithRSAEncryption, SN_sha1WithRSA); EVP_add_digest (EVP_sha256()); Status = WrapPkcs7Data (P7Data, P7Length, &Wrapped, &SignedData, &SignedDataSize); if (!Status) { return Status; } // // Retrieve PKCS#7 Data (DER encoding) // if (SignedDataSize > INT_MAX) { goto _Exit; } Temp = SignedData; Pkcs7 = d2i_PKCS7 (NULL, (const unsigned char **) &Temp, (int) SignedDataSize); if (Pkcs7 == NULL) { goto _Exit; } // // Check if it's PKCS#7 Signed Data (for Authenticode Scenario) // if (!PKCS7_type_is_signed (Pkcs7)) { goto _Exit; } // // Read DER-encoded root certificate and Construct X509 Certificate // CertBio = BIO_new (BIO_s_mem ()); BIO_write (CertBio, TrustedCert, (int)CertLength); if (CertBio == NULL) { goto _Exit; } Cert = d2i_X509_bio (CertBio, NULL); if (Cert == NULL) { goto _Exit; } // // Setup X509 Store for trusted certificate // CertStore = X509_STORE_new (); if (CertStore == NULL) { goto _Exit; } if (!(X509_STORE_add_cert (CertStore, Cert))) { goto _Exit; } // // Register customized X509 verification callback function to support // trusted intermediate certificate anchor. // CertStore->verify_cb = X509VerifyCb; // // For generic PKCS#7 handling, InData may be NULL if the content is present // in PKCS#7 structure. So ignore NULL checking here. // DataBio = BIO_new (BIO_s_mem ()); BIO_write (DataBio, InData, (int)DataLength); // // Verifies the PKCS#7 signedData structure // Status = (BOOLEAN) PKCS7_verify (Pkcs7, NULL, CertStore, DataBio, NULL, PKCS7_BINARY); _Exit: // // Release Resources // BIO_free (DataBio); BIO_free (CertBio); X509_free (Cert); X509_STORE_free (CertStore); PKCS7_free (Pkcs7); if (!Wrapped) { OPENSSL_free (SignedData); } return Status; }