/** @file Copyright (c) 2006 - 2008, Intel Corporation All rights reserved. This program and the accompanying materials are licensed and made available under the terms and conditions of the BSD License which accompanies this distribution. The full text of the license may be found at http://opensource.org/licenses/bsd-license.php THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. **/ #include "PciBus.h" #include "PciResourceSupport.h" #include "PciCommand.h" /** The function is used to skip VGA range @param Start address including VGA range @param Length length of VGA range. @retval EFI_SUCCESS success. **/ EFI_STATUS SkipVGAAperture ( OUT UINT64 *Start, IN UINT64 Length ) { UINT64 Original; UINT64 Mask; UINT64 StartOffset; UINT64 LimitOffset; // // For legacy VGA, bit 10 to bit 15 is not decoded // Mask = 0x3FF; Original = *Start; StartOffset = Original & Mask; LimitOffset = ((*Start) + Length - 1) & Mask; if (LimitOffset >= VGABASE1) { *Start = *Start - StartOffset + VGALIMIT2 + 1; } return EFI_SUCCESS; } /** This function is used to skip ISA aliasing aperture. @param Start address including ISA aliasing aperture. @param Length length of ISA aliasing aperture. @retval EFI_SUCCESS success. **/ EFI_STATUS SkipIsaAliasAperture ( OUT UINT64 *Start, IN UINT64 Length ) { UINT64 Original; UINT64 Mask; UINT64 StartOffset; UINT64 LimitOffset; // // For legacy ISA, bit 10 to bit 15 is not decoded // Mask = 0x3FF; Original = *Start; StartOffset = Original & Mask; LimitOffset = ((*Start) + Length - 1) & Mask; if (LimitOffset >= ISABASE) { *Start = *Start - StartOffset + ISALIMIT + 1; } return EFI_SUCCESS; } /** This function inserts a resource node into the resource list. The resource list is sorted in descend order. @param Bridge PCI resource node for bridge. @param ResNode Resource node want to be inserted. @retval EFI_SUCCESS Success. **/ EFI_STATUS InsertResourceNode ( PCI_RESOURCE_NODE *Bridge, PCI_RESOURCE_NODE *ResNode ) { LIST_ENTRY *CurrentLink; PCI_RESOURCE_NODE *Temp; UINT64 ResNodeAlignRest; UINT64 TempAlignRest; InsertHeadList (&Bridge->ChildList, &ResNode->Link); CurrentLink = Bridge->ChildList.ForwardLink->ForwardLink; while (CurrentLink != &Bridge->ChildList) { Temp = RESOURCE_NODE_FROM_LINK (CurrentLink); if (ResNode->Alignment > Temp->Alignment) { break; } else if (ResNode->Alignment == Temp->Alignment) { ResNodeAlignRest = ResNode->Length & ResNode->Alignment; TempAlignRest = Temp->Length & Temp->Alignment; if ((ResNodeAlignRest == 0) || (ResNodeAlignRest >= TempAlignRest)) { break; } } SwapListEntries (&ResNode->Link, CurrentLink); CurrentLink = ResNode->Link.ForwardLink; } return EFI_SUCCESS; } /** Routine Description: This routine is used to merge two different resource tree in need of resoure degradation. For example, if a upstream PPB doesn't support, prefetchable memory decoding, the PCI bus driver will choose to call this function to merge prefectchable memory resource list into normal memory list. If the TypeMerge is TRUE, Res resource type is changed to the type of destination resource type. @param Dst Point to destination resource tree. @param Res Point to source resource tree. @param TypeMerge If the TypeMerge is TRUE, Res resource type is changed to the type of destination resource type. @retval EFI_SUCCESS Success. **/ EFI_STATUS MergeResourceTree ( PCI_RESOURCE_NODE *Dst, PCI_RESOURCE_NODE *Res, BOOLEAN TypeMerge ) { LIST_ENTRY *CurrentLink; PCI_RESOURCE_NODE *Temp; while (!IsListEmpty (&Res->ChildList)) { CurrentLink = Res->ChildList.ForwardLink; Temp = RESOURCE_NODE_FROM_LINK (CurrentLink); if (TypeMerge) { Temp->ResType = Dst->ResType; } RemoveEntryList (CurrentLink); InsertResourceNode (Dst, Temp); } return EFI_SUCCESS; } /** This function is used to calculate the IO16 aperture for a bridge. @param Bridge PCI resource node for bridge. @retval EFI_SUCCESS Success. **/ EFI_STATUS CalculateApertureIo16 ( IN PCI_RESOURCE_NODE *Bridge ) { UINT64 Aperture; LIST_ENTRY *CurrentLink; PCI_RESOURCE_NODE *Node; UINT64 offset; BOOLEAN IsaEnable; BOOLEAN VGAEnable; // // Always assume there is ISA device and VGA device on the platform // will be customized later // IsaEnable = FALSE; VGAEnable = FALSE; if (FeaturePcdGet (PcdPciIsaEnable)){ IsaEnable = TRUE; } if (FeaturePcdGet (PcdPciVgaEnable)){ VGAEnable = TRUE; } Aperture = 0; if (Bridge == NULL) { return EFI_SUCCESS; } CurrentLink = Bridge->ChildList.ForwardLink; // // Assume the bridge is aligned // while (CurrentLink != &Bridge->ChildList) { Node = RESOURCE_NODE_FROM_LINK (CurrentLink); // // Consider the aperture alignment // offset = Aperture & (Node->Alignment); if (offset != 0) { Aperture = Aperture + (Node->Alignment + 1) - offset; } // // IsaEnable and VGAEnable can not be implemented now. // If both of them are enabled, then the IO resource would // become too limited to meet the requirement of most of devices. // if (IsaEnable || VGAEnable) { if (!IS_PCI_BRIDGE (&(Node->PciDev->Pci)) && !IS_CARDBUS_BRIDGE (&(Node->PciDev->Pci))) { // // Check if there is need to support ISA/VGA decoding // If so, we need to avoid isa/vga aliasing range // if (IsaEnable) { SkipIsaAliasAperture ( &Aperture, Node->Length ); offset = Aperture & (Node->Alignment); if (offset != 0) { Aperture = Aperture + (Node->Alignment + 1) - offset; } } else if (VGAEnable) { SkipVGAAperture ( &Aperture, Node->Length ); offset = Aperture & (Node->Alignment); if (offset != 0) { Aperture = Aperture + (Node->Alignment + 1) - offset; } } } } Node->Offset = Aperture; // // Increment aperture by the length of node // Aperture += Node->Length; CurrentLink = CurrentLink->ForwardLink; } // // At last, adjust the aperture with the bridge's // alignment // offset = Aperture & (Bridge->Alignment); if (offset != 0) { Aperture = Aperture + (Bridge->Alignment + 1) - offset; } Bridge->Length = Aperture; // // At last, adjust the bridge's alignment to the first child's alignment // if the bridge has at least one child // CurrentLink = Bridge->ChildList.ForwardLink; if (CurrentLink != &Bridge->ChildList) { Node = RESOURCE_NODE_FROM_LINK (CurrentLink); if (Node->Alignment > Bridge->Alignment) { Bridge->Alignment = Node->Alignment; } } return EFI_SUCCESS; } /** This function is used to calculate the resource aperture for a given bridge device. @param Bridge Give bridge device. @retval EFI_SUCCESS Success. **/ EFI_STATUS CalculateResourceAperture ( IN PCI_RESOURCE_NODE *Bridge ) { UINT64 Aperture; LIST_ENTRY *CurrentLink; PCI_RESOURCE_NODE *Node; UINT64 offset; Aperture = 0; if (Bridge == NULL) { return EFI_SUCCESS; } if (Bridge->ResType == PciBarTypeIo16) { return CalculateApertureIo16 (Bridge); } CurrentLink = Bridge->ChildList.ForwardLink; // // Assume the bridge is aligned // while (CurrentLink != &Bridge->ChildList) { Node = RESOURCE_NODE_FROM_LINK (CurrentLink); // // Apply padding resource if available // offset = Aperture & (Node->Alignment); if (offset != 0) { Aperture = Aperture + (Node->Alignment + 1) - offset; } // // Recode current aperture as a offset // this offset will be used in future real allocation // Node->Offset = Aperture; // // Increment aperture by the length of node // Aperture += Node->Length; // // Consider the aperture alignment // CurrentLink = CurrentLink->ForwardLink; } // // At last, adjust the aperture with the bridge's // alignment // offset = Aperture & (Bridge->Alignment); if (offset != 0) { Aperture = Aperture + (Bridge->Alignment + 1) - offset; } // // If the bridge has already padded the resource and the // amount of padded resource is larger, then keep the // padded resource // if (Bridge->Length < Aperture) { Bridge->Length = Aperture; } // // At last, adjust the bridge's alignment to the first child's alignment // if the bridge has at least one child // CurrentLink = Bridge->ChildList.ForwardLink; if (CurrentLink != &Bridge->ChildList) { Node = RESOURCE_NODE_FROM_LINK (CurrentLink); if (Node->Alignment > Bridge->Alignment) { Bridge->Alignment = Node->Alignment; } } return EFI_SUCCESS; } /** Get IO/Memory resource infor for given PCI device. @param PciDev Pci device instance. @param IoNode Resource info node for IO . @param Mem32Node Resource info node for 32-bit memory. @param PMem32Node Resource info node for 32-bit PMemory. @param Mem64Node Resource info node for 64-bit memory. @param PMem64Node Resource info node for 64-bit PMemory. @retval EFI_SUCCESS Success. **/ EFI_STATUS GetResourceFromDevice ( PCI_IO_DEVICE *PciDev, PCI_RESOURCE_NODE *IoNode, PCI_RESOURCE_NODE *Mem32Node, PCI_RESOURCE_NODE *PMem32Node, PCI_RESOURCE_NODE *Mem64Node, PCI_RESOURCE_NODE *PMem64Node ) { UINT8 Index; PCI_RESOURCE_NODE *Node; BOOLEAN ResourceRequested; Node = NULL; ResourceRequested = FALSE; for (Index = 0; Index < PCI_MAX_BAR; Index++) { switch ((PciDev->PciBar)[Index].BarType) { case PciBarTypeMem32: Node = CreateResourceNode ( PciDev, (PciDev->PciBar)[Index].Length, (PciDev->PciBar)[Index].Alignment, Index, PciBarTypeMem32, PciResUsageTypical ); InsertResourceNode ( Mem32Node, Node ); ResourceRequested = TRUE; break; case PciBarTypeMem64: Node = CreateResourceNode ( PciDev, (PciDev->PciBar)[Index].Length, (PciDev->PciBar)[Index].Alignment, Index, PciBarTypeMem64, PciResUsageTypical ); InsertResourceNode ( Mem64Node, Node ); ResourceRequested = TRUE; break; case PciBarTypePMem64: Node = CreateResourceNode ( PciDev, (PciDev->PciBar)[Index].Length, (PciDev->PciBar)[Index].Alignment, Index, PciBarTypePMem64, PciResUsageTypical ); InsertResourceNode ( PMem64Node, Node ); ResourceRequested = TRUE; break; case PciBarTypePMem32: Node = CreateResourceNode ( PciDev, (PciDev->PciBar)[Index].Length, (PciDev->PciBar)[Index].Alignment, Index, PciBarTypePMem32, PciResUsageTypical ); InsertResourceNode ( PMem32Node, Node ); ResourceRequested = TRUE; break; case PciBarTypeIo16: case PciBarTypeIo32: Node = CreateResourceNode ( PciDev, (PciDev->PciBar)[Index].Length, (PciDev->PciBar)[Index].Alignment, Index, PciBarTypeIo16, PciResUsageTypical ); InsertResourceNode ( IoNode, Node ); ResourceRequested = TRUE; break; case PciBarTypeUnknown: break; default: break; } } // // If there is no resource requested from this device, // then we indicate this device has been allocated naturally. // if (!ResourceRequested) { PciDev->Allocated = TRUE; } return EFI_SUCCESS; } /** This function is used to create a resource node. @param PciDev Pci device instance. @param Length Length of Io/Memory resource. @param Alignment Alignment of resource. @param Bar Bar index. @param ResType Type of resource: IO/Memory. @param ResUsage Resource usage. **/ PCI_RESOURCE_NODE * CreateResourceNode ( IN PCI_IO_DEVICE *PciDev, IN UINT64 Length, IN UINT64 Alignment, IN UINT8 Bar, IN PCI_BAR_TYPE ResType, IN PCI_RESOURCE_USAGE ResUsage ) { PCI_RESOURCE_NODE *Node; Node = NULL; Node = AllocatePool (sizeof (PCI_RESOURCE_NODE)); ASSERT (Node != NULL); if (Node == NULL) { return NULL; } ZeroMem (Node, sizeof (PCI_RESOURCE_NODE)); Node->Signature = PCI_RESOURCE_SIGNATURE; Node->PciDev = PciDev; Node->Length = Length; Node->Alignment = Alignment; Node->Bar = Bar; Node->ResType = ResType; Node->Reserved = FALSE; Node->ResourceUsage = ResUsage; InitializeListHead (&Node->ChildList); return Node; } /** This routine is used to extract resource request from device node list. @param Bridge Pci device instance. @param IoNode Resource info node for IO. @param Mem32Node Resource info node for 32-bit memory. @param PMem32Node Resource info node for 32-bit PMemory. @param Mem64Node Resource info node for 64-bit memory. @param PMem64Node Resource info node for 64-bit PMemory. @retval EFI_SUCCESS Success. **/ EFI_STATUS CreateResourceMap ( IN PCI_IO_DEVICE *Bridge, IN PCI_RESOURCE_NODE *IoNode, IN PCI_RESOURCE_NODE *Mem32Node, IN PCI_RESOURCE_NODE *PMem32Node, IN PCI_RESOURCE_NODE *Mem64Node, IN PCI_RESOURCE_NODE *PMem64Node ) { PCI_IO_DEVICE *Temp; PCI_RESOURCE_NODE *IoBridge; PCI_RESOURCE_NODE *Mem32Bridge; PCI_RESOURCE_NODE *PMem32Bridge; PCI_RESOURCE_NODE *Mem64Bridge; PCI_RESOURCE_NODE *PMem64Bridge; LIST_ENTRY *CurrentLink; CurrentLink = Bridge->ChildList.ForwardLink; while (CurrentLink != NULL && CurrentLink != &Bridge->ChildList) { Temp = PCI_IO_DEVICE_FROM_LINK (CurrentLink); // // Create resource nodes for this device by scanning the // Bar array in the device private data // If the upstream bridge doesn't support this device, // no any resource node will be created for this device // GetResourceFromDevice ( Temp, IoNode, Mem32Node, PMem32Node, Mem64Node, PMem64Node ); if (IS_PCI_BRIDGE (&Temp->Pci)) { // // If the device has children, create a bridge resource node for this PPB // Note: For PPB, memory aperture is aligned with 1MB and IO aperture // is aligned with 4KB // This device is typically a bridge device like PPB and P2C // IoBridge = CreateResourceNode ( Temp, 0, 0xFFF, PPB_IO_RANGE, PciBarTypeIo16, PciResUsageTypical ); //0x1000 aligned Mem32Bridge = CreateResourceNode ( Temp, 0, 0xFFFFF, PPB_MEM32_RANGE, PciBarTypeMem32, PciResUsageTypical ); PMem32Bridge = CreateResourceNode ( Temp, 0, 0xFFFFF, PPB_PMEM32_RANGE, PciBarTypePMem32, PciResUsageTypical ); Mem64Bridge = CreateResourceNode ( Temp, 0, 0xFFFFF, PPB_MEM64_RANGE, PciBarTypeMem64, PciResUsageTypical ); PMem64Bridge = CreateResourceNode ( Temp, 0, 0xFFFFF, PPB_PMEM64_RANGE, PciBarTypePMem64, PciResUsageTypical ); // // Recursively create resouce map on this bridge // CreateResourceMap ( Temp, IoBridge, Mem32Bridge, PMem32Bridge, Mem64Bridge, PMem64Bridge ); if (ResourceRequestExisted (IoBridge)) { InsertResourceNode ( IoNode, IoBridge ); } else { gBS->FreePool (IoBridge); IoBridge = NULL; } // // If there is node under this resource bridge, // then calculate bridge's aperture of this type // and insert it into the respective resource tree. // If no, delete this resource bridge // if (ResourceRequestExisted (Mem32Bridge)) { InsertResourceNode ( Mem32Node, Mem32Bridge ); } else { gBS->FreePool (Mem32Bridge); Mem32Bridge = NULL; } // // If there is node under this resource bridge, // then calculate bridge's aperture of this type // and insert it into the respective resource tree. // If no, delete this resource bridge // if (ResourceRequestExisted (PMem32Bridge)) { InsertResourceNode ( PMem32Node, PMem32Bridge ); } else { gBS->FreePool (PMem32Bridge); PMem32Bridge = NULL; } // // If there is node under this resource bridge, // then calculate bridge's aperture of this type // and insert it into the respective resource tree. // If no, delete this resource bridge // if (ResourceRequestExisted (Mem64Bridge)) { InsertResourceNode ( Mem64Node, Mem64Bridge ); } else { gBS->FreePool (Mem64Bridge); Mem64Bridge = NULL; } // // If there is node under this resource bridge, // then calculate bridge's aperture of this type // and insert it into the respective resource tree. // If no, delete this resource bridge // if (ResourceRequestExisted (PMem64Bridge)) { InsertResourceNode ( PMem64Node, PMem64Bridge ); } else { gBS->FreePool (PMem64Bridge); PMem64Bridge = NULL; } } // // If it is P2C, apply hard coded resource padding // // if (IS_CARDBUS_BRIDGE (&Temp->Pci)) { ResourcePaddingForCardBusBridge ( Temp, IoNode, Mem32Node, PMem32Node, Mem64Node, PMem64Node ); } CurrentLink = CurrentLink->ForwardLink; } // // // To do some platform specific resource padding ... // ResourcePaddingPolicy ( Bridge, IoNode, Mem32Node, PMem32Node, Mem64Node, PMem64Node ); // // Degrade resource if necessary // DegradeResource ( Bridge, Mem32Node, PMem32Node, Mem64Node, PMem64Node ); // // Calculate resource aperture for this bridge device // CalculateResourceAperture (Mem32Node); CalculateResourceAperture (PMem32Node); CalculateResourceAperture (Mem64Node); CalculateResourceAperture (PMem64Node); CalculateResourceAperture (IoNode); return EFI_SUCCESS; } /** This function is used to do the resource padding for a specific platform. @param PciDev Pci device instance. @param IoNode Resource info node for IO. @param Mem32Node Resource info node for 32-bit memory. @param PMem32Node Resource info node for 32-bit PMemory. @param Mem64Node Resource info node for 64-bit memory. @param PMem64Node Resource info node for 64-bit PMemory. @retval EFI_SUCCESS Success. **/ EFI_STATUS ResourcePaddingPolicy ( PCI_IO_DEVICE *PciDev, PCI_RESOURCE_NODE *IoNode, PCI_RESOURCE_NODE *Mem32Node, PCI_RESOURCE_NODE *PMem32Node, PCI_RESOURCE_NODE *Mem64Node, PCI_RESOURCE_NODE *PMem64Node ) { // // Create padding resource node // if (PciDev->ResourcePaddingDescriptors != NULL) { ApplyResourcePadding ( PciDev, IoNode, Mem32Node, PMem32Node, Mem64Node, PMem64Node ); } return EFI_SUCCESS; } /** This function is used to degrade resource if the upstream bridge doesn't support certain resource. Degradation path is PMEM64 -> MEM64 -> MEM32 PMEM64 -> PMEM32 -> MEM32 IO32 -> IO16. @param Bridge Pci device instance. @param Mem32Node Resource info node for 32-bit memory. @param PMem32Node Resource info node for 32-bit PMemory. @param Mem64Node Resource info node for 64-bit memory. @param PMem64Node Resource info node for 64-bit PMemory. @retval EFI_SUCCESS Success. **/ EFI_STATUS DegradeResource ( IN PCI_IO_DEVICE *Bridge, IN PCI_RESOURCE_NODE *Mem32Node, IN PCI_RESOURCE_NODE *PMem32Node, IN PCI_RESOURCE_NODE *Mem64Node, IN PCI_RESOURCE_NODE *PMem64Node ) { BOOLEAN HasOprom; PCI_IO_DEVICE *Temp; LIST_ENTRY *CurrentLink; // // For RootBridge, PPB , P2C, go recursively to traverse all its children // to find if this bridge and downstream has OptionRom. // HasOprom = FALSE; CurrentLink = Bridge->ChildList.ForwardLink; while (CurrentLink != NULL && CurrentLink != &Bridge->ChildList) { Temp = PCI_IO_DEVICE_FROM_LINK (CurrentLink); if (Temp->RomSize != 0) { HasOprom = TRUE; break; } CurrentLink = CurrentLink->ForwardLink; } // // If bridge doesn't support Prefetchable // memory64, degrade it to Prefetchable memory32 // if (!BridgeSupportResourceDecode (Bridge, EFI_BRIDGE_PMEM64_DECODE_SUPPORTED)) { MergeResourceTree ( PMem32Node, PMem64Node, TRUE ); } else { // // if no PMem32 request and no OptionRom request, still keep PMem64. Otherwise degrade to PMem32 // if ((PMem32Node != NULL && (PMem32Node->Length != 0 && Bridge->Parent != NULL)) || HasOprom) { // // Fixed the issue that there is no resource for 64-bit (above 4G) // MergeResourceTree ( PMem32Node, PMem64Node, TRUE ); } } // // If bridge doesn't support Mem64 // degrade it to mem32 // if (!BridgeSupportResourceDecode (Bridge, EFI_BRIDGE_MEM64_DECODE_SUPPORTED)) { MergeResourceTree ( Mem32Node, Mem64Node, TRUE ); } // // If bridge doesn't support Pmem32 // degrade it to mem32 // if (!BridgeSupportResourceDecode (Bridge, EFI_BRIDGE_PMEM32_DECODE_SUPPORTED)) { MergeResourceTree ( Mem32Node, PMem32Node, TRUE ); } // // if bridge supports combined Pmem Mem decoding // merge these two type of resource // if (BridgeSupportResourceDecode (Bridge, EFI_BRIDGE_PMEM_MEM_COMBINE_SUPPORTED)) { MergeResourceTree ( Mem32Node, PMem32Node, FALSE ); MergeResourceTree ( Mem64Node, PMem64Node, FALSE ); } return EFI_SUCCESS; } /** Test whether bridge device support decode resource @param Bridge Bridge device instance. @param Decode Decode type according to resource type. @return TRUE bridge device support decode resource. @return FALSE bridge device don't support decode resource. **/ BOOLEAN BridgeSupportResourceDecode ( IN PCI_IO_DEVICE *Bridge, IN UINT32 Decode ) { if (((Bridge->Decodes) & Decode) != 0) { return TRUE; } return FALSE; } /** This function is used to program the resource allocated for each resource node. @param Base Base address of resource. @param Bridge Bridge device instance. @retval EFI_SUCCESS Success. **/ EFI_STATUS ProgramResource ( IN UINT64 Base, IN PCI_RESOURCE_NODE *Bridge ) { LIST_ENTRY *CurrentLink; PCI_RESOURCE_NODE *Node; EFI_STATUS Status; if (Base == gAllOne) { return EFI_OUT_OF_RESOURCES; } CurrentLink = Bridge->ChildList.ForwardLink; while (CurrentLink != &Bridge->ChildList) { Node = RESOURCE_NODE_FROM_LINK (CurrentLink); if (!IS_PCI_BRIDGE (&(Node->PciDev->Pci))) { if (IS_CARDBUS_BRIDGE (&(Node->PciDev->Pci))) { ProgramP2C (Base, Node); } else { ProgramBar (Base, Node); } } else { Status = ProgramResource (Base + Node->Offset, Node); if (EFI_ERROR (Status)) { return Status; } ProgramPpbApperture (Base, Node); } CurrentLink = CurrentLink->ForwardLink; } return EFI_SUCCESS; } /** Program Bar register. @param Base Base address for resource. @param Node Point to resoure node structure. @retval EFI_SUCCESS Success. **/ EFI_STATUS ProgramBar ( IN UINT64 Base, IN PCI_RESOURCE_NODE *Node ) { EFI_PCI_IO_PROTOCOL *PciIo; UINT64 Address; UINT32 Address32; Address = 0; PciIo = &(Node->PciDev->PciIo); Address = Base + Node->Offset; // // Indicate pci bus driver has allocated // resource for this device // It might be a temporary solution here since // pci device could have multiple bar // Node->PciDev->Allocated = TRUE; switch ((Node->PciDev->PciBar[Node->Bar]).BarType) { case PciBarTypeIo16: case PciBarTypeIo32: case PciBarTypeMem32: case PciBarTypePMem32: PciIoWrite ( PciIo, EfiPciIoWidthUint32, (Node->PciDev->PciBar[Node->Bar]).Offset, 1, &Address ); Node->PciDev->PciBar[Node->Bar].BaseAddress = Address; break; case PciBarTypeMem64: case PciBarTypePMem64: Address32 = (UINT32) (Address & 0x00000000FFFFFFFF); PciIoWrite ( PciIo, EfiPciIoWidthUint32, (Node->PciDev->PciBar[Node->Bar]).Offset, 1, &Address32 ); Address32 = (UINT32) RShiftU64 (Address, 32); PciIoWrite ( PciIo, EfiPciIoWidthUint32, (UINT8) ((Node->PciDev->PciBar[Node->Bar]).Offset + 4), 1, &Address32 ); Node->PciDev->PciBar[Node->Bar].BaseAddress = Address; break; default: break; } return EFI_SUCCESS; } /** Program PPB apperture. @param Base Base address for resource. @param Node Point to resoure node structure. @retval EFI_SUCCESS Success. **/ EFI_STATUS ProgramPpbApperture ( IN UINT64 Base, IN PCI_RESOURCE_NODE *Node ) { EFI_PCI_IO_PROTOCOL *PciIo; UINT64 Address; UINT32 Address32; Address = 0; // // if no device south of this PPB, return anyway // Apperture is set default in the initialization code // if (Node->Length == 0 || Node->ResourceUsage == PciResUsagePadding) { // // For padding resource node, just ignore when programming // return EFI_SUCCESS; } PciIo = &(Node->PciDev->PciIo); Address = Base + Node->Offset; // // Indicate the PPB resource has been allocated // Node->PciDev->Allocated = TRUE; switch (Node->Bar) { case PPB_BAR_0: case PPB_BAR_1: PciIoWrite ( PciIo, EfiPciIoWidthUint32, (Node->PciDev->PciBar[Node->Bar]).Offset, 1, &Address ); Node->PciDev->PciBar[Node->Bar].BaseAddress = Address; Node->PciDev->PciBar[Node->Bar].Length = Node->Length; break; case PPB_IO_RANGE: Address32 = ((UINT32) (Address)) >> 8; PciIoWrite ( PciIo, EfiPciIoWidthUint8, 0x1C, 1, &Address32 ); Address32 >>= 8; PciIoWrite ( PciIo, EfiPciIoWidthUint16, 0x30, 1, &Address32 ); Address32 = (UINT32) (Address + Node->Length - 1); Address32 = ((UINT32) (Address32)) >> 8; PciIoWrite ( PciIo, EfiPciIoWidthUint8, 0x1D, 1, &Address32 ); Address32 >>= 8; PciIoWrite ( PciIo, EfiPciIoWidthUint16, 0x32, 1, &Address32 ); Node->PciDev->PciBar[Node->Bar].BaseAddress = Address; Node->PciDev->PciBar[Node->Bar].Length = Node->Length; break; case PPB_MEM32_RANGE: Address32 = ((UINT32) (Address)) >> 16; PciIoWrite ( PciIo, EfiPciIoWidthUint16, 0x20, 1, &Address32 ); Address32 = (UINT32) (Address + Node->Length - 1); Address32 = ((UINT32) (Address32)) >> 16; PciIoWrite ( PciIo, EfiPciIoWidthUint16, 0x22, 1, &Address32 ); Node->PciDev->PciBar[Node->Bar].BaseAddress = Address; Node->PciDev->PciBar[Node->Bar].Length = Node->Length; break; case PPB_PMEM32_RANGE: case PPB_PMEM64_RANGE: Address32 = ((UINT32) (Address)) >> 16; PciIoWrite ( PciIo, EfiPciIoWidthUint16, 0x24, 1, &Address32 ); Address32 = (UINT32) (Address + Node->Length - 1); Address32 = ((UINT32) (Address32)) >> 16; PciIoWrite ( PciIo, EfiPciIoWidthUint16, 0x26, 1, &Address32 ); Address32 = (UINT32) RShiftU64 (Address, 32); PciIoWrite ( PciIo, EfiPciIoWidthUint32, 0x28, 1, &Address32 ); Address32 = (UINT32) RShiftU64 ((Address + Node->Length - 1), 32); PciIoWrite ( PciIo, EfiPciIoWidthUint32, 0x2C, 1, &Address32 ); Node->PciDev->PciBar[Node->Bar].BaseAddress = Address; Node->PciDev->PciBar[Node->Bar].Length = Node->Length; break; default: break; } return EFI_SUCCESS; } /** Program parent bridge for oprom. @param PciDevice Pci deivce instance. @param OptionRomBase Base address for oprom. @param Enable Enable/Disable. @retval EFI_SUCCESS Success. **/ EFI_STATUS ProgrameUpstreamBridgeForRom ( IN PCI_IO_DEVICE *PciDevice, IN UINT32 OptionRomBase, IN BOOLEAN Enable ) { PCI_IO_DEVICE *Parent; PCI_RESOURCE_NODE Node; // // For root bridge, just return. // Parent = PciDevice->Parent; ZeroMem (&Node, sizeof (Node)); while (Parent != NULL) { if (!IS_PCI_BRIDGE (&Parent->Pci)) { break; } Node.PciDev = Parent; Node.Length = PciDevice->RomSize; Node.Alignment = 0; Node.Bar = PPB_MEM32_RANGE; Node.ResType = PciBarTypeMem32; Node.Offset = 0; // // Program PPB to only open a single <= 16Parent; } return EFI_SUCCESS; } /** Test whether resource exists for a bridge. @param Bridge Point to resource node for a bridge. @return whether resource exists. **/ BOOLEAN ResourceRequestExisted ( IN PCI_RESOURCE_NODE *Bridge ) { if (Bridge != NULL) { if (!IsListEmpty (&Bridge->ChildList) || Bridge->Length != 0) { return TRUE; } } return FALSE; } /** Initialize resource pool structure. @param ResourcePool Point to resource pool structure. @param ResourceType Type of resource. **/ EFI_STATUS InitializeResourcePool ( PCI_RESOURCE_NODE *ResourcePool, PCI_BAR_TYPE ResourceType ) { ZeroMem (ResourcePool, sizeof (PCI_RESOURCE_NODE)); ResourcePool->ResType = ResourceType; ResourcePool->Signature = PCI_RESOURCE_SIGNATURE; InitializeListHead (&ResourcePool->ChildList); return EFI_SUCCESS; } /** Get all resource information for given Pci device. @param PciDev Pci device instance. @param IoBridge Io resource node. @param Mem32Bridge 32-bit memory node. @param PMem32Bridge 32-bit Pmemory node. @param Mem64Bridge 64-bit memory node. @param PMem64Bridge 64-bit PMemory node. @param IoPool Link list header for Io resource. @param Mem32Pool Link list header for 32-bit memory. @param PMem32Pool Link list header for 32-bit Pmemory. @param Mem64Pool Link list header for 64-bit memory. @param PMem64Pool Link list header for 64-bit Pmemory. @retval EFI_SUCCESS Success. **/ EFI_STATUS GetResourceMap ( PCI_IO_DEVICE *PciDev, PCI_RESOURCE_NODE **IoBridge, PCI_RESOURCE_NODE **Mem32Bridge, PCI_RESOURCE_NODE **PMem32Bridge, PCI_RESOURCE_NODE **Mem64Bridge, PCI_RESOURCE_NODE **PMem64Bridge, PCI_RESOURCE_NODE *IoPool, PCI_RESOURCE_NODE *Mem32Pool, PCI_RESOURCE_NODE *PMem32Pool, PCI_RESOURCE_NODE *Mem64Pool, PCI_RESOURCE_NODE *PMem64Pool ) { PCI_RESOURCE_NODE *Temp; LIST_ENTRY *CurrentLink; CurrentLink = IoPool->ChildList.ForwardLink; // // Get Io resource map // while (CurrentLink != &IoPool->ChildList) { Temp = RESOURCE_NODE_FROM_LINK (CurrentLink); if (Temp->PciDev == PciDev) { *IoBridge = Temp; } CurrentLink = CurrentLink->ForwardLink; } // // Get Mem32 resource map // CurrentLink = Mem32Pool->ChildList.ForwardLink; while (CurrentLink != &Mem32Pool->ChildList) { Temp = RESOURCE_NODE_FROM_LINK (CurrentLink); if (Temp->PciDev == PciDev) { *Mem32Bridge = Temp; } CurrentLink = CurrentLink->ForwardLink; } // // Get Pmem32 resource map // CurrentLink = PMem32Pool->ChildList.ForwardLink; while (CurrentLink != &PMem32Pool->ChildList) { Temp = RESOURCE_NODE_FROM_LINK (CurrentLink); if (Temp->PciDev == PciDev) { *PMem32Bridge = Temp; } CurrentLink = CurrentLink->ForwardLink; } // // Get Mem64 resource map // CurrentLink = Mem64Pool->ChildList.ForwardLink; while (CurrentLink != &Mem64Pool->ChildList) { Temp = RESOURCE_NODE_FROM_LINK (CurrentLink); if (Temp->PciDev == PciDev) { *Mem64Bridge = Temp; } CurrentLink = CurrentLink->ForwardLink; } // // Get Pmem64 resource map // CurrentLink = PMem64Pool->ChildList.ForwardLink; while (CurrentLink != &PMem64Pool->ChildList) { Temp = RESOURCE_NODE_FROM_LINK (CurrentLink); if (Temp->PciDev == PciDev) { *PMem64Bridge = Temp; } CurrentLink = CurrentLink->ForwardLink; } return EFI_SUCCESS; } /** Destory given resource tree. @param Bridge root node of resource tree. @retval EFI_SUCCESS Success. **/ EFI_STATUS DestroyResourceTree ( IN PCI_RESOURCE_NODE *Bridge ) { PCI_RESOURCE_NODE *Temp; LIST_ENTRY *CurrentLink; while (!IsListEmpty (&Bridge->ChildList)) { CurrentLink = Bridge->ChildList.ForwardLink; Temp = RESOURCE_NODE_FROM_LINK (CurrentLink); RemoveEntryList (CurrentLink); if (IS_PCI_BRIDGE (&(Temp->PciDev->Pci))) { DestroyResourceTree (Temp); } gBS->FreePool (Temp); } return EFI_SUCCESS; } /** Record the reserved resource and insert to reserved list. @param Base Base address of reserved resourse. @param Length Length of reserved resource. @param ResType Resource type. @param Bridge Pci device instance. **/ EFI_STATUS RecordReservedResource ( IN UINT64 Base, IN UINT64 Length, IN PCI_BAR_TYPE ResType, IN PCI_IO_DEVICE *Bridge ) { PCI_RESERVED_RESOURCE_LIST *ReservedNode; ReservedNode = AllocatePool (sizeof (PCI_RESERVED_RESOURCE_LIST)); if (ReservedNode == NULL) { return EFI_OUT_OF_RESOURCES; } ReservedNode->Signature = RESERVED_RESOURCE_SIGNATURE; ReservedNode->Node.Base = Base; ReservedNode->Node.Length = Length; ReservedNode->Node.ResType = ResType; InsertTailList (&Bridge->ReservedResourceList, &(ReservedNode->Link)); return EFI_SUCCESS; } /** Insert resource padding for P2C. @param PciDev Pci device instance. @param IoNode Resource info node for IO. @param Mem32Node Resource info node for 32-bit memory. @param PMem32Node Resource info node for 32-bit PMemory. @param Mem64Node Resource info node for 64-bit memory. @param PMem64Node Resource info node for 64-bit PMemory. @retval EFI_SUCCESS Success. **/ EFI_STATUS ResourcePaddingForCardBusBridge ( PCI_IO_DEVICE *PciDev, PCI_RESOURCE_NODE *IoNode, PCI_RESOURCE_NODE *Mem32Node, PCI_RESOURCE_NODE *PMem32Node, PCI_RESOURCE_NODE *Mem64Node, PCI_RESOURCE_NODE *PMem64Node ) { PCI_RESOURCE_NODE *Node; Node = NULL; // // Memory Base/Limit Register 0 // Bar 1 denodes memory range 0 // Node = CreateResourceNode ( PciDev, 0x2000000, 0x1ffffff, 1, PciBarTypeMem32, PciResUsagePadding ); InsertResourceNode ( Mem32Node, Node ); // // Memory Base/Limit Register 1 // Bar 2 denodes memory range1 // Node = CreateResourceNode ( PciDev, 0x2000000, 0x1ffffff, 2, PciBarTypePMem32, PciResUsagePadding ); InsertResourceNode ( PMem32Node, Node ); // // Io Base/Limit // Bar 3 denodes io range 0 // Node = CreateResourceNode ( PciDev, 0x100, 0xff, 3, PciBarTypeIo16, PciResUsagePadding ); InsertResourceNode ( IoNode, Node ); // // Io Base/Limit // Bar 4 denodes io range 0 // Node = CreateResourceNode ( PciDev, 0x100, 0xff, 4, PciBarTypeIo16, PciResUsagePadding ); InsertResourceNode ( IoNode, Node ); return EFI_SUCCESS; } /** Program P2C register for given resource node @param Base Base address of P2C device @param Node Given resource node. @retval EFI_SUCCESS Success **/ EFI_STATUS ProgramP2C ( IN UINT64 Base, IN PCI_RESOURCE_NODE *Node ) { EFI_PCI_IO_PROTOCOL *PciIo; UINT64 Address; UINT64 TempAddress; UINT16 BridgeControl; Address = 0; PciIo = &(Node->PciDev->PciIo); Address = Base + Node->Offset; // // Indicate pci bus driver has allocated // resource for this device // It might be a temporary solution here since // pci device could have multiple bar // Node->PciDev->Allocated = TRUE; switch (Node->Bar) { case P2C_BAR_0: PciIoWrite ( PciIo, EfiPciIoWidthUint32, (Node->PciDev->PciBar[Node->Bar]).Offset, 1, &Address ); Node->PciDev->PciBar[Node->Bar].BaseAddress = Address; Node->PciDev->PciBar[Node->Bar].Length = Node->Length; break; case P2C_MEM_1: PciIoWrite ( PciIo, EfiPciIoWidthUint32, 0x1c, 1, &Address ); TempAddress = Address + Node->Length - 1; PciIoWrite ( PciIo, EfiPciIoWidthUint32, 0x20, 1, &TempAddress ); if (Node->ResType == PciBarTypeMem32) { // // Set non-prefetchable bit // PciIoRead ( PciIo, EfiPciIoWidthUint16, 0x3e, 1, &BridgeControl ); BridgeControl &= 0xfeff; PciIoWrite ( PciIo, EfiPciIoWidthUint16, 0x3e, 1, &BridgeControl ); } else { // // Set pre-fetchable bit // PciIoRead ( PciIo, EfiPciIoWidthUint16, 0x3e, 1, &BridgeControl ); BridgeControl |= 0x0100; PciIoWrite ( PciIo, EfiPciIoWidthUint16, 0x3e, 1, &BridgeControl ); } Node->PciDev->PciBar[Node->Bar].BaseAddress = Address; Node->PciDev->PciBar[Node->Bar].Length = Node->Length; Node->PciDev->PciBar[Node->Bar].BarType = Node->ResType; break; case P2C_MEM_2: PciIoWrite ( PciIo, EfiPciIoWidthUint32, 0x24, 1, &Address ); TempAddress = Address + Node->Length - 1; PciIoWrite ( PciIo, EfiPciIoWidthUint32, 0x28, 1, &TempAddress ); if (Node->ResType == PciBarTypeMem32) { // // Set non-prefetchable bit // PciIoRead ( PciIo, EfiPciIoWidthUint16, 0x3e, 1, &BridgeControl ); BridgeControl &= 0xfdff; PciIoWrite ( PciIo, EfiPciIoWidthUint16, 0x3e, 1, &BridgeControl ); } else { // // Set pre-fetchable bit // PciIoRead ( PciIo, EfiPciIoWidthUint16, 0x3e, 1, &BridgeControl ); BridgeControl |= 0x0200; PciIoWrite ( PciIo, EfiPciIoWidthUint16, 0x3e, 1, &BridgeControl ); } Node->PciDev->PciBar[Node->Bar].BaseAddress = Address; Node->PciDev->PciBar[Node->Bar].Length = Node->Length; Node->PciDev->PciBar[Node->Bar].BarType = Node->ResType; break; case P2C_IO_1: PciIoWrite ( PciIo, EfiPciIoWidthUint32, 0x2c, 1, &Address ); TempAddress = Address + Node->Length - 1; PciIoWrite ( PciIo, EfiPciIoWidthUint32, 0x30, 1, &TempAddress ); Node->PciDev->PciBar[Node->Bar].BaseAddress = Address; Node->PciDev->PciBar[Node->Bar].Length = Node->Length; Node->PciDev->PciBar[Node->Bar].BarType = Node->ResType; break; case P2C_IO_2: PciIoWrite ( PciIo, EfiPciIoWidthUint32, 0x34, 1, &Address ); TempAddress = Address + Node->Length - 1; PciIoWrite ( PciIo, EfiPciIoWidthUint32, 0x38, 1, &TempAddress ); Node->PciDev->PciBar[Node->Bar].BaseAddress = Address; Node->PciDev->PciBar[Node->Bar].Length = Node->Length; Node->PciDev->PciBar[Node->Bar].BarType = Node->ResType; break; default: break; } return EFI_SUCCESS; } /** Create padding resource node. @param PciDev Pci device instance. @param IoNode Resource info node for IO. @param Mem32Node Resource info node for 32-bit memory. @param PMem32Node Resource info node for 32-bit PMemory. @param Mem64Node Resource info node for 64-bit memory. @param PMem64Node Resource info node for 64-bit PMemory. @retval EFI_SUCCESS Success. **/ EFI_STATUS ApplyResourcePadding ( PCI_IO_DEVICE *PciDev, PCI_RESOURCE_NODE *IoNode, PCI_RESOURCE_NODE *Mem32Node, PCI_RESOURCE_NODE *PMem32Node, PCI_RESOURCE_NODE *Mem64Node, PCI_RESOURCE_NODE *PMem64Node ) { EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR *Ptr; PCI_RESOURCE_NODE *Node; UINT8 DummyBarIndex; DummyBarIndex = 0; Ptr = PciDev->ResourcePaddingDescriptors; while (((EFI_ACPI_END_TAG_DESCRIPTOR *) Ptr)->Desc != ACPI_END_TAG_DESCRIPTOR) { if (Ptr->Desc == ACPI_ADDRESS_SPACE_DESCRIPTOR && Ptr->ResType == ACPI_ADDRESS_SPACE_TYPE_IO) { if (Ptr->AddrLen != 0) { Node = CreateResourceNode ( PciDev, Ptr->AddrLen, Ptr->AddrRangeMax, DummyBarIndex, PciBarTypeIo16, PciResUsagePadding ); InsertResourceNode ( IoNode, Node ); } Ptr++; continue; } if (Ptr->Desc == ACPI_ADDRESS_SPACE_DESCRIPTOR && Ptr->ResType == ACPI_ADDRESS_SPACE_TYPE_MEM) { if (Ptr->AddrSpaceGranularity == 32) { // // prefechable // if (Ptr->SpecificFlag == 0x6) { if (Ptr->AddrLen) { Node = CreateResourceNode ( PciDev, Ptr->AddrLen, Ptr->AddrRangeMax, DummyBarIndex, PciBarTypePMem32, PciResUsagePadding ); InsertResourceNode ( PMem32Node, Node ); } Ptr++; continue; } // // Non-prefechable // if (Ptr->SpecificFlag == 0) { if (Ptr->AddrLen) { Node = CreateResourceNode ( PciDev, Ptr->AddrLen, Ptr->AddrRangeMax, DummyBarIndex, PciBarTypeMem32, PciResUsagePadding ); InsertResourceNode ( Mem32Node, Node ); } Ptr++; continue; } } if (Ptr->AddrSpaceGranularity == 64) { // // prefechable // if (Ptr->SpecificFlag == 0x6) { if (Ptr->AddrLen) { Node = CreateResourceNode ( PciDev, Ptr->AddrLen, Ptr->AddrRangeMax, DummyBarIndex, PciBarTypePMem64, PciResUsagePadding ); InsertResourceNode ( PMem64Node, Node ); } Ptr++; continue; } // // Non-prefechable // if (Ptr->SpecificFlag == 0) { if (Ptr->AddrLen) { Node = CreateResourceNode ( PciDev, Ptr->AddrLen, Ptr->AddrRangeMax, DummyBarIndex, PciBarTypeMem64, PciResUsagePadding ); InsertResourceNode ( Mem64Node, Node ); } Ptr++; continue; } } } Ptr++; } return EFI_SUCCESS; } /** Get padding resource for PPB. Light PCI bus driver woundn't support hotplug root device So no need to pad resource for them. @param PciIoDevice Pci device instance. **/ VOID GetResourcePaddingPpb ( IN PCI_IO_DEVICE *PciIoDevice ) { if (gPciHotPlugInit != NULL) { if (PciIoDevice->ResourcePaddingDescriptors == NULL) { GetResourcePaddingForHpb (PciIoDevice); } } }