/**@file UEFI and Custom Decompress Library The function of UefiTianoDecompress() is interface for this module, it will do tiano or uefi decompress with different verison parameter. See EFI specification 1.1 Chapter 17 to get LZ77 compress/decompress. Copyright (c) 2006, Intel Corporation All rights reserved. This program and the accompanying materials are licensed and made available under the terms and conditions of the BSD License which accompanies this distribution. The full text of the license may be found at http://opensource.org/licenses/bsd-license.php THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. **/ #include #include "BaseUefiTianoCustomDecompressLibInternals.h" /** Shift mBitBuf NumOfBits left. Read in NumOfBits of bits from source. @param Sd The global scratch data @param NumOfBits The number of bits to shift and read. **/ VOID FillBuf ( IN SCRATCH_DATA *Sd, IN UINT16 NumOfBits ) { Sd->mBitBuf = (UINT32) (Sd->mBitBuf << NumOfBits); while (NumOfBits > Sd->mBitCount) { Sd->mBitBuf |= (UINT32) (Sd->mSubBitBuf << (NumOfBits = (UINT16) (NumOfBits - Sd->mBitCount))); if (Sd->mCompSize > 0) { // // Get 1 byte into SubBitBuf // Sd->mCompSize--; Sd->mSubBitBuf = 0; Sd->mSubBitBuf = Sd->mSrcBase[Sd->mInBuf++]; Sd->mBitCount = 8; } else { // // No more bits from the source, just pad zero bit. // Sd->mSubBitBuf = 0; Sd->mBitCount = 8; } } Sd->mBitCount = (UINT16) (Sd->mBitCount - NumOfBits); Sd->mBitBuf |= Sd->mSubBitBuf >> Sd->mBitCount; } /** Get NumOfBits of bits out from mBitBuf Get NumOfBits of bits out from mBitBuf. Fill mBitBuf with subsequent NumOfBits of bits from source. Returns NumOfBits of bits that are popped out. @param Sd The global scratch data. @param NumOfBits The number of bits to pop and read. @return The bits that are popped out. **/ UINT32 GetBits ( IN SCRATCH_DATA *Sd, IN UINT16 NumOfBits ) { UINT32 OutBits; OutBits = (UINT32) (Sd->mBitBuf >> (BITBUFSIZ - NumOfBits)); FillBuf (Sd, NumOfBits); return OutBits; } /** Creates Huffman Code mapping table according to code length array. Creates Huffman Code mapping table for Extra Set, Char&Len Set and Position Set according to code length array. @param Sd The global scratch data @param NumOfChar Number of symbols in the symbol set @param BitLen Code length array @param TableBits The width of the mapping table @param Table The table @retval 0 OK. @retval BAD_TABLE The table is corrupted. **/ UINT16 MakeTable ( IN SCRATCH_DATA *Sd, IN UINT16 NumOfChar, IN UINT8 *BitLen, IN UINT16 TableBits, OUT UINT16 *Table ) { UINT16 Count[17]; UINT16 Weight[17]; UINT16 Start[18]; UINT16 *Pointer; UINT16 Index3; volatile UINT16 Index; UINT16 Len; UINT16 Char; UINT16 JuBits; UINT16 Avail; UINT16 NextCode; UINT16 Mask; UINT16 WordOfStart; UINT16 WordOfCount; for (Index = 1; Index <= 16; Index++) { Count[Index] = 0; } for (Index = 0; Index < NumOfChar; Index++) { Count[BitLen[Index]]++; } Start[1] = 0; for (Index = 1; Index <= 16; Index++) { WordOfStart = Start[Index]; WordOfCount = Count[Index]; Start[Index + 1] = (UINT16) (WordOfStart + (WordOfCount << (16 - Index))); } if (Start[17] != 0) { /*(1U << 16)*/ return (UINT16) BAD_TABLE; } JuBits = (UINT16) (16 - TableBits); for (Index = 1; Index <= TableBits; Index++) { Start[Index] >>= JuBits; Weight[Index] = (UINT16) (1U << (TableBits - Index)); } while (Index <= 16) { Weight[Index] = (UINT16) (1U << (16 - Index)); Index++; } Index = (UINT16) (Start[TableBits + 1] >> JuBits); if (Index != 0) { Index3 = (UINT16) (1U << TableBits); while (Index != Index3) { Table[Index++] = 0; } } Avail = NumOfChar; Mask = (UINT16) (1U << (15 - TableBits)); for (Char = 0; Char < NumOfChar; Char++) { Len = BitLen[Char]; if (Len == 0) { continue; } NextCode = (UINT16) (Start[Len] + Weight[Len]); if (Len <= TableBits) { for (Index = Start[Len]; Index < NextCode; Index++) { Table[Index] = Char; } } else { Index3 = Start[Len]; Pointer = &Table[Index3 >> JuBits]; Index = (UINT16) (Len - TableBits); while (Index != 0) { if (*Pointer == 0) { Sd->mRight[Avail] = Sd->mLeft[Avail] = 0; *Pointer = Avail++; } if (Index3 & Mask) { Pointer = &Sd->mRight[*Pointer]; } else { Pointer = &Sd->mLeft[*Pointer]; } Index3 <<= 1; Index--; } *Pointer = Char; } Start[Len] = NextCode; } // // Succeeds // return 0; } /** Decodes a position value. @param Sd the global scratch data @return The position value decoded. **/ UINT32 DecodeP ( IN SCRATCH_DATA *Sd ) { UINT16 Val; UINT32 Mask; UINT32 Pos; Val = Sd->mPTTable[Sd->mBitBuf >> (BITBUFSIZ - 8)]; if (Val >= MAXNP) { Mask = 1U << (BITBUFSIZ - 1 - 8); do { if (Sd->mBitBuf & Mask) { Val = Sd->mRight[Val]; } else { Val = Sd->mLeft[Val]; } Mask >>= 1; } while (Val >= MAXNP); } // // Advance what we have read // FillBuf (Sd, Sd->mPTLen[Val]); Pos = Val; if (Val > 1) { Pos = (UINT32) ((1U << (Val - 1)) + GetBits (Sd, (UINT16) (Val - 1))); } return Pos; } /** Reads code lengths for the Extra Set or the Position Set. Read in the Extra Set or Pointion Set Length Arrary, then generate the Huffman code mapping for them. @param Sd The global scratch data. @param nn Number of symbols. @param nbit Number of bits needed to represent nn. @param Special The special symbol that needs to be taken care of. @retval 0 OK. @retval BAD_TABLE Table is corrupted. **/ UINT16 ReadPTLen ( IN SCRATCH_DATA *Sd, IN UINT16 nn, IN UINT16 nbit, IN UINT16 Special ) { UINT16 Number; UINT16 CharC; volatile UINT16 Index; UINT32 Mask; Number = (UINT16) GetBits (Sd, nbit); if (Number == 0) { CharC = (UINT16) GetBits (Sd, nbit); for (Index = 0; Index < 256; Index++) { Sd->mPTTable[Index] = CharC; } for (Index = 0; Index < nn; Index++) { Sd->mPTLen[Index] = 0; } return 0; } Index = 0; while (Index < Number) { CharC = (UINT16) (Sd->mBitBuf >> (BITBUFSIZ - 3)); if (CharC == 7) { Mask = 1U << (BITBUFSIZ - 1 - 3); while (Mask & Sd->mBitBuf) { Mask >>= 1; CharC += 1; } } FillBuf (Sd, (UINT16) ((CharC < 7) ? 3 : CharC - 3)); Sd->mPTLen[Index++] = (UINT8) CharC; if (Index == Special) { CharC = (UINT16) GetBits (Sd, 2); while ((INT16) (--CharC) >= 0) { Sd->mPTLen[Index++] = 0; } } } while (Index < nn) { Sd->mPTLen[Index++] = 0; } return MakeTable (Sd, nn, Sd->mPTLen, 8, Sd->mPTTable); } /** Reads code lengths for Char&Len Set. Read in and decode the Char&Len Set Code Length Array, then generate the Huffman Code mapping table for the Char&Len Set. @param Sd the global scratch data **/ VOID ReadCLen ( SCRATCH_DATA *Sd ) { UINT16 Number; UINT16 CharC; volatile UINT16 Index; UINT32 Mask; Number = (UINT16) GetBits (Sd, CBIT); if (Number == 0) { CharC = (UINT16) GetBits (Sd, CBIT); for (Index = 0; Index < NC; Index++) { Sd->mCLen[Index] = 0; } for (Index = 0; Index < 4096; Index++) { Sd->mCTable[Index] = CharC; } return ; } Index = 0; while (Index < Number) { CharC = Sd->mPTTable[Sd->mBitBuf >> (BITBUFSIZ - 8)]; if (CharC >= NT) { Mask = 1U << (BITBUFSIZ - 1 - 8); do { if (Mask & Sd->mBitBuf) { CharC = Sd->mRight[CharC]; } else { CharC = Sd->mLeft[CharC]; } Mask >>= 1; } while (CharC >= NT); } // // Advance what we have read // FillBuf (Sd, Sd->mPTLen[CharC]); if (CharC <= 2) { if (CharC == 0) { CharC = 1; } else if (CharC == 1) { CharC = (UINT16) (GetBits (Sd, 4) + 3); } else if (CharC == 2) { CharC = (UINT16) (GetBits (Sd, CBIT) + 20); } while ((INT16) (--CharC) >= 0) { Sd->mCLen[Index++] = 0; } } else { Sd->mCLen[Index++] = (UINT8) (CharC - 2); } } while (Index < NC) { Sd->mCLen[Index++] = 0; } MakeTable (Sd, NC, Sd->mCLen, 12, Sd->mCTable); return ; } /** Decode a character/length value. Read one value from mBitBuf, Get one code from mBitBuf. If it is at block boundary, generates Huffman code mapping table for Extra Set, Code&Len Set and Position Set. @param Sd The global scratch data. @return The value decoded. **/ UINT16 DecodeC ( SCRATCH_DATA *Sd ) { UINT16 Index2; UINT32 Mask; if (Sd->mBlockSize == 0) { // // Starting a new block // Sd->mBlockSize = (UINT16) GetBits (Sd, 16); Sd->mBadTableFlag = ReadPTLen (Sd, NT, TBIT, 3); if (Sd->mBadTableFlag != 0) { return 0; } ReadCLen (Sd); Sd->mBadTableFlag = ReadPTLen (Sd, MAXNP, Sd->mPBit, (UINT16) (-1)); if (Sd->mBadTableFlag != 0) { return 0; } } Sd->mBlockSize--; Index2 = Sd->mCTable[Sd->mBitBuf >> (BITBUFSIZ - 12)]; if (Index2 >= NC) { Mask = 1U << (BITBUFSIZ - 1 - 12); do { if (Sd->mBitBuf & Mask) { Index2 = Sd->mRight[Index2]; } else { Index2 = Sd->mLeft[Index2]; } Mask >>= 1; } while (Index2 >= NC); } // // Advance what we have read // FillBuf (Sd, Sd->mCLen[Index2]); return Index2; } /** Decode the source data ad put the resulting data into the destination buffer. @param Sd - The global scratch data **/ VOID Decode ( SCRATCH_DATA *Sd ) { UINT16 BytesRemain; UINT32 DataIdx; UINT16 CharC; BytesRemain = (UINT16) (-1); DataIdx = 0; for (;;) { CharC = DecodeC (Sd); if (Sd->mBadTableFlag != 0) { goto Done ; } if (CharC < 256) { // // Process an Original character // if (Sd->mOutBuf >= Sd->mOrigSize) { goto Done ; } else { Sd->mDstBase[Sd->mOutBuf++] = (UINT8) CharC; } } else { // // Process a Pointer // CharC = (UINT16) (CharC - (UINT8_MAX + 1 - THRESHOLD)); BytesRemain = CharC; DataIdx = Sd->mOutBuf - DecodeP (Sd) - 1; BytesRemain--; while ((INT16) (BytesRemain) >= 0) { Sd->mDstBase[Sd->mOutBuf++] = Sd->mDstBase[DataIdx++]; if (Sd->mOutBuf >= Sd->mOrigSize) { goto Done ; } BytesRemain--; } } } Done: return ; } /** The internal implementation of *_DECOMPRESS_PROTOCOL.GetInfo(). @param Source The source buffer containing the compressed data. @param SourceSize The size of source buffer @param DestinationSize The size of destination buffer. @param ScratchSize The size of scratch buffer. @retval RETURN_SUCCESS - The size of destination buffer and the size of scratch buffer are successull retrieved. @retval RETURN_INVALID_PARAMETER - The source data is corrupted **/ RETURN_STATUS EFIAPI UefiDecompressGetInfo ( IN CONST VOID *Source, IN UINT32 SourceSize, OUT UINT32 *DestinationSize, OUT UINT32 *ScratchSize ) { UINT32 CompressedSize; ASSERT (Source != NULL); ASSERT (DestinationSize != NULL); ASSERT (ScratchSize != NULL); if (SourceSize < 8) { return RETURN_INVALID_PARAMETER; } CompressedSize = *(UINT32 *) Source; if (SourceSize < (CompressedSize + 8)) { return RETURN_INVALID_PARAMETER; } *ScratchSize = sizeof (SCRATCH_DATA); *DestinationSize = *((UINT32 *) Source + 1); return RETURN_SUCCESS; } /** The internal implementation of *_DECOMPRESS_PROTOCOL.Decompress(). @param Source The source buffer containing the compressed data. @param Destination The destination buffer to store the decompressed data @param Scratch The buffer used internally by the decompress routine. This buffer is needed to store intermediate data. @param Version 1 for UEFI Decompress algoruthm, 2 for Tiano Decompess algorithm @retval RETURN_SUCCESS Decompression is successfull @retval RETURN_INVALID_PARAMETER The source data is corrupted **/ RETURN_STATUS EFIAPI UefiTianoDecompress ( IN CONST VOID *Source, IN OUT VOID *Destination, IN OUT VOID *Scratch, IN UINT32 Version ) { volatile UINT32 Index; UINT32 CompSize; UINT32 OrigSize; SCRATCH_DATA *Sd; CONST UINT8 *Src; UINT8 *Dst; ASSERT (Source != NULL); ASSERT (Destination != NULL); ASSERT (Scratch != NULL); Src = Source; Dst = Destination; Sd = (SCRATCH_DATA *) Scratch; CompSize = Src[0] + (Src[1] << 8) + (Src[2] << 16) + (Src[3] << 24); OrigSize = Src[4] + (Src[5] << 8) + (Src[6] << 16) + (Src[7] << 24); // // If compressed file size is 0, return // if (OrigSize == 0) { return RETURN_SUCCESS; } Src = Src + 8; for (Index = 0; Index < sizeof (SCRATCH_DATA); Index++) { ((UINT8 *) Sd)[Index] = 0; } // // The length of the field 'Position Set Code Length Array Size' in Block Header. // For UEFI 2.0 de/compression algorithm(Version 1), mPBit = 4 // For Tiano de/compression algorithm(Version 2), mPBit = 5 // switch (Version) { case 1 : Sd->mPBit = 4; break; case 2 : Sd->mPBit = 5; break; default: ASSERT (FALSE); } Sd->mSrcBase = (UINT8 *)Src; Sd->mDstBase = Dst; Sd->mCompSize = CompSize; Sd->mOrigSize = OrigSize; // // Fill the first BITBUFSIZ bits // FillBuf (Sd, BITBUFSIZ); // // Decompress it // Decode (Sd); if (Sd->mBadTableFlag != 0) { // // Something wrong with the source // return RETURN_INVALID_PARAMETER; } return RETURN_SUCCESS; } /** The internal implementation of *_DECOMPRESS_PROTOCOL.Decompress(). @param Source - The source buffer containing the compressed data. @param Destination - The destination buffer to store the decompressed data @param Scratch - The buffer used internally by the decompress routine. This buffer is needed to store intermediate data. @retval RETURN_SUCCESS - Decompression is successfull @retval RETURN_INVALID_PARAMETER - The source data is corrupted **/ RETURN_STATUS EFIAPI UefiDecompress ( IN CONST VOID *Source, IN OUT VOID *Destination, IN OUT VOID *Scratch ) { return UefiTianoDecompress (Source, Destination, Scratch, 1); } /** The internal implementation of Tiano decompress GetInfo. @param InputSection Buffer containing the input GUIDed section to be processed. @param OutputBufferSize The size of OutputBuffer. @param ScratchBufferSize The size of ScratchBuffer. @param SectionAttribute The attribute of the input guided section. @retval RETURN_SUCCESS - The size of destination buffer and the size of scratch buffer are successull retrieved. @retval RETURN_INVALID_PARAMETER - The source data is corrupted The GUID in InputSection does not match this instance guid. **/ RETURN_STATUS EFIAPI TianoDecompressGetInfo ( IN CONST VOID *InputSection, OUT UINT32 *OutputBufferSize, OUT UINT32 *ScratchBufferSize, OUT UINT16 *SectionAttribute ) { ASSERT (SectionAttribute != NULL); if (InputSection == NULL) { return RETURN_INVALID_PARAMETER; } if (!CompareGuid ( &gTianoCustomDecompressGuid, &(((EFI_GUID_DEFINED_SECTION *) InputSection)->SectionDefinitionGuid))) { return RETURN_INVALID_PARAMETER; } // // Get guid attribute of guid section. // *SectionAttribute = ((EFI_GUID_DEFINED_SECTION *) InputSection)->Attributes; // // Call Tiano GetInfo to get the required size info. // return UefiDecompressGetInfo ( (UINT8 *) InputSection + ((EFI_GUID_DEFINED_SECTION *) InputSection)->DataOffset, (*(UINT32 *) (((EFI_COMMON_SECTION_HEADER *) InputSection)->Size) & 0x00ffffff) - ((EFI_GUID_DEFINED_SECTION *) InputSection)->DataOffset, OutputBufferSize, ScratchBufferSize ); } /** The implementation of Tiano Decompress(). @param InputSection Buffer containing the input GUIDed section to be processed. @param OutputBuffer OutputBuffer to point to the start of the section's contents. if guided data is not prcessed. Otherwise, OutputBuffer to contain the output data, which is allocated by the caller. @param ScratchBuffer A pointer to a caller-allocated buffer for function internal use. @param AuthenticationStatus A pointer to a caller-allocated UINT32 that indicates the authentication status of the output buffer. @retval RETURN_SUCCESS Decompression is successfull @retval RETURN_INVALID_PARAMETER The source data is corrupted, or The GUID in InputSection does not match this instance guid. --*/ RETURN_STATUS EFIAPI TianoDecompress ( IN CONST VOID *InputSection, OUT VOID **OutputBuffer, IN VOID *ScratchBuffer, OPTIONAL OUT UINT32 *AuthenticationStatus ) { ASSERT (OutputBuffer != NULL); if (InputSection == NULL) { return RETURN_INVALID_PARAMETER; } if (!CompareGuid ( &gTianoCustomDecompressGuid, &(((EFI_GUID_DEFINED_SECTION *) InputSection)->SectionDefinitionGuid))) { return RETURN_INVALID_PARAMETER; } // // Set Authentication to Zero. // *AuthenticationStatus = 0; // // Call Tiano Decompress to get the raw data // return UefiTianoDecompress ( (UINT8 *) InputSection + ((EFI_GUID_DEFINED_SECTION *) InputSection)->DataOffset, *OutputBuffer, ScratchBuffer, 2 ); } /** Register TianoDecompress handler. @retval RETURN_SUCCESS Register successfully. @retval RETURN_OUT_OF_RESOURCES No enough memory to store this handler. **/ EFI_STATUS EFIAPI TianoDecompressLibConstructor ( ) { return ExtractGuidedSectionRegisterHandlers ( &gTianoCustomDecompressGuid, TianoDecompressGetInfo, TianoDecompress ); }